TECHNISCHE UNIVERSITÄT MÜNCHEN

Größe: px
Ab Seite anzeigen:

Download "TECHNISCHE UNIVERSITÄT MÜNCHEN"

Transkript

1 Prof. Dr. M. Keyl M. Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2) MA S Sommersem. 216 Lösungsblatt 3 ( ) Zentralübung Z3.1. Parameterinvarianz des Kurvenintegrals Für die C 1 -Kurve : [a, b] R n sei φ : [α, β] [a, b] eine C 1 -Parametertransformation, = φ. Ist F : R n R n ein stetiges Vektorfeld, so gilt F (y) dy = (sgn φ ) F (y) dy Erinnerung: Das Kurvenintegral von F entlang der Kurve ist definiert als b F (y) dy = F ((t)) ẋ(t)dt a wobei die Funktion t F ((t)) ẋ(t) stetig ist. Wir berechnen F (y) dy = β α F ( (s)) (s)ds = b = (sgn φ ) a β α F ((φ(s)) ẋ(φ(s))φ (s)ds t=φ(s) = F ((t)) ẋ(t)dt = (sgn φ ) F (y) dy. φ(β) φ(α) F ((t)) ẋ(t)dt Z3.2. Innere, äußere und Randpunkte Sei (M, d) ein metrischer Raum, A M. Der Abstand eines Punktes von A ist definiert als dist(, A) := inf{d(, y) : y A} Wir definieren den signierten Abstand, { dist(, A), A, sdist(, A) := dist(, M \ A), A. (a) Skizzieren Sie für A =] 2, 1[ {} [1, 2] R die Funktion sdist(, A). (b) Man zeige: (i) sdist(, A) < A, (ii) sdist(, A) = A, (iii) sdist(, A) > M \ A.

2 (a) sdist, A (b) (i) = : sdist(, A) < ɛ := dist(, M \ A) > U ɛ () A ist innerer Punkt von A. = : A ɛ > : U ɛ () A dist(, M \ A) ɛ >. (iii) wie (i), mit A und M \ A vertauscht. (ii) folgt direkt aus (i) und (iii). Z3.3. Vereinigung und Durchschnitt von offenen und abgeschlossenen Mengen. Sei (M, d) ein metrischer Raum. (a) Beliebige Vereinigungen offener Mengen sind offen: Sei I eine beliebige Menge und zu jedem i I sei A i M offen. Dann ist (b) Endliche Schnitte offener Mengen sind offen: Sei I eine endliche Menge und zu jedem i I sei A i M offen. Dann ist (c) Wie lauten die analogen Aussagen für abgeschlossene Mengen? A i offen. A i offen. (d) Geben sie je ein Beispiel dafür an, dass der Schnitt abzählbar vieler offener Mengen nicht wieder offen zu sein braucht und dass die Vereinigung abzählbar vieler abgeschlossener Mengen nicht wieder abgeschlossen zu sein braucht. (a) Sei A i. Es gibt also ein i I, so dass A i. Da A i offen ist, ist A i eine Umgebung von. Wegen A i A i ist also auch A i eine Umgebung von. (b) Sei A i, I <. Zu jedem i gibt es ein ɛ i >, so dass U ɛi () A i. Mit ɛ := min ɛ i > ist U ɛ () U ɛi () für alle i I. Also ist U ɛ () A i. (c) Beliebige Schnitte abgeschlossener Mengen sind abgeschlossen. Endliche Vereinigungen abgeschlossener Mengen sind abgeschlossen. (d) In (R, ): ] 1 n, 1 n [= {}, n N [ 1 n, 1 1 n ] =], 1[, n 2

3 Tutoraufgaben T3.1. Ein einfaches Kurvenintegral Berechnen sie das Kurvenintegral des Vektorfeldes F (, y, z) = ( y,, z) entlang einer Schraubenlinie konstanter Steigung um die z-achse, die von (1,, ) nach (1,, 2π) läuft. Wir parametrisieren eine k-fache Schraubenlinie durch γ k (t) = (cos t, sin t, αt), t [, 2πk], wobei k N. γ() = (1,, ) ist immer erfüllt, damit auch γ(2πk) = (1,, 2π) gilt, muss α = 1 k gewählt werden. Somit ist 2πk 2πk sin t sin t F () d = F (γ(t)) γ(t)dt = cos t cos t dt 1 γ k t 1 k = 2πk T3.2. Innere, äußere und Randpunkte (sin 2 t + cos 2 t + 1 k 2 t)dt = 2πk + (2πk)2 2k 2 = 2πk + π 2. Sei (M, d) ein metrischer Raum, A M. Als Abkürzung setzen wir A c = M \ A. (a) Man zeige: A genau dann, wenn jede Umgebung von sowohl Punkte von A, als auch Punkte von A c enthält. (b) Vervollständigen Sie: Formel ist innerer Punkt oder Randpunkt oder äußerer Punkt von A. A X A X X A X (A c ) X ( A ) c X X A c X A c X X ( A) c X X (a) Beweis: : Sei A = A \ A. Das bedeutet, dass weder äußerer noch innerer Punkt von A ist. Sei U M eine beliebige Umgebung von. U ist nicht in A enthalten (sonst wäre innerer Punkt von A), also ist U A c. U ist nicht in A c enthalten (sonst wäre äußerer Punkt von A), also ist U A. : Sei M ein Punkt, so dass für jede Umgebung U von gilt : U A und U A c. Somit ist U A c und U A. ist also weder äußerer noch innerer Punkt von A, also A. (b) s.o., Bemerkung: ( A) c = A c A. Die Aufgabe testet nur elementare Mengenlehre, wenn man beachtet, dass A, A und M \ A paarweise disjunkte Mengen sind, deren Vereinigung ganz M ergibt.

4 T3.3. Beispiele für Inneres, Abschluss und Rand Geben Sie das Innere, den Abschluss und den Rand folgender Mengen an und begründen Sie kurz. (a) M = ( 1, 1] 2 R 2. (b) B = { R 3 : 1} R 3. (c) S 2 = { R 3 : = 1} R 3. (a) M = ( 1, 1) 2, Die anschauliche Begründung ist: rechts stehen genau die Punkte von M, für die es eine in M enthaltene ɛ-umgebung gibt. Ausführlicher Beweis: : (, y) M M ist Umgebung von (, y) es gibt ein ɛ > mit B ɛ ((, y)) M 1 > ɛ und 1 y > ɛ < 1 und y < 1 (, y) ( 1, 1) 2. : (, y) ( 1, 1) 2 < 1 und y < 1 mit ɛ := min{1, 1 y } gilt B ɛ ((, y)) M (, y) M. M = [ 1, 1] 2, Kurzbegründung: R 2 \ [ 1, 1] 2 sind genau die Punkte, für die eine ɛ-umgebung eistiert, die disjunkt zu M ist. Ausführlicher Beweis: : (, y) M (, y) (R 2 \ M) es gibt ein ɛ > mit B ɛ ((, y)) R 2 \ M > 1 oder y > 1 (, y) [ 1, 1] 2. Damit ist [ 1, 1] 2 M gezeigt. : (, y) [ 1, 1] 2 > 1 oder y > 1 mit ɛ := ma{ 1, y 1} gilt B ɛ ((, y)) R 2 \ M (, y) M. Also ist M [ 1, 1] 2 gezeigt. M = {(, y) : ma{, y } = 1} = [ 1, 1] { 1, 1} { 1, 1} [ 1, 1]. Begründung: M = [ 1, 1] 2 \ ( 1, 1) 2. (b) B = B, (c) B = U 1 (), B = S 2. S 2 =, Begründung: Zu jedem ɛ > ist (1 + ɛ) S 2. S 2 = S 2, Begründung: R 3 \ S 2 ist offen ( 1 mit ɛ := 1 > ist U ɛ () S 2 = ). S 2 = S 2. Hausaufgaben H3.1. Beispiele für Kurvenintegrale Wir betrachten drei Kurven im R 2 von A = (, 1) nach B = (1, 2), γ 1 ist die direkte Verbindung von A nach B, γ 2 ist der Streckenzug von A über (1, 1) nach B, γ 3 verläuft längs der Parabel y = Berechnen Sie jeweils die Kurvenintegrale entlang γ 1, γ 2, γ 3 für die Vektorfelder (a) F 1 (, y) = ( 2 y +y 2 ), (b) F2 (, y) = ( 2 +y +y 2 ).

5 Zunächst parametrisieren wir die Kurven durch γ 1 (t) = (1 t)a + tb = (t, 1 + t), t [, 1], γ 2 stellen wir durch sukzessives Durchlaufen zweier regulärer Kurven dar: γ 21 (t) = (t, 1), γ 22 (t) = (1, 1 + t), jeweils mit t [, 1] und γ 3 (t) = (t, 1 + t 2 ), t [, 1]. (a) Für F 1 lauten die Kurvenintegrale 1 1 ( F 1 () d = F 1 (γ 1 (t)) γ 1 (t)dt = t 2 (1+t) ) ( t+(1+t) 1 ) dt = (2t 2 + 2t)dt = = 5 3, γ 1 F 1 () d = F 1 () d + 1 F 1 () d = (t 2 1 1)dt + (1 + (1 + t) 2 )dt γ 2 γ 21 γ 22 = (2 + 2t + t 2 )dt = = 8 3, γ 3 F 1 () d = 1 ( t 2 (1+t 2 )) ( t+(1+t 2 ) 1 ) 1 2 2t dt = 1 + 2t 2 + 2t 5 + 4t 3 + 2t)dt = = 2. (b) Für F 2 geht das ganz analog, γ 1 F 2 () d = 1 γ 2 F 2 () d = γ 3 F 1 () d = F 2 (γ 1 (t)) γ 1 (t)dt = γ 21 F 2 () d + = = 14 3, 1 1 ( t 2 +(1+t) ) ( t+(1+t) 1 ) dt = (2t 2 + 4t + 2)dt = 14 3, γ 22 F 2 () d = ( t 2 +(1+t 2 )) ( t+(1+t 2 ) 1 ) 2 2t dt = = = (t 2 + 1)dt + 1 (1 + (1 + t) 2 )dt 2t 2 + 2t 5 + 4t 3 + 2t)dt Da F 2 konservativ auf ganz R 2 ist, hängt das Ergebnis nur von den Endpunkten ab. H3.2. Das Innere und der Abschluss Sei (M, d) ein metrischer Raum, A M. (a) A A A. (b) Ist A offen, so ist A = A. (c) Das Innere von A ist offen. (d) Ist A abgeschlossen, so ist A = A. (e) Der Abschluss von A ist abgeschlossen. (f) A ist abgeschlossen. Wiederholung: Für ɛ > heißt U ɛ () = {y M : d(, y) < ɛ} ɛ-umgebung von. U M heißt Umgebung von M, falls es eine ɛ-umgebung von gibt, die in U enthalten ist.

6 A heißt offen, falls A für jedes seiner Elemente eine Umgebung darstellt. A heißt abgeschlossen, falls A c offen ist. ist innerer Punkt von A ist gleichbedeutend mit A ist Umgebung von. ist äußerer Punkt von A ist synonym zu ist innerer Punkt von A c. ist Randpunkt von A ist gleichbedeutend mit ist weder innerer noch äußerer Punkt von A (a) A ist innerer Punkt von A es gibt ɛ > mit U ɛ () A U ɛ () A. A ist kein äußerer Punkt von A A. (b) Sei A offen. Zu zeigen ist nur A A: Sei A. Da A offen ist, gibt es ein ɛ >, so dass U ɛ () A. Somit ist A eine Umgebung von, ist also innerer Punkt von A, A. (c) Beweis von A ist offen. zu zeigen: zu jedem A ist A eine Umgebung von. Sei A, dann ist innerer Punkt von A, d.h., A ist Umgebung von. Es gibt also ein ɛ >, so dass U ɛ () ganz in A liegt. Da U ɛ () offen ist, ist jedes y U ɛ () innerer Punkt von U ɛ () und damit auch innerer Punkt von A. Somit gilt U ɛ () A. A ist also Umgebung von. (d) Sei A abgeschlossen. Zu zeigen ist nur: A A, bzw. A c A c. Sei A c. Da A c offen ist, ist äußerer Punkt von A. Also ist nicht in A, m.a.w. A c. (e) Beweis von A ist abgeschlossen. Zu zeigen ist: A c ist offen. A c ist aber die Menge der äußeren Punkte von A, also offen, da es zu jedem äußeren Punkt von A eine ɛ > gibt, mit U ɛ () M \ A. (f) ( A) c = A A c ist als Vereinigung zweier offener Mengen offen. H3.3. Charakterisierung abgeschlossener Mengen Sei (M, d) ein metrischer Raum, A M. (a) Sei ( n ) n N eine Folge in A, die gegen M konvergiert. Zeigen Sie, dass A. { } (b) A = M es gibt eine Folge a : N A mit lim a n = =: GW(A), die Menge n der Grenzwerte von A. Als Abkürzung setzen wir A c = M \ A. (a) Beweis durch Widerspruch: Gelte A a n M. Annahme: A, d.h., ist äußerer Punkt von A. Dann gibt es ein ɛ > mit U ɛ () A c. Dies bedeutet aber, dass für alle n N a n U ɛ (), bzw. d(a n, ) > ɛ, im Widerspruch zu d(a n, ). (b) Aus (a) folgt direkt GW(A) A. Zu zeigen bleibt: A GW(A). Sei A. 1. Fall: A. Die konstante Folge n = konvergiert gegen, also GW(A). 2. Fall: A. Nach Aufgabe 4(a) gilt für jedes ɛ >, dass U ɛ () A. Zu jedem n N wählen wir also ein n U 1 () A. Offenbar gilt d( n, ) 1 n n, bzw., n. Also ist GW(A).

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Castrigiano Dr. M. Prähofer Zentralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik 6. Hauptzweig des Logarithmus Mathematik für Physiker 4 (Analysis 3) http://www.ma.tum.de/hm/ma9204

Mehr

12. Übungsblatt zur Analysis II

12. Übungsblatt zur Analysis II Fachbereich Mathematik Prof. Dr. Steffen Roch Nada Sissouno Benno van den Berg WS 9/1 1.1.1 1. Übungsblatt zur Analysis II Gruppenübung Aufgabe G1 Kreuzen Sie die richtigen Aussagen an. Sei V C 1 (R n,

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Repetitorium Analysis II für Physiker

Repetitorium Analysis II für Physiker Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. König Dr. M. Prähofer Zentralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Z7.1. Komposition stetiger Funktionen Mathematik für Physiker (Analysis 1) MA90 Wintersem. 017/18 Lösungsblatt

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Castrigiano Dr. M. Prähofer Zentralübung 7. Das Gauss-Integral e x2 dx TECHNISCHE UNIVESITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 4 (nalysis 3 http://www.ma.tum.de/hm/m924 2W/

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Keyl M. Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis ) MA903 http://www-m5.ma.tum.de/allgemeines/ma903 06S Sommersem. 06 Lösungsblatt 8 (3.6.06)

Mehr

Parametrisierung und Integralsätze

Parametrisierung und Integralsätze Parametrisierung und Integralsätze 2. März 2 Integration in der Ebene. Defintion: eien w,..., w n stückweise reguläre, einfach geschlossene Kurven in R 2, seien W,..., W n die von diesen Wegen umschlossene

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

Lösung zu Kapitel 5 und 6

Lösung zu Kapitel 5 und 6 Lösung zu Kapitel 5 und 6 (1) Sei f eine total differenzierbare Funktion. Welche Aussagen sind richtig? f ist partiell differenzierbar f kann stetig partiell differenzierbar sein f ist dann immer stetig

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr M Keyl M Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker (Analysis ) MA90 http://www-m5matumde/allgemeines/ma90 06S Sommersem 06 Lösungsblatt (606) Zentralübung Z

Mehr

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Themen des Tutoriums am 03.06.2015: Wiederholung: Ein glattes Flächenstück ist eine Menge M R 3, die eine reguläre Parametrisierung

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 2

Technische Universität München Zentrum Mathematik. Übungsblatt 2 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 2 Hausaufgaben Aufgabe 2.1 Sei [a, b] R ein Intervall und ( ) n N [a,

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

6 Komplexe Integration

6 Komplexe Integration 6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik 4 für Physiker (Analysis 3)

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik 4 für Physiker (Analysis 3) ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Castrigiano Dr. M. Prähofer Zentralübung 38. Einschränkung eines Maßes TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 4 (Analysis 3) http://www.ma.tum.de/hm/ma9204

Mehr

3. Übungsblatt zur Analysis II

3. Übungsblatt zur Analysis II Fachbereich Mathematik Prof. Dr. R. Farwig Ch. Komo J. Prasiswa R. Schulz SS 9.5.9. Übungsblatt zur Analysis II Gruppenübung Aufgabe G (Äquivalenz von Normen) i) etrachten Sie den Vektorraum R n mit der

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Linien- und Oberflächenintegrale

Linien- und Oberflächenintegrale Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg

Mehr

Analysis II. 8. Klausur mit Lösungen

Analysis II. 8. Klausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis II 8. Klausur mit en 1 2 Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Eine Metrik auf einer Menge M. 2) Die Kurvenlänge

Mehr

Technische Universität München. Aufgaben Mittwoch SS 2012

Technische Universität München. Aufgaben Mittwoch SS 2012 Technische Universität München Andreas Wörfel Ferienkurs Analysis 2 für Physiker Aufgaben Mittwoch SS 2012 Aufgabe 1 Äquivalente Aussagen für Stetigkeit( ) Beweisen Sie folgenden Satz: Seien X und Y metrische

Mehr

Serie 7: Kurvenintegrale

Serie 7: Kurvenintegrale D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 7: Kurvenintegrale Bemerkungen: Die Aufgaben der Serie 7 bilden den Fokus der Übungsgruppen vom 4./6. April.. Ordnen Sie den Kurven -8 die

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 3

Technische Universität München Zentrum Mathematik. Übungsblatt 3 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 3 Hausaufgaben Aufgabe 3. Zeigen Sie mit Hilfe der ɛ-δ-formulierung vgl.

Mehr

Kurvenintegral, Tangenten

Kurvenintegral, Tangenten Vorzeigeaufgaben: HS10 Aufgabe 2 WS05/06 Aufgabe 1a+b HS11 Aufgabe 2: falls Zeit am Ende vom Kursblock 1, ansonsten als Hausaufgabe. Empfohlene Bearbeitungsreihenfolge: HS09 Aufgabe 1 HS08 Aufgabe 3 HS12

Mehr

Aufgaben. f : R 2 R, f(x, y) := y.

Aufgaben. f : R 2 R, f(x, y) := y. 11. Übung zur Maß- und Integrationstheorie, Lösungsskizze A 63 Untermannigfaltigkeiten von R 2 ). Aufgaben Skizzieren Sie grob die folgenden Mengen und begründen Sie, welche davon 1-dimensionale Untermannigfaltigkeiten

Mehr

Topologie metrischer Räume

Topologie metrischer Räume Technische Universität München Christoph Niehoff Ferienkurs Analysis für Physiker Vorlesung Montag SS 11 In diesem Teil des Ferienkurses beschäftigen wir uns mit drei Themengebieten. Zuerst wird die Topologie

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

Definition Eine Metrik d auf der Menge X ist eine Abbildung d : X X IR

Definition Eine Metrik d auf der Menge X ist eine Abbildung d : X X IR 0 Inhaltsverzeichnis 1 Metrik 1 1.1 Definition einer Metrik............................. 1 1.2 Abstand eines Punktes von einer Menge................... 1 1.3 Einbettung eines metrischen Raumes in einen

Mehr

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann AUFGABEN ZUR FUNKTIONENTHEORIE von Prof. Dr. H.-W. Burmann Bei den folgenden Aufgaben handelt es sich um Reste, die bei der Erstellung der Aufgabenblätter übriggeblieben sind. Der Schwierigkeitsgrad der

Mehr

Neilsche Parabel. Wieso ist die Neilsche Parabel N = { (x,y) R 2 x 3 = y 2} keine UMF von R 2?

Neilsche Parabel. Wieso ist die Neilsche Parabel N = { (x,y) R 2 x 3 = y 2} keine UMF von R 2? Inhalt vom 23.6. In dieser Übung soll zum einen die Parametrisierung von Flächen als auch die Berechnung von Flächeninhalten im Mittelpunkt stehen. Bevor wir jedoch damit anfangen, wollen wir noch beantworten,

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 1. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 014 Höhere Mathematik II für die Fachrichtung Informatik Lösungsvorschläge zum 1. Übungsblatt Aufgabe

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

Linien- oder Kurvenintegrale: Aufgaben

Linien- oder Kurvenintegrale: Aufgaben Linien- oder Kurvenintegrale: Aufgaben 4-E Das ebene Linienintegral Im Fall eines ebenen Linienintegrals liegt der Integrationsweg C häufig in Form einer expliziten Funktionsgleichung y = f (x) vor. Das

Mehr

Der metrische Raum (X, d) ist gegeben. Zeigen Sie, dass auch

Der metrische Raum (X, d) ist gegeben. Zeigen Sie, dass auch TECHNISCHE UNIVERSITÄT BERLIN SS 07 Institut für Mathematik Stand: 3. Juli 007 Ferus / Garcke Lösungsskizzen zur Klausur vom 6.07.07 Analysis II. Aufgabe (5 Punkte Der metrische Raum (X, d ist gegeben.

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Analysis II - 1. Klausur

Analysis II - 1. Klausur Analysis II -. Klausur Sommersemester 25 Vorname: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Analysis II -. Klausur 2.5.25 Aufgabe 2 Punkte Berechnen

Mehr

= r ). Beispiele. 1) Kreis. Skizze mit Tangentialvektoren ( x. 2) Zykloide. Skizze für a = r = 1:

= r ). Beispiele. 1) Kreis. Skizze mit Tangentialvektoren ( x. 2) Zykloide. Skizze für a = r = 1: VEKTORANALYSIS Inhalt: 1) Parametrisierte Kurven 2) Vektorfelder 3) Das Linienintegral 4) Potentialfelder 1 Parametrisierte Kurven Definitionen xt () Kurve: x = x() t = y() t, t zt () xt () dxt () Tangentialvektor:

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Michael Wolf Daniel Stilck França Stefan Huber Zentralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physiker (Analysis 3) MA94 Z4.. Parametrisierungsinvarianz des Oberflächenintegrals

Mehr

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-

Mehr

10 Der Satz von Fubini

10 Der Satz von Fubini er Satz von Fubini ie Bezeichnungen seien wie in den Paragraphen 8 und 9. Satz. (Satz von Tonelli Es sei f : d [, + ] messbar. (Aus 8 folgt dann, dass f, f y messbar sind, wobei klar ist, dass f, f y sind.

Mehr

5.6 Potential eines Gradientenfelds.

5.6 Potential eines Gradientenfelds. die Zirkulation des Feldes v längs aufintegriert. 5.6 Potential eines Gradientenfelds. Die Ableitung einer skalaren Funktion ist der Gradient, ein Vektor bzw. vektorwertige Funktion (Vektorfeld). Wir untersuchen

Mehr

Cauchys Integralsatz und Cauchys Integralformel

Cauchys Integralsatz und Cauchys Integralformel Kapitel 23 Cauchys Integralsatz und Cauchys Integralformel 23. Der Cauchysche Integralsatz (einfach zusammenhängend; einfache geschlossene Kurven; Fresnelsche Integrale) Wird die Voraussetzung f habe eine

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 212 Mathematik für Anwender II Vorlesung 58 Der Satz von Green Wir betrachten eine kompakte eilmenge R 2, deren Rand R sich stückweise durch reguläre Kurven parametrisieren

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a).

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a). KAPITEL 5. MEHRDIMENSIONALE INTERATION. Berechnung Integralsätze in R Hauptsatz für Kurvenintegrale wegunabhängig radientenfeld Integrabilitätsbedingung Hauptsatz für Kurvenintegrale a b Ist eine Kurve

Mehr

Musterlösungen Aufgabenblatt 1

Musterlösungen Aufgabenblatt 1 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Phsiker Musterlösungen Aufgabenblatt Montag 6. Februar 9 Aufgabe (Vivianische Kurve) x = (sin t cos t, sin t, cos t), t π, ist wegen x + + z = eine

Mehr

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional Christina Schindler Karolina Stoiber Ferienkurs Analysis für Physiker SS 13 A 1 Variationsrechnung 1.1 Lagrange. Art Wir führen die Überlegungen von gestern fort und wollen nun die Lagrangegleichungen.

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 91

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 91 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : R R systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Fachbereich Mathematik Prof. Dr. H.-D. Alber Dr. N. Kraynyukova Dipl.-Ing. A. Böttcher WS / 3. Januar 3. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Gruppenübung Aufgabe

Mehr

A U F G A B E N A N A L Y S I S. 11. Vorlesung Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion x, x 0, stetig bei x 0 = 5 ist.

A U F G A B E N A N A L Y S I S. 11. Vorlesung Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion x, x 0, stetig bei x 0 = 5 ist. A U F G A B E N A N A L Y S I S. Vorlesung. Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion, 0, stetig bei 0 = 5 ist. Lösung: Es sei 5 < ɛ. () Daraus folgt 5 ɛ < < 5 + ɛ () oder Folglich gilt

Mehr

19.2 Kurvenintegrale. c a. wobei die euklidische Norm bezeichnet. Weiterhin heißt

19.2 Kurvenintegrale. c a. wobei die euklidische Norm bezeichnet. Weiterhin heißt Kapitel 19: Integralrehnung mehrerer Variabler 19.2 Kurvenintegrale Für eine stükweise C 1 -Kurve : [a, b] D, D R n, und eine stetige skalare Funktion f : D R hatten wir das Kurvenintegral 1. Art definiert

Mehr

Analysis 2, Woche 6. Grundbegriffe I. 6.1 Topologische Begriffe

Analysis 2, Woche 6. Grundbegriffe I. 6.1 Topologische Begriffe A1 Analysis 2, Woche 6 Grundbegriffe I A2 6.1 Topologische Begriffe Wenn man offene Teilmengen von R betrachtet, landet man meistens bald bei Intervallen. Das Intervall (a, b) = R; a < < b} mit a, b R

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

(c) (a) X ist abgeschlossen. X = A,wobeiderDurchschnittüberalleabgeschlossenenMengengebildet wird, die X enthalten. (d) (e)

(c) (a) X ist abgeschlossen. X = A,wobeiderDurchschnittüberalleabgeschlossenenMengengebildet wird, die X enthalten. (d) (e) 27 15. Metrische Räume Mit Hilfe einer Norm können wir den Abstand x y zweier Punkte x, y messen. Eine Metrik ist eine Verallgemeinerung dieses Konzepts: 15.1. Metriken. Es sei M eine beliebige Menge.

Mehr

3. Übungsblatt zur Analysis II

3. Übungsblatt zur Analysis II Fachbereich Mathematik Prof. Dr. Steffen Roch Nada Sissouno WS 9/ 9..9 3. Übungsblatt zur Analysis II Gruppenübung Majorantenkriterium für uneigentliche Riemann-Integrale: Es seien f : [, ) [, ) und g

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

heißt Exponentialreihe. Die durch = exp(1) = e (Eulersche Zahl). n! + R m+1(x) R m+1 (x) = n! m m + 2

heißt Exponentialreihe. Die durch = exp(1) = e (Eulersche Zahl). n! + R m+1(x) R m+1 (x) = n! m m + 2 9 DIE EXPONENTIALREIHE 48 absolut konvergent. Beweis. Wegen x n+ n! n + )!x n = x n + < 2 für n 2 x folgt dies aus dem Quotientenkriterium 8.9). Definition. Die Reihe x n heißt Exponentialreihe. Die durch

Mehr

Ferienkurs Analysis 3. Ari Wugalter März 2011

Ferienkurs Analysis 3. Ari Wugalter März 2011 Ari Wugalter 07. - 08. März 2011 1 1 Hilberträume Im ersten Kapitel wollen wir uns mit den grundlegenden Eigenschaften von Hilberträumen beschäfitgen. Hilberträume habe die herausragende Eigenschaft, dass

Mehr

ein Normalbereich bezüglich der y-achse, siehe Abbildung 2.3.

ein Normalbereich bezüglich der y-achse, siehe Abbildung 2.3. Lektion 2 Doppelintegrale 2. Doppelintegrale über einem Normalbereich Wir wollen das Integral für eine reellwertige, stetige Funktion mit zwei reellen Veränderlichen, einführen. Motiviert wird dies durch

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 3/4 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge

Mehr

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching March 5, 07 Erinnerung (Euler Formel). e iϕ = cos ϕ + i sin ϕ. Die Polarform von z = x + iy C sei Euler Formel z

Mehr

Abbildung 10.1: Das Bild zu Beispiel 10.1

Abbildung 10.1: Das Bild zu Beispiel 10.1 Analysis 3, Woche Mannigfaltigkeiten I. Definition einer Mannigfaltigkeit Die Definition einer Mannigfaltigkeit braucht den Begriff Diffeomorphismus, den wir in Definition 9.5 festgelegt haben. Seien U,

Mehr

Lösungsvorschlag Klausur MA9802

Lösungsvorschlag Klausur MA9802 Lehrstuhl für Numerische Mathematik Garching, den 3.8.22 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA982 Aufgabe [3 + 3 Punkte] Berechnen Sie, falls existent, die folgenden

Mehr

Ultrametrik. Christian Semrau Metrische Räume

Ultrametrik. Christian Semrau Metrische Räume Ultrametrik Christian Semrau 05.11.2002 Inhaltsverzeichnis 1 Metrische Räume 1 1.1 Definition der Metrik.................................. 1 1.2 Offene und abgeschlossene Mengen..........................

Mehr

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Dietmar A. Salamon ETH-Zürich 23. Februar 2015 1 Topologische Grundbegriffe Sei (X, d) ein metrischer Raum, d.h. X ist eine Menge und d : X X R ist

Mehr

2.8 KURVENINTEGRALE UND STAMMFUNKTIONEN

2.8 KURVENINTEGRALE UND STAMMFUNKTIONEN 2.8 KURVENINTEGRALE UND STAMMFUNKTIONEN Im folgenden seien X normierter Vektorraum und Y B-Raum über IK = IR oder IK = CI. Wir wollen in diesem Kapitel für stetige Abbildungen f : X D f B(X; Y ) und stückweise

Mehr

Mathematik II: Übungsblatt 01: Lösungen

Mathematik II: Übungsblatt 01: Lösungen N.Mahnke Mathematik II: Übungsblatt 01: Lösungen Verständnisfragen: 1. Was versteht man unter einer parametrisierten ebenen Kurve? Eine parametrisierte ebene Kurve ist eine auf dem offenen Intervall ]t

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf Karolina Stoiber Aileen Wolf Ferienkurs Analysis 2 für Physiker SS 26 A Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

Maße auf Produkträumen

Maße auf Produkträumen Maße auf Produkträumen Es seien (, Ω 1 ) und (X 2, Ω 2 ) zwei Meßräume. Wir wollen uns zuerst überlegen, wie wir ausgehend davon eine geeignete σ-algebra auf X 2 definieren können. Wir betrachten die Menge

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mathematik 2 für Ingenieure (Sommersemester 216) Kapitel 11: Potenzreihen und Fourier-Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

Topologische Räume und stetige Abbildungen Teil 2

Topologische Räume und stetige Abbildungen Teil 2 TU Dortmund Mathematik Fakultät Proseminar zur Linearen Algebra Ausarbeitung zum Thema Topologische Räume und stetige Abbildungen Teil 2 Anna Kwasniok Dozent: Prof. Dr. L. Schwachhöfer Vorstellung des

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Übungen zu Kurvenintegralen Lösungen zu Übung 12

Übungen zu Kurvenintegralen Lösungen zu Übung 12 Übungen zu Kurvenintegralen Lösungen zu Übung. Sei der obere Halbreis mit dem Radius r um (, ), und sei f(x, y) : y. Berechnen Sie f(x, y) ds. Das ist jetzt eine leine Aufgabe zum Aufwärmen. Guter Tric:

Mehr

Lösungsvorschlag zu den Präsenzaufgaben der 1. Übung

Lösungsvorschlag zu den Präsenzaufgaben der 1. Übung Michael Winkler Johannes Lankeit 8.4.2014 Lösungsvorschlag zu den Präsenzaufgaben der 1. Übung Präsenzaufgabe 1: Rufe dir die folgenden Definitionen wieder in Erinnerung: C = {(x, y); x R, y R} bildet

Mehr

4.2 Grenzwerte und Stetigkeit reeller Funktionen

4.2 Grenzwerte und Stetigkeit reeller Funktionen 4. Grenzwerte und Stetigkeit reeller Funktionen 73 4. Grenzwerte und Stetigkeit reeller Funktionen Definition 4.. Gegeben sei eine Funktion y = mit D(f). (i) Sei D(f). heißt stetig in, falls es für alle

Mehr

Elemente der mengentheoretischen Topologie

Elemente der mengentheoretischen Topologie Elemente der mengentheoretischen Topologie Es hat sich herausgestellt, dass das Konzept des topologischen Raumes die geeignete Struktur darstellt für die in der Analysis fundamentalen Begriffe wie konvergente

Mehr

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b. Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H 34.

Mehr

D-MAVT & D-MATL Analysis I & II Sommer 2012 Prof. Dr. Giovanni Felder

D-MAVT & D-MATL Analysis I & II Sommer 2012 Prof. Dr. Giovanni Felder D-MAVT & D-MATL Analysis I & II Sommer 2012 Prof. Dr. Giovanni Felder Prüfung WICHTIG: Die Prüfung dauert 4 Stunden (240 Minuten). Verwenden Sie bitte für jede Aufgabe ein neues Blatt und schreiben Sie

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 10

Technische Universität München Zentrum Mathematik. Übungsblatt 10 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt Hausaufgaben Aufgabe. Sei f : R 2 R gegeben durch x 2 y für (x, y)

Mehr

Kuvenintegrale 1. u. 2. Art

Kuvenintegrale 1. u. 2. Art Kuvenintegrale. u. 2. Art Die Lage eines Drahtes sei durch eine C -Kurve : [a, b] R 3 beschrieben. Seine ortsabhängige Massendichte ist durch die stetige Funktion ϱ(,, z) = Masse Längeneinheit gegeben.

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3 Übungen zur Ingenieur-Mathematik III WS / Blatt 9.. Aufgabe 5: Berechnen Sie das Integral K ( x y N dl über den Rand des Kreises K {(x, y x + y } einmal direkt mit Hilfe einer geeigneten Parametrisierung

Mehr

FREITAG ABEND. Definition (Homotopie und Isotopie): Seien X, Y topologische Räume.

FREITAG ABEND. Definition (Homotopie und Isotopie): Seien X, Y topologische Räume. FREITAG ABEND Definition (Homotopie und Isotopie): Seien X, Y topologische Räume. a) Zwei stetige Abbildungen f, g : X Y heißen homotop (f g), wenn es eine stetige Abbildung A : X [0, 1] Y gibt mit A(,

Mehr

Analysis I & II Lösung zur Basisprüfung

Analysis I & II Lösung zur Basisprüfung FS 6 Aufgabe. [8 Punkte] (a) Bestimmen Sie den Grenzwert ( lim x x ). [ Punkte] log x (b) Beweisen Sie, dass folgende Reihe divergiert. n= + n + n + sin(n) n 3 + [ Punkte] (c) Finden Sie heraus, ob die

Mehr

1 Kurven und Kurvenintegrale

1 Kurven und Kurvenintegrale Fabian Kohler Karolina Stoiber Ferienkurs Analysis für Physiker SS 14 A 1 Kurven und Kurvenintegrale 1.1 Einschub: Koordinatentransformation Gegeben sei eine Funktion f : R n R. Dann ist die totale Ableitung

Mehr

Das mehrdimensionale Riemann-Integral. 1. Volumenintegrale

Das mehrdimensionale Riemann-Integral. 1. Volumenintegrale Das mehrdimensionale Riemann-Integral. Volumenintegrale Es sei ein uader im R n gegeben durch := [a, b ] [a 2, b 2 ] [a n, b n ] = {(x,... x n ) a j x j b j } mit rellen Zahlen a j, b j, j =,... n. Offenbar

Mehr

Höhere Mathematik III

Höhere Mathematik III Universität Stuttgart Fachbereich Mathematik Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math. K. Sanei Kashani Blatt 5 Höhere Mathematik III el, kb, mecha, phs Vortragsübungen (Musterlösungen) 7..4 Aufgabe

Mehr