X.4 Elektromagnetische Wellen im Vakuum

Größe: px
Ab Seite anzeigen:

Download "X.4 Elektromagnetische Wellen im Vakuum"

Transkript

1 X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen Felder oder (X.21) für die Potentiale in Lorenz-Eichung die gleiche Form an, zwar im Vakuum E(t, r) = 0 B(t, r) = 0; Φ(t, r) = 0 A(t, r) = 0 (in Lorenz-Eichung). Zur Umschreibung einiger Gleichungen führt man eine positive Zahl c gemäß (X.29a) (X.29b) c 2 1 ɛ 0 µ 0 (X.29c) ein. Dann wird der d Alembert-Operator (X.10) zu 1 c 2 2 t 2 +. (X.29d) Die Bewegungsgleichungen (X.29) sind alle der gleichen Form f(t, r) = 0, mit f einer skalaren oder vektoriellen Funktion. Die Lösungen dieser Differentialgleichung die auch in anderen Bereichen der Physik auftritt werden zunächst in X.4.1 vorgestellt. Dann werden die Ergebnisse auf den Fall des elektromagnetischen Feldes im Vakuum angewandt, wobei die Eigenschaften des Feldes einer Welle präzisiert werden ( X.4.2).

2 174 Zeitabhängige elektromagnetische Felder X.4.1 Klassische Wellengleichung Dieses Paragraph befasst sich mit der Herleitung der (genügend regulären) reellen Lösungen der (klassischen) Wellengleichung (51) f(t, r) = 0 (X.30) für skalare Funktionen f, wobei der d Alembert-Operator durch Gl. (X.29d) definiert ist. X.4.1 a Ebene Wellen Als einfaches aber wichtiges Beispiel kann man zunächst eine Lösung betrachten, die nur von z = x 3 abhängt: f(t, z). Diese ist somit unabhängig von x 1, x 2 daher konstant in der transversalen (x 1, x 2 ) Ebene, weshalb sie als ebene Welle bezeichnet wird. Unter dieser Annahme wird die klassische Wellengleichung (X.30) zur (1 + 1)-dimensionalen Differentialgleichung 1 2 f(t, z) c 2 t f(t, z) z 2 = 0. (X.31) Der Differentialoperator dieser Gleichung kann faktorisiert werden: ( z 1 )( c t z + 1 ) f(t, z) = 0. (X.32) c t Zur Lösung dieser partiellen Differentialgleichung lohnt es sich, die Variablenänderung x + z + ct, x z ct (X.33a) durchzuführen. Die entsprechende Rücktransformation zu den ursprünglichen Variablen lautet t = x+ x 2c, x = x+ + x 2 (X.33b) Die partiellen Ableitungen nach den neuen Variablen lassen sich mit Hilfe der Kettenregel durch die Ableitungen nach den alten Variablen ausdrücken, zwar x = t + x + t + z x + z = 1 ( 1 2 c t + ) (X.34a) z x = t x t + z x z = 1 ( 1 2 c t + ). (X.34b) z Dank diesen Ergebnissen lautet die Bewegungsgleichung (X.32) in den neuen Variablen d.h. 1 4 x x + f(x+, x ) = 0, 2 f(x +, x ) x x + = 0. (X.35) Die allgemeine Lösung dieser partiellen Differentialgleichung zweiter Ordnung ist der Form f(x +, x ) = f (x + ) + f + (x ) mit f f + zwei beliebigen Funktionen einer einzigen reellen Variablen. Kommt man zu den ursprünglichen Variablen t, z zurück, so lautet die allgemeine Lösung der Gl. (X.31) f(t, z) = f (z + ct) + f + (z ct). (X.36) (51) Gleichung (X.30) wird oft als die Wellengleichung bezeichnet. Man findet aber auch andere partielle Differentialgleichungen mit zeit- ortsabhängigen Lösungen, die als Wellen bezeichnet werden z.b. für Schwerewellen in Flüssigkeiten, Stoßwellen in Fluiden, oder Wellenfunktionen in der Quantenmechanik. Deshalb wird hier die Bezeichnung klassische Wellengleichung verwendet.

3 X.4 Elektromagnetische Wellen im Vakuum 175 Dieses mathematische Ergebnis lässt sich einfach interpretieren. Betrachte man beispielsweise die Funktion f + (z ct): sie nimmt den gleichen Wert für alle Raumzeitpunkte (t, z) an, für welche z ct einen konstanten Wert hat. Somit bleibt das Profil entlang der z-achse des durch f modellierten Signals zur Zeit t = t 0 global unverändert zu einem späteren Zeitpunkt t 1 ; es wird jedoch in positive z-richtung um z = c(t 1 t 0 ) verschoben, entsprechend einer Ausbreitung des Signals mit Geschwindigkeit +c. Wiederum modelliert der Term f ein Signal, das sich in negative z-richtung mit Ausbreitungsgeschwindigkeit c will man die Richtung auch in der Geschwindigkeit berücksichtigen, c fortpflanzt. Solche sich ausbreitenden Signale werden als Wellen bezeichnet. (51) Dann ist die allgemeine Lösung (X.36) eine Superposition von rechts- linkslaufenden ebenen Wellen. Bemerkung: Genauer handelt es sich bei den durch f oder f + beschriebenen Signalen um fortschreitende Wellen. Betrachtet man aber den Fall mit f = f +, so breitet sich die resultierende Welle f nicht mehr aus: es handelt sich um eine stehende Welle. X.4.1 b Allgemeine Lösung Um die allgemeine Lösung der klassischen Wellengleichung (X.30) herzuleiten, ist es günstig, die Fourier-Darstellung der räumlichen Abhängigkeit von f(t, r) einzuführen. Somit kann man f(t, r) = f(t, k) e i k r d 3 k (X.37a) schreiben, wobei die räumlich Fourier-transformierte Funktion f(t, k) durch f(t, k) = f(t, r) e i k r d 3 r (X.37b) gegeben ist. Unter Verwendung der Identität (e i k r ) = i k e i k r wird die klassische Wellengleichung (X.30) angewandt auf die Darstellung (X.37a) zu [ 1 2 f(t, ] k) c 2 t 2 k 2 f(t, k) e i k r d 3 k = 0, wobei Integration über k Ableitung nach der Zeit t oder nach den Ortskoordinaten r ausgetauscht wurden. Nach inverser Fourier-Transformation soll der Term in den eckigen Klammern verschwinden. Definiert man ω k c k, (X.38) so ergibt sich für jeden Wellenvektor k die Differentialgleichung 2 f(t, k) t 2 + ω 2 k f(t, k) = 0. (X.39a) Man erkennt die Bewegungsgleichung eines harmonischen Oszillators mit Kreisfrequenz ω k, deren allgemeinen Lösung f(t, k) = f + ( k) e iω t k + f ( k) e iω k t (X.39b) ist, mit f + ( k) f ( k) zwei beliebigen Funktionen. Wenn die gesuchte Lösung f(t, r) reell sein soll, stehen f + ( k) f ( k) in Zusammenhang miteinander. Die komplexe Konjugation der Beziehung (X.37a) lautet f(t, r) [ ] = f(t, k) e i k r d 3 k = [ ] f(t, k) e i k r d 3 k, wobei die zweite Gleichung aus der Substitution k k folgt. f(t, r) is reellwertig, wenn f(t, r) =

4 176 Zeitabhängige elektromagnetische Felder f(t, r), d.h. nach Vergleich des letzten Terms in der obigen Gleichung mit der rechten Seite von Gl. (X.37a), wenn f(t, k) = f(t, k) für alle t k. Angewandt auf die Lösung (X.39b) lautet diese Bedingung f + ( k) e iω k t + f ( k) e iω k t = [ f+ ( k) ] e iω k t + [ f ( k) ] e iω k t, d.h. nach Identifizierung der Terme in e iω k t f ( k) = [ f+ ( k) ] k. (X.40) Die Terme in e iω t k führen zur gleichen Bedingung. Setzt man schließlich die Lösung (X.39b) der Gl. (X.39a) in die Fourier-Darstellung (X.37a), so lautet die letztere [ f(t, r) = f+ ( k) e iω t k + f ( ) e iω k t e i k r d 3 k [ = f+ ( k) e i(ω k t k r) + f ( ) e i(ω k t k r) d 3 k, wobei die Substitution k k unter Berücksichtigung von ω k = ω k im zweiten Summanden des [ Integranden des letzten Integrals gemacht wurde. Ersetzt man in jenem Term f ( k) durch f+ ( k) ], wie aus Bedingung (X.40) folgt, so sieht man, dass der Term genau komplex konjugiert zum ersten Summanden ist. Unter Einführung der Notation a( k) 2 f + ( k) ergibt sich somit für die allgemeine reelle Lösung der klassischen Wellengleichung (X.30) f(t, r) = Re a( k) e i(ω t k k r) d 3 k ]. (X.41) Somit lässt sich die allgemeine Lösung als Superposition von (unendlich vielen) ebenen Wellen a( k) e i(ω k t k r) schreiben. Dabei heißt die Beziehung (X.38) zwischen Kreisfrequenz ω k Wellenvektor k dieser ebenen Wellen Dispersionsrelation. Das Verhältnis c ϕ ( k) ω k / k ist die Phasengeschwindigkeit der Welle mit Wellenvektor k wobei im Fall der klassischen Wellengleichung (X.30) c ϕ ( k) = c für alle k. Bemerkung: Die komplexe Amplitude a( k) C lässt sich prinzipiell durch die Angabe von Anfangsbedingungen f(t=0, r) f(t=0, r)/ t festlegen. X.4.2 Elektromagnetische Wellen X.4.2 a Elektromagnetische Potentiale Gemäß den Ergebnissen des vorigen X.4.1 lauten die allgemeinen Lösungen der Bewegungsgleichungen (X.29b) für die elektromagnetischen Potentiale im Vakuum Φ(t, r) = Re a( k) e i(ω k t k r) d 3 (X.42a) A(t, r) = Re b( k) e i(ω k t k r) d 3 mit beliebigen a( k) C b( k) C 3 mit der Dispersionsrelation ω k c k. Dabei sollen Φ A die Lorenz-Eichbedingung (X.16) erfüllen: ( [ 1 Φ(t, r) c 2 + t A(t, r) = Re iω ] k c 2 a( k) + i k b( k) e i(ω k t k r) d 3 ) k = 0. (X.42b) (X.42c)

5 X.4 Elektromagnetische Wellen im Vakuum 177 Die elektromagnetischen Potentiale Φ A können noch über die Eichtransformation (X.14) durch äquivalente Potentiale Φ A ersetzt werden, die ebenfalls der Lorenz-Bedingung genügen, solange die Funktion χ der Transformation die Gleichung (X.17) d.h. die klassische Wellengleichung erfüllt. Mit gelten χ(t, r) = Re Φ (t, r) = Φ(t, r) χ(t, r) t d( k) e i(ω k t k r) d 3 [ = Re( a( ] k) + iω k d( k) e i(ω k t k r) d 3 ) k ( [ b( A (t, r) = A(t, r) + χ(t, r) ] = Re k) + i kd( k) e i(ω k t k r) d 3 ) k. Eine besonders geeignete Wahl ist d( k) = ia( k)/ω k für jeden k, die zum einfachen Skalarpotential Φ (t, r) = 0 (X.43a) führt. Wiederum lautet das entsprechende Vektorpotential A (t, r) = Re ε( k) e i(ω k t k r) d 3, (X.43b) wobei der Polarisationsvektor ε( k) durch ε( k) b( k) + i kd( k) = b( k) a( k) k ω k gegeben ist. Dabei kann noch ε( k) reell oder komplex sein. Eine Einschränkung über den Polarisationsvektor folgt aus der Eichbedingung. Mit Φ (t, r) = 0 wird die Lorenz-Eichbedingung automatisch zur Coulomb-Eichbedingung (X.15) A (t, r) = Re i ε( k) k e i(ω k t k r) d 3 = 0. Diese Bedingung ist nur dann erfüllt, wenn ε( k) k = 0 (X.44) für jeden Wellenvektor k, d.h. wenn der Polarisationsvektor senkrecht auf die Ausbreitungsrichtung der entsprechenden ebenen Welle ist. Somit sind elektromagnetische Wellen im Vakuum transversal polarisiert. X.4.2 b Elektrisches magnetisches Feld Setzt man die elektromagnetischen Potentiale (X.43) in die Beziehungen (X.12) (X.13), so lauten die entsprechenden elektrischen magnetischen Felder E(t, r) = A (t, r) = Re iω k ε( t k) e i(ω k t k r) d 3 (X.45a) B(t, r) = A (t, r) = Re i k ε( k) e i(ω k t k r) d 3. (X.45b) Betrachte man eine monochromatische ebene Welle, d.h. eine Lösung mit nur einem einzigen Wellenvektor: ε( k) = N ε( k 0 ) δ (3)( k k0 ) mit N einer unwesentlichen Normierungskonstanten. Dann gelten

6 178 Zeitabhängige elektromagnetische Felder E(t, r) = Re [iω k0 ε( k 0 ) e i(ω k0 t ] [ k 0 r) B(t, r) = Re i k 0 ε( k 0 ) e i(ω k0 t 0 r). Auf diesen Felder erkennt man die folgenden Eigenschaften. Erstens sind E(t, r) B(t, r) automatisch senkrecht aufeinander E(t, r) B(t, r) = 0. Dann sind E(t, r) B(t, r) beide senkrecht zur Bewegungsrichtung k 0 (X.46) k0 E(t, r) = k 0 B(t, r) = 0. (X.47) Schließlich gilt dank k 0 = ω k0 /c B(t, r) E(t, r) =. (X.48) c

Zeitabhängige elektromagnetische Felder

Zeitabhängige elektromagnetische Felder KAPITEL X Zeitabhängige elektromagnetische Felder Im Gegensatz zu den stationären Fällen der Elektro- und Magnetostatik sind das elektrische und das magnetische Feld im allgemeineren zeitabhängigen Fall

Mehr

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes X.3 Energie und Impuls des elektromagnetischen Feldes 169 X.3 Energie und Impuls des elektromagnetischen Feldes Genau wie mechanische Systeme trägt das elektromagnetische Feld Energie ( X.3.1 und Impuls

Mehr

XII. Elektromagnetische Wellen in Materie

XII. Elektromagnetische Wellen in Materie XII. Elektromagnetische Wellen in Materie Unten den wichtigsten Lösungen der makroskopischen Maxwell-Gleichungen (XI.1) in Materie sind die (fortschreitenden) Wellen. Um die zugehörigen Wellengleichungen

Mehr

16 Elektromagnetische Wellen

16 Elektromagnetische Wellen 16 Elektromagnetische Wellen In den folgenden Kapiteln werden wir uns verschiedenen zeitabhängigen Phänomenen zuwenden. Zunächst werden wir uns mit elektromagnetischen Wellen beschäftigen und sehen, dass

Mehr

T2 Quantenmechanik Lösungen 4

T2 Quantenmechanik Lösungen 4 T2 Quantenmechanik Lösungen 4 LMU München, WS 17/18 4.1. Lösungen der Schrödinger-Gleichung Beweisen Sie die folgenden Aussagen. Prof. D. Lüst / Dr. A. Schmi-May version: 06. 11. a) Die Separationskonstante

Mehr

Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a

Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a V.3.4 Kanonische Transformationen Es kann günstig sein Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a Koordinatentransformation im Phasenraum Wir betrachten eine allgemeine Koordinatentransformation

Mehr

Magnetostatik. B( r) = 0

Magnetostatik. B( r) = 0 KAPITEL III Magnetostatik Die Magnetostatik ist die Lehre der magnetischen Felder, die von zeitlich konstanten elektrischen Strömen herrühren. Im entsprechenden stationären Regime vereinfachen sich die

Mehr

IV.2 Kanonische Transformationen

IV.2 Kanonische Transformationen IV.2 Kanonische Transformationen 79 IV.2 Kanonische Transformationen IV.2.1 Phasenraum-Funktionen Die verallgemeinerten Koordinaten q a t) und die dazu konjugierten Impulse p a t) bestimmen den Bewegungszustand

Mehr

Fourier-Transformation

Fourier-Transformation Fourier-ransformation Im Folgenden werden die schon bekannten Eigenschaften der Fourier-Reihen zur Darstellung periodischer Funktionenn zusammengefasst und dann auf beliebige Funktionen verallgemeinert.

Mehr

7. Periodische Bewegungen Physik für E-Techniker. 7.2 Wellen Harmonische Welle Wellenpakete. Doris Samm FH Aachen

7. Periodische Bewegungen Physik für E-Techniker. 7.2 Wellen Harmonische Welle Wellenpakete. Doris Samm FH Aachen 7. Periodische Bewegungen 7.2 Wellen 7.2.1 Harmonische Welle 7.2.2 Interferenz von Wellen 7.2.3 Wellenpakete 723 7.2.3 Stehende Wellen 7.2 Wellen Störung y breitet sich in Raum x und Zeit t aus. y = f(t)

Mehr

Quantisierung des elektromagnetischen Feldes

Quantisierung des elektromagnetischen Feldes 18. Juni 2008 1 Energiewerte Maxwell-Gleichungen Wellengleichung Lagrange-Funktion Hamilton-Funktion 1 Kanonische Helmholtzsche freie Energie Innere Energie Übersicht Behandelt wird die im Vakuum. Das

Mehr

Bewegung im elektromagnetischen Feld

Bewegung im elektromagnetischen Feld Kapitel 6 Bewegung im elektromagnetischen Feld 6. Hamilton Operator und Schrödinger Gleichung Felder E und B. Aus der Elektrodynamik ist bekannt, dass in einem elektrischen Feld E(r) und einem Magnetfeld

Mehr

Elektrodynamik. Übungsblatt 5 Musterlösungen. 1 c t( i A i ) = 4πρ, A i = i g + ( v) i. t ρ(τ, x)dτ + w( x) w 0 (t, x) + w( x),

Elektrodynamik. Übungsblatt 5 Musterlösungen. 1 c t( i A i ) = 4πρ, A i = i g + ( v) i. t ρ(τ, x)dτ + w( x) w 0 (t, x) + w( x), UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK Elektrodynamik Übungsblatt 5 Musterlösungen 13 Aufgabe (a) Der Ausgangspunkt für diese Aufgabe sind die Maxwell-Gleichungen a ( a A b b A a ) = 4π c

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

Lagrange-Formalismus

Lagrange-Formalismus KAPITEL II Lagrange-Formalismus Die im letzten Kapitel dargelegte Formulierung der Mechanik nach Newton ist zwar sehr intuitiv: man zählt alle auf das zu studierende System wirkenden Kräfte auf, schreibt

Mehr

Lehrstuhl für Technische Elektrophysik Technische Universität München

Lehrstuhl für Technische Elektrophysik Technische Universität München Lehrstuhl für Technische Elektrophysik Technische Universität München Tutorübungen zu "Elektromagnetische Feldtheorie II" (Prof. Wachutka) SS9 Blatt 1 Aufgabe: Ebene Wellen Im Vakuum, daß heißt die Leitfähigkeit

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

a) Zeigen Sie, dass es sich um ein Orthonormalsystem handelt und diskutieren Sie die geraden und ungeraden Anteile.

a) Zeigen Sie, dass es sich um ein Orthonormalsystem handelt und diskutieren Sie die geraden und ungeraden Anteile. Elektromagnetische Wellen 141372 Wintersemester 2016/2017 Prof. Thomas Mussenbrock ID 1/131 Website: http://www.ei.rub.de/studium/lehrveranstaltungen/694/ Übungsaufgaben Aufgabe 1 Diskutieren Sie den Helmholtz-Zerlegungssatz.

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

Kapitel 7: Maxwell-Gleichungen

Kapitel 7: Maxwell-Gleichungen Kapitel 7: Maxwell-Gleichungen 1831-1879 Physik-II - Christian Schwanenberger - Vorlesung 50 7.1 Der Verschiebungsstrom 7 Maxwell - Gleichungen 7.1 Der Verschiebungsstrom Das Faraday sche Gesetz B beschreibt,

Mehr

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael Themen: Unbestimmtheitsrelationen, Materiewellen, Materieteilchen als Welle, Wellenfunktion, Dispersionsrelation, Wellenpaket, Wahrscheinlichkeitsinterpretation, Materie-Quanteninterferenz Martinovsky

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de Website: www.astro.uni-bonn.de/tp-l

Mehr

Wellen und wandernde Wellen Ähnlichkeitslösungen. Crashkurs PDG anhand von Beispielen. Wellen

Wellen und wandernde Wellen Ähnlichkeitslösungen. Crashkurs PDG anhand von Beispielen. Wellen Wellen Crashkurs PDG anhand von Beispielen Eine Welle ist ein erkennbares Signal, welches innerhalb eines Mediums von einer Seite zur anderen übertragen wird, mit einer erkennbaren Ausbreitungsgeschwindigkeit.

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de Website: www.astro.uni-bonn.de/tp-l

Mehr

Seminar: Quantenoptik und nichtlineare Optik Quantisierung des elektromagnetischen Strahlungsfeldes und die Dipolnäherung

Seminar: Quantenoptik und nichtlineare Optik Quantisierung des elektromagnetischen Strahlungsfeldes und die Dipolnäherung Seminar: Quantenoptik und nichtlineare Optik Quantisierung des elektromagnetischen Strahlungsfeldes und die Dipolnäherung 10. November 2010 Physik Institut für Angewandte Physik Jörg Hoppe 1 Inhalt Motivation

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

Strahlungsdruck, Potentiale

Strahlungsdruck, Potentiale Übung 7 Abgabe: 29.04. bzw. 03.05.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Strahlungsdruck, Potentiale 1 Der Brewsterwinkel

Mehr

2.2 4-Stromdichte [Griffiths , Jackson 11.9]

2.2 4-Stromdichte [Griffiths , Jackson 11.9] Um zu verstehen, wie sich die elektromagnetischen Felder transformieren, gehen wir von den Maxwellgleichungen aus. Dazu brauchen wir zunächst die. 4-Stromdichte [Griffiths 1.3.4, Jackson 11.9] Die Ladungsdichte

Mehr

Das zeitabhängige Elektromagnetische Feld. Elektromagnetische Wellen

Das zeitabhängige Elektromagnetische Feld. Elektromagnetische Wellen Kapitel 4 Das zeitabhängige Elektromagnetische Feld. Elektromagnetische Wellen Nach Untersuchung des elektrostatischen und magnetostatischen Feldes in den letzen Kapiteln, kehren wir jetzt zum allgemeinen

Mehr

6 Der Harmonische Oszillator

6 Der Harmonische Oszillator 6 Der Harmonische Oszillator Ein Teilchen der Masse m bewege sich auf der x-achse unter dem Einfluß der Rückstellkraft Fx = mω x. 186 Die Kreisfrequenz ω bzw. die Federkonstante k := mω ist neben der Masse

Mehr

Einführung. in die. Der elektrische Strom Wesen und Wirkungen

Einführung. in die. Der elektrische Strom Wesen und Wirkungen inführung in die Theoretische Phsik Der elektrische Strom Wesen und Wirkungen Teil IV: lektromagnetische Wellen Siegfried Petr Fassung vom 3 Januar 13 I n h a l t : 1 lektromagnetische Wellen in nicht

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen 9.2 Wellen Inhalt 9.2 Wellen 9.2.1 Harmonische Welle 9.2.2 Interferenz von Wellen 9.2.3 Wellenpakete 9.2.3 Stehende Wellen 9.2 Wellen 9.2 Wellen 9.2 Wellen Störung y breitet sich in Raum x und Zeit t aus.

Mehr

2.10 Normierung der Dirac-Spinoren

2.10 Normierung der Dirac-Spinoren 2.10 Normierung der Dirac-Spinoren In der schwachen Wechselwirkung, die die Parität verletzt, werden auch Axial-Vektoren eine große Rolle spielen, da der Strom eines linkshändigen Spin-1/2 Teilchens ū

Mehr

24 Herleitung der Maxwell-Gleichungen

24 Herleitung der Maxwell-Gleichungen 24 Herleitung der Maxwell-Gleichungen In dieser Vorlesung werden wir die Maxwell-Gleichungen aus rein theoretischen Erwägungen herleiten. Dabei muß der Begriff Herleitung allerdings mit Vorsicht betrachtet

Mehr

4. Wellenausbreitung

4. Wellenausbreitung Motivation: Beim Stab konnten Lösungen der Form gefunden werden. u x,t = f 1 x ct f 2 x ct Diese Lösungen beschreiben die Ausbreitung von Wellen im Stab. Die Funktionen f 1 x und f 2 x werden durch die

Mehr

Anhang C: Wellen. vorhergesagt 1916 (Albert Einstein) Entdeckung 2016 (LIGO-Kollaboration) Albert Einstein Christian Schwanenberger -

Anhang C: Wellen. vorhergesagt 1916 (Albert Einstein) Entdeckung 2016 (LIGO-Kollaboration) Albert Einstein Christian Schwanenberger - Anhang C: Wellen Computersimulation der von zwei sich umkreisenden Schwarzen Löchern ausgelösten Gravitationswellen in der Raum-Zeit (Illu.) Albert Einstein 1879-19 Physik-II vorhergesagt 1916 (Albert

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Polarisationszustände, Polarisation von Materie

Polarisationszustände, Polarisation von Materie Übung 5 Abgabe: 3.3. bzw. 4.3.27 Elektromagnetische Felder & Wellen Frühjahrssemester 27 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisationszustände, Polarisation von Materie Polarisationszustände

Mehr

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen.

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen. Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 10/015 M Schallwellen Am Beispiel von Ultraschallwellen in Wasser werden Eigenschaften von Longitudinalwellen betrachtet. Im ersten

Mehr

Eine DG ist eine Gleichung, die Ableitungen der gesuchten Funktion enthält.

Eine DG ist eine Gleichung, die Ableitungen der gesuchten Funktion enthält. C7 Differentgleichungen (DG) (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel C7 weicht ab vom Altland-Delft-Text] C7.1 Was ist eine DG, wozu wird sie gebraucht?

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Zusammenfassung : Fourier-Reihen

Zusammenfassung : Fourier-Reihen Zusammenfassung : Fourier-Reihen Theorem : Jede (nicht-pathologische) periodische Funktion läßt sich schreiben als "Fourier-Reihe" der Form: Vorzeichen ist Konvention, in Mathe : + Fourier-Transformation

Mehr

2. Vorlesung Partielle Differentialgleichungen

2. Vorlesung Partielle Differentialgleichungen 2. Vorlesung Partielle Differentialgleichungen Wolfgang Reichel Karlsruhe, 22. Oktober 204 Institut für Analysis KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz

Mehr

Teilchen im elektromagnetischen Feld

Teilchen im elektromagnetischen Feld Kapitel 5 Teilchen im elektromagnetischen Feld Ausgearbeitet von Klaus Henrich, Mathias Dubke und Thomas Herwig Der erste Schritt zur Lösung eines quantenmechanischen Problems ist gewöhnlich das Aufstellen

Mehr

2. Vorlesung Partielle Differentialgleichungen

2. Vorlesung Partielle Differentialgleichungen 2. Vorlesung Partielle Differentialgleichungen Wolfgang Reichel 2.Transatlantische Vorlesung aus Oaxaca, Mexiko, 20. Oktober 2010 Institut für Analysis KIT University of the State of Baden-Wuerttemberg

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur

Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2014-2 1 Aufgabe 1 ( 7 Punkte) Eine ebene Welle der Form E = (E x, ie x, 0) exp{i(kz + ωt)} trifft aus dem Vakuum bei z = 0 auf ein Medium mit ε = 6 und

Mehr

4. Gleichungen im Frequenzbereich

4. Gleichungen im Frequenzbereich Stationäre Geräusche: In der technischen Akustik werden überwiegend stationäre Geräusche untersucht. Stationäre Geräusche sind zusammengesetzt aus harmonischen Schallfeldern p x,t = p x cos t x Im Folgenden

Mehr

Einführung in die theoretische Physik II Sommersemester 2015

Einführung in die theoretische Physik II Sommersemester 2015 Einführung in die theoretische Physik II Sommersemester 25 martin.eckstein@mpsd.cfel.de Ausgewählte Aufgaben zur Klausurvorbereitung Lösungshinweise Aufgabe : Elektrostatik Betrachten Sie eine geladene

Mehr

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot

Mehr

5. Grundgleichungen der Magnetostatik

5. Grundgleichungen der Magnetostatik 5. Grundgleichungen der Magnetostatik 5.1 Divergenz der magnetischen Induktion Wir bestimmen etzt die eldgleichungen der Magnetostatik, d.h. infinitesimale (lokale Gleichungen für die magnetische lussdichte,

Mehr

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesch. März 00 Inhaltsverzeichnis Wellen. Wellen im Vakuum............................. Lösung der Wellengleichung................... Energietransport / Impuls - der

Mehr

Eine DG ist eine Gleichung, die Ableitungen der gesuchten Funktion enthält.

Eine DG ist eine Gleichung, die Ableitungen der gesuchten Funktion enthält. C7 Differentgleichungen (DG) (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel C7 weicht ab vom Altland-Delft-Text] C7.1 Was ist eine DG, wozu wird sie gebraucht?

Mehr

Ferienkurs Teil III Elektrodynamik

Ferienkurs Teil III Elektrodynamik Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................

Mehr

Übersicht Hohlleiter. Wellenausbreitung. Allgemeine Bemerkungen. Lösung der Maxwell'schen Gleichungen

Übersicht Hohlleiter. Wellenausbreitung. Allgemeine Bemerkungen. Lösung der Maxwell'schen Gleichungen Übersicht Hohlleiter Vergleich: freie Wellen vs. Leitungswellen Ebene Welle im rechteckigen Hohlleiter "Geführte Wellenlänge" Übertragung von Signalen Moden Mathematische Herleitung (Rechteck) Aufteilung

Mehr

Übersicht Hohlleiter. Felder & Komponenten II. Copyright: Pascal Leuchtmann

Übersicht Hohlleiter. Felder & Komponenten II. Copyright: Pascal Leuchtmann Übersicht Hohlleiter Vergleich: freie Wellen vs. Leitungswellen Ebene Welle im rechteckigen Hohlleiter "Geführte Wellenlänge" Übertragung von Signalen Moden Mathematische Herleitung (Rechteck) Aufteilung

Mehr

Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h.

Definition: Variablentransformation d. Form (2) heisst kanonisch, wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h. Zusammenfassung: kanonische Transformationen Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h., wenn ein existiert,

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Definition. Eine partielle Differentialgleichung ist eine Dgl., in der partielle Ableitungen einer gesuchten Funktion z = z(x 1, x 2,..., x n ) mehrerer unabhängiger Variabler

Mehr

Elektromagnetische Felder und Wellen. Klausur Frühjahr Aufgabe 1 (3 Punkte) Aufgabe 2 (5 Punkte) k 21. k 11 H 11

Elektromagnetische Felder und Wellen. Klausur Frühjahr Aufgabe 1 (3 Punkte) Aufgabe 2 (5 Punkte) k 21. k 11 H 11 Elektromagnetische Felder und Wellen: Klausur Frühjahr 2006 1 Elektromagnetische Felder und Wellen Klausur Frühjahr 2006 Aufgabe 1 (3 Punkte) Eine Leiterschleife mit dem Mittelpunkt r L = 2a e z und Radius

Mehr

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen Theoretischen Physik II SS 007 Klausur II - Aufgaben und Lösungen Aufgabe Hohlleiter Gegeben sei ein in z-richtung unendlich langer, gerader Hohlleiter (Innenradius R/3, Außenradius R), der einen Stromfaden

Mehr

1.4. Das freie quantenmechanische Elektron

1.4. Das freie quantenmechanische Elektron 1.4. Das freie quantenmechanische Elektron 1.4.3. Dispersionsrelation Damit ist die Basis gelegt, um sich mit den grundlegenden Eigenschaften eines quantenmechanischen Teilchens vertraut zu machen. Die

Mehr

1 Elektromagnetische Wellen im Vakuum

1 Elektromagnetische Wellen im Vakuum Technische Universität München Christian Neumann Ferienkurs Elektrodynamik orlesung Donnerstag SS 9 Elektromagnetische Wellen im akuum Zunächst einige grundlegende Eigenschaften von elektromagnetischen

Mehr

Elektrodynamische Wellen

Elektrodynamische Wellen Elektrodynamische Wellen Hannah Vogel 23.01.2017 Hannah Vogel Elektrodynamische Wellen 23.01.2017 1 / 33 Inhaltsverzeichnis 1 Elektrische und Magnetische Kräfte und Felder 2 Die Maxwell schen Gleichungen

Mehr

Magnetostatik. Kapitel Problemstellung. 3.2 Langer gerader Draht

Magnetostatik. Kapitel Problemstellung. 3.2 Langer gerader Draht Kapitel 3 Magnetostatik 3.1 Problemstellung In der Magnetostatik betrachten wir das Magnetfeld ~ B = ~ r ~ A,dasvoneiner gegebenen zeitunabhängigen Stromverteilung ~j (~r ) produziert wird. Die Feldlinien

Mehr

Ferienkurs Theoretische Physik 3: Elektrodynamik. Ausbreitung elektromagnetischer Wellen

Ferienkurs Theoretische Physik 3: Elektrodynamik. Ausbreitung elektromagnetischer Wellen Ferienkurs Theoretische Physik 3: Elektrodynamik Ausbreitung elektromagnetischer Wellen Autor: Isabell Groß Stand: 21. März 2012 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Homogene Maxwell-Gleichungen

Mehr

3. Diffusion und Brechungsindex

3. Diffusion und Brechungsindex 3. Diffusion und Brechungsinde Die Diffusion in und aus einer Schicht ist die Grundlage vieler Sensoreffekte, wobei sich die einzelnen Sensoren dann nur noch in der Art der Übersetzung in ein meßbares

Mehr

10. Wellenpakete im Vakuum

10. Wellenpakete im Vakuum ω m. Wellenpakete im Vakuum. Informationsübertragung durch elektromagnetische Wellen Ein wichtiger Anwendungsbereich elektromagnetischer Strahlung ist die Informationsübertragung. Monochromatische ebene

Mehr

11.1 Wellenausbreitung 11.2 Wellengleichung 11.3 Interferenzen und Gruppengeschwindigkeit

11.1 Wellenausbreitung 11.2 Wellengleichung 11.3 Interferenzen und Gruppengeschwindigkeit Inhalt Wellenphänomene. Wellenausbreitung. Wellengleichung.3 Interferenzen und Gruppengeschwindigkeit Wellenphänomene Wellen sind ein weiteres wichtiges physikalisches Phänomen Anwendungen: Radiowellen

Mehr

Elektrodynamik eines Plasmas

Elektrodynamik eines Plasmas Elektrodynamik eines Plasmas Elektrodynamik eines Plasmas Klassifikation von Plasmen Klassisches Plasma / Quantenplasma nicht-relativistisches / relativistisches Plasma Schwach / stark wechselwirkendes

Mehr

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2015-1 1 Aufgabe 1 ( 5 Punkte) Ein Elektronenstrahl ist entlang der z-achse gerichtet. Bei z = 0 und bei z = L befindet sich jeweils eine Lochblende, welche

Mehr

5. Die eindimensionale Wellengleichung

5. Die eindimensionale Wellengleichung H.J. Oberle Differentialgleichungen II SoSe 2013 5. Die eindimensionale Wellengleichung Wir suchen Lösungen u(x, t) der eindimensionale Wellengleichung u t t c 2 u xx = 0, x R, t 0, (5.1) wobei die Wellengeschwindigkeit

Mehr

Elektromagnetische Eigenschaften von Metallen, Potentiale

Elektromagnetische Eigenschaften von Metallen, Potentiale Übung 8 Abgabe: 02.05. bzw. 05.05.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Elektromagnetische Eigenschaften von Metallen, Potentiale

Mehr

Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik!

Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik! Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik! Bewegungsgleichung: Dämpfungsrate: Einheit: Kreisfrequenz des Oszillators:

Mehr

Elektromagnetische Feldtheorie 2

Elektromagnetische Feldtheorie 2 Diplom-Vorprüfung Elektrotechnik und Informationstechnik Termin Sommersemester 08 Elektromagnetische Feldtheorie 2 Montag, 28. 07. 2008, 9:00 10:00 Uhr Zur Beachtung: Zugelassene Hilfsmittel: Originalskript

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

Vorbereitung zur Klausur Elektromagnetische Felder und Wellen

Vorbereitung zur Klausur Elektromagnetische Felder und Wellen Vorbereitung zur Klausur Elektromagnetische Felder und Wellen 1/50 J. Mähnß Stand: 9. August 2016 c J. Mähnß 2/50 Maxwellgleichungen Maxwellgleichungen allgemein 3/50 ( B = µ 0 j V + ε ) E 0 t E = B t

Mehr

Dass die Rotation eines konservativen Kraftfeldes null ist, folgt direkt aus der Identität C 1 C 2 C 2 C 1

Dass die Rotation eines konservativen Kraftfeldes null ist, folgt direkt aus der Identität C 1 C 2 C 2 C 1 I.1 Grundbegriffe der newtonschen Mechanik 11 I.1.3 c Konservative Kräfte Definition: Ein zeitunabhängiges Kraftfeld F ( r) wird konservativ genannt, wenn es ein Skalarfeld (3) V ( r) gibt, das F ( r)

Mehr

II. Klassische EM-Felder in Vakuum

II. Klassische EM-Felder in Vakuum Wellengleichung im Vakuum 1 II. Klassische EM-Felder in Vakuum Motivation: Berechnung der Felder ausserhalb von Quellen mittels Rand- bzw. Anfangswerten von Feldverteilungen zb Nahfeld in Nähe der Quelle

Mehr

Polarisationszustände, Polarisation von Materie

Polarisationszustände, Polarisation von Materie Übung 5 Abgabe: 31.03. bzw. 04.03.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisationszustände, Polarisation von Materie 1

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg 8. April 2009 Beachtenswertes Die Veranstaltung

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 12. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 12. 06.

Mehr

LAPLACE Transformation

LAPLACE Transformation LAPLACE Transformation Bei der LAPLACE-Transformation wird einer (geeigneten) Funktion f(t) eine Funktion F (s) zugeordnet. Diese Art von Transformation hat u.a. Anwendungen bei gewissen Fragestellungen

Mehr

Differentialgleichungen sind überall!

Differentialgleichungen sind überall! Differentialgleichungen sind überall! Helmut Abels Fakultät für Mathematik Universität Regensburg Folien und Co.: http://www.uni-r.de/fakultaeten/nat Fak I/abels/Aktuelles.html Tag der Mathematik am Albrecht-Altdorfer-Gymnasium

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu Klassische Elektrodynamik 1 Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

5. Wellen. Als Welle bezeichnet man die Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen Struktur.

5. Wellen. Als Welle bezeichnet man die Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen Struktur. Prof. Dieter Suter Physik B3 SS 03 5.1 Grundlagen 5.1.1 Beispiele und Definition 5. Wellen Als Welle bezeichnet man die Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen

Mehr

Eichinvarianz in der Quantenmechanik. abgeleitet aus der Maxwell-Theorie

Eichinvarianz in der Quantenmechanik. abgeleitet aus der Maxwell-Theorie Eichinvarianz in der Quantenmechanik abgeleitet aus der Maxwell-Theorie Seminarvortrag Quantenelektrodynamik 1. Teil: Schrödingergleichung Motivation: Eichtheorien sind ein inhaltsreicher Gedankenkomplex

Mehr

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern Elektromagnetische Felder und Wellen Klausur Herbst 2000 Aufgabe 1 (5 Punkte) Ein magnetischer Dipol hat das Moment m = m e z. Wie groß ist Feld B auf der z- Achse bei z = a, wenn sich der Dipol auf der

Mehr

Green sche Funktionen

Green sche Funktionen Die Grundidee Green sche Funktionen In der Elektrostatik gelangen wir auf Wegen, die wir hier nicht wiederholen wollen zu drei Grundaussagen: (i) Eine Punktladung Q am Ort x erzeugt das das Coulomb-Potential

Mehr

Seminar 1. Epsilontik. 1.1 Der ε-pseudotensor und einige seiner Eigenschaften

Seminar 1. Epsilontik. 1.1 Der ε-pseudotensor und einige seiner Eigenschaften Seminar 1 1 Vektoralgebra, -Operator, Epsilontik 1.1 Der ε-pseudotensor und einige seiner Eigenschaften In in allen Bereichen der theoretischen Physik sehr gebräuchliches Hilfsmittel ist der ε-pseudotensor.

Mehr

Gewöhnliche Differentialgleichungen. Teil II: Lineare DGLs mit konstanten Koeffizienten

Gewöhnliche Differentialgleichungen. Teil II: Lineare DGLs mit konstanten Koeffizienten - 1 - Gewöhnliche Differentialgleichungen Teil II: Lineare DGLs mit konstanten Koeffizienten Wir wenden uns jetzt einer speziellen, einfachen Klasse von DGLs zu, die allerdings in der Physik durchaus beträchtliche

Mehr

7. Übungsblatt Physik I für MWWT Komplexe Zahlen, gewöhnliche Differentialgleichungen

7. Übungsblatt Physik I für MWWT Komplexe Zahlen, gewöhnliche Differentialgleichungen Prof. Dr. Walter Arnold Lehrstuhl für Materialsimulation Universität des Saarlandes 5. Januar 2016 7. Übungsblatt Physik I für MWWT Komplexe Zahlen, gewöhnliche Differentialgleichungen Abgabe des Übungsblattes

Mehr

20. Partielle Differentialgleichungen Überblick

20. Partielle Differentialgleichungen Überblick - 1-0. Partielle Differentialgleichungen Überblick Partielle Differentialgleichungen (PDE = partial differential equation) sind Differentialgleichungen mit mehreren unabhängigen Variablen (und einer abhängigen

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

Poisson-Klammern. Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und Zeit abhängen: Def: "Poisson-Klammer von F und G":

Poisson-Klammern. Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und Zeit abhängen: Def: Poisson-Klammer von F und G: Poisson-Klammern Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und Zeit abhängen: Def: "Poisson-Klammer von F und G": Einfachste Beispiele: im Hamilton-Formalismus sind p, q,

Mehr

Physik VI Plasmaphysik

Physik VI Plasmaphysik Physik VI Plasmaphysik Physik VI Plasmaphysik Inhaltsübersicht 1. Charakteristik des Plasmazustandes 2. Experimentelle Grundlagen der Plasmaphysik 3. Thermodynamische Gleichgewichtsplasmen 4. Plasmen im

Mehr

Herleitung der LG 2. Art

Herleitung der LG 2. Art Herleitung der LG 2. Art Ausgangspunkt: 3N Koordinaten mit R Zwangsbedingungen: Anzahl Freiheitsgrade LG 1. Art (N2 mit Zwangskräften): Ziel: Wähle verallgemeinerte Koordinaten, so, dass die Zwangsbedingungen

Mehr

6.4 Wellen in einem leitenden Medium

6.4 Wellen in einem leitenden Medium 6.4. WELLEN IN EINEM LEITENDEN MEDIUM 227 6.4 Wellen in einem leitenden Medium Unter einem leitenden Medium verstehen wir ein System, in dem wir keine ruhenden Ladungen berücksichtigen, aber Ströme, die

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Klassische Theoretische Physik III (Elektrodynamik)

Klassische Theoretische Physik III (Elektrodynamik) WiSe 017/18 Klassische Theoretische Physik III (Elektrodynamik Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 10 Ausgabe: Fr, 1.01.18 Abgabe: Fr, 19.01.17 Besprechung: Mi, 4.01.18

Mehr