Euler-Approximation. Leonie van de Sandt. TU Dortmund Prof. Dr. Christine Müller. 5. Juni 2012

Größe: px
Ab Seite anzeigen:

Download "Euler-Approximation. Leonie van de Sandt. TU Dortmund Prof. Dr. Christine Müller. 5. Juni 2012"

Transkript

1 Euler-Approximation Leonie van de Sandt TU Dortmund Prof. Dr. Christine Müller 5. Juni 2012 Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

2 Inhaltsverzeichnis 1 Einleitung Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

3 Inhaltsverzeichnis 1 Einleitung 2 Definition der Euler-Approximation Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

4 Inhaltsverzeichnis 1 Einleitung 2 Definition der Euler-Approximation 3 Simulation der Euler-Approximation Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

5 Inhaltsverzeichnis 1 Einleitung 2 Definition der Euler-Approximation 3 Simulation der Euler-Approximation 4 Vorstellung des Milstein-Schemas Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

6 Inhaltsverzeichnis 1 Einleitung 2 Definition der Euler-Approximation 3 Simulation der Euler-Approximation 4 Vorstellung des Milstein-Schemas 5 Zusammenfassung Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

7 Inhaltsverzeichnis 1 Einleitung 2 Definition der Euler-Approximation 3 Simulation der Euler-Approximation 4 Vorstellung des Milstein-Schemas 5 Zusammenfassung 6 Literatur Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

8 Einleitung Einleitung Gegeben: stochastische Differentialgleichung dx t = b(t, X t )dt + σ(t, X t )dw t Gesucht ist stetige Lösung X t, 0 t T Es kann eine diskrete Approximation für Lösung gefunden werden Euler-Approximation bietet häufig verwendetes numerisches Simulationsverfahren Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

9 Einleitung Zunächst formale Definition der Euler-Approximation Anschließend Simulationen anhand von zwei Beispielen: Ornstein-Uhlenbeck-Prozess Cox-Ingersoll-Ross-Prozess Vorstellung des Milstein-Schemas als Alternative zur Euler-Approximation mit Simulation Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

10 Definition der Euler-Approximation Definition der Euler-Approximation Gegeben sei stochastische Differentialgleichung dx t = b(t, X t )dt + σ(t, X t )dw t mit determinischtem Anfangswert X t0 = X 0 und Diskretisierung Π N ([0, T ]) Die Lösung dieser Gleichung sei der Prozess X t, 0 t T mit T > 0 Euler-Approximation von X ist stetiger stochastischer Prozess Y genügt iterativem Schema Y i+1 = Y i + b(t i, Y i )(t i+1 t i ) + σ(t i, Y i )(W i+1 W i ) i = 0, 1,..., N 1 und Y 0 = X 0 Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

11 Definition der Euler-Approximation konstante Schrittweite t = t i+1 t i = 1 N zwischen den Zeitpunkten t i und t i+1 kann man linear interpolieren: Y (t) = Y i + t t i t i+1 t i Y i+1 Y i für t [t i, t i+1 ) Euler-Approximation konvergiert gegen die Lösung der stochastischen Differentialgleichung schwach mit Ordnung β = 1 stark mit Ordnung γ = 1 2 Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

12 Simulation der Euler-Approximation Simulation der Euler-Approximation Zur Simulation nur der Wiener Prozess zu simulieren: Y i+1 = Y i + b(t i, Y i )(t i+1 t i ) + σ(t i, Y i )(W i+1 W i ) Als Lösung der stochastischen Differentialgleichung zwei Beispiele, welche zu simulieren sind: Ornstein-Uhlenbeck-Prozess Cox-Ingersoll-Ross-Prozess Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

13 Simulation der Euler-Approximation Der Ornstein-Uhlenbeck-Prozess Eindeutige Lösung der stochastischen Differentialgleichung dx t = (θ 1 θ 2 X t )dt + θ 3 dw t Explizite Lösung ist dann gegeben durch: X t = θ ( 1 + θ 2 x 0 θ 1 θ 2 ) t e θ2t + θ 3 e θ 2t hier: b(t, x) = (θ 1 θ 2 x) und σ(t, x) = θ 3 0 e θ 2(u) dw u Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

14 Simulation der Euler-Approximation Simulation des OU-Prozesses mit Euler >set.seed(123) >T <- 1 >x <- 10 >theta <- c(0, 5, 3.5) >Z <- BM(x=x,T=T,N=100) >N <- 100 >Dt <- T/N >t <- seq(0,t,by=dt) >Y <- numeric(n+1) >Y[1] <- x >for(i in 1:N){ + Y[i+1] <- Y[i] + (theta[1] - theta[2]*y[i])*dt + + theta[3]*(z[i+1]-z[i])} >Y <- ts(y,start=0, deltat=t/n) >plot(y) Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

15 Simulation der Euler-Approximation Y N=10 N=100 N= Time Abbildung: Simulation des Ornstein-Uhlenbeck-Prozesses mithilfe der Euler-Approximation Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

16 Simulation der Euler-Approximation Ornstein-Uhlenbeck-Prozess auch mit der Integraldarstellung zu simulieren: X t = θ ( 1 + x 0 θ ) t 1 e θ2t + θ 3 e θ 2t e θ2(u) dw u θ 2 θ 2 0 Zur Veranschaulichung der Approximationsgüte der Euler-Approximation werden beide Simulationen mit verschiedenen Schrittweiten in je einer Grafik dargestellt Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

17 Simulation der Euler-Approximation Simulation des OU-Prozesses via Integral >T <- 1 >x <- 10 >theta <- c(0, 5, 3.5) >N <- 100 >Dt <- T/N >t <- seq(0,t,by=dt) >itosumou.n <- 0 >XOU.N <- rep(x,n+1) >for(i in 1:N){ + itosumou.n<-itosumou.n+exp(theta[2]*t[i])*(z[i+1]-z[i]) + XOU.N[i+1]<-theta[1]/theta[2]+(x-theta[1]/theta[2])* + exp(-theta[2]*t1[i])+theta[3]*exp(-theta[2]*t[i])* + itosumou.n} >XOU.N <- ts(xou.n,start=0, deltat=dt) Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

18 Simulation der Euler-Approximation Y Euler Approximation via Integral Time Abbildung: Simulation des Ornstein-Uhlenbeck-Prozesses mit Euler-Approximation und via Integral mit 10 Schritten Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

19 Simulation der Euler-Approximation Y Euler Approximation via Integral Time Abbildung: Simulation des Ornstein-Uhlenbeck-Prozesses mit Euler-Approximation und via Integral mit 100 Schritten Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

20 Simulation der Euler-Approximation Y Euler Approximation via Integral Time Abbildung: Simulation des Ornstein-Uhlenbeck-Prozesses mit Euler-Approximation und via Integral mit 1000 Schritten Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

21 Simulation der Euler-Approximation Der Cox-Ingersoll-Ross-Prozess Lösung der stochastischen Differentialgleichung dx t = (θ 1 θ 2 X t )dt + θ 3 Xt dw t Explizite Lösung ist dann gegeben durch: X t = θ ( 1 + θ 2 x 0 θ 1 θ 2 ) t e θ2t + θ 3 e θ 2t hier: b(t, x) = (θ 1 θ 2 x) und σ(t, x) = θ 3 x 0 e θ 2u X u dw u Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

22 Simulation der Euler-Approximation Simulation des CIR-Prozesses mit Euler >T <- 10 >x <- 10 >theta <- c(1, 1, 1) >Z <- BM(x=x,T=T,N=100) >N <- 100 >Dt <- T/N >Y <- numeric(n1+1) >Y[1] <- x >for(i in 1:N){ + Y[i+1] <- Y1[i] + (theta[1] - theta[2]*y[i])*dt + + theta[3]*sqrt(y[i])*(z[i+1]-z[i])} >Y <- ts(y,start=0, deltat=t/n) >plot(y) Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

23 Simulation der Euler-Approximation Y N=50 N=100 N= Time Abbildung: Simulation des Cox-Ingersoll-Ross-Prozesses mithilfe der Euler-Approximation Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

24 Simulation der Euler-Approximation Y Euler Approximation via Integral Time Abbildung: Simulation des Cox-Ingersoll-Ross-Prozesses mit Euler-Approximation und via Integral mit 50 Schritten Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

25 Simulation der Euler-Approximation Y Euler Approximation via Integral Time Abbildung: Simulation des Cox-Ingersoll-Ross-Prozesses mit Euler-Approximation und via Integral mit 100 Schritten Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

26 Simulation der Euler-Approximation Y Euler Approximation via Integral Time Abbildung: Simulation des Cox-Ingersoll-Ross-Prozesses mit Euler-Approximation und via Integral mit 1000 Schritten Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

27 Vorstellung des Milstein-Schemas Vorstellung des Milstein-Schemas Das Milstein-Schema ist ebenfalls eine Methode, um Lösungen stochastischer Differentialgleichungen zu approximieren Definition des Milstein-Schemas: Y i+1 = Y i + b(t i, Y i ) t + σ(t i, Y i )(W i+1 W i ) σ(t i, Y i )σ x (t i, Y i ){(W i+1 W i ) 2 t} Es wird Gebrauch vom Itô-Lemma gemacht, wodurch der Term σ x (t i, Y i ) als Ableitung nach x von σ(t i, Y i ) hinzukommt Für den Ornstein-Uhlenbeck-Prozess mit b(t, x) = θ 1 θ 2 x und σ(t, x) = θ 3 stimmen Euler-Approximation und Milstein-Schema überein Als Beispiel zum Vergleich der beiden Approximations-Schemen kann man den Cox-Ingersoll-Ross-Prozess verwenden Hierbei ist dann σ x = 1 x für θ 3 = 2 Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

28 Vorstellung des Milstein-Schemas R Code für die Simulation des CIR-Prozesses mit dem Milstein-Schema >N <- 100 >x <- 10 >T <- 10 >Dt <- T/N >theta <- c(1, 1, 1) >X <- numeric(n+1) >X[1] <- x >for(i in 1:N){ + X[i+1] <- X[i] + (theta[1] - theta[2]*x[i])*dt + + theta[3]*sqrt(x[i])* + (Z[i+1]-Z[i])+(1/2)*theta[3]* + sqrt(x[i])*(1/sqrt(x[i]))*((z[i+1]-z[i])^2-dt)} >X <- ts(x,start=0, deltat=t/n) Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

29 Vorstellung des Milstein-Schemas X Euler Milstein Integral Time Abbildung: Simulation des Cox-Ingersoll-Ross-Prozesses mit Euler-Approximation, Milstein-Schema und via Integral mit 100 Schritten Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

30 Zusammenfassung Zusammenfassung Euler-Approximation häufig verwendetes numerisches Verfahren zur Simulation von Lösungen stochastischer Differentialgleichungen Iteratives Schema, welches Wiener Prozess beinhaltet Zu simulieren ist der Wiener Prozess Je kleiner die Schrittweite gewählt wird, desto besser die Approximation Milstein-Schema ebenfalls gut für Approximation und Simulation, enthält weiteren Term σ x (t, x) Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

31 Literatur Literatur Iacus, S. M. (2008): Simulation and Inference for Stochastic Differential Equations: With R Examples. 1. Auflage. New York: Springer. Iacus, S. M. (2009): sde: Simulation and Inference for Stochastic Differential Equations.R package version url: R Development Core Team (2011):R : A Language and Environment for Statistical Computing.ISBN R Foundation for Statistical Computing. Vienna, Austria. url: Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni / 26

Seminarvortrag. Euler-Approximation. Marian Verkely TU Dortmund

Seminarvortrag. Euler-Approximation. Marian Verkely TU Dortmund Seminarvortrag Euler-Approximation Marian Verkely TU Dortmund 03.12.14 1 / 33 Inhaltsverzeichnis 1 Motivation 2 Simulierte Prozesse 3 Euler-Approximation 4 Vasicek-Prozess: Vergleich analytische Lösung

Mehr

Einige parametrische Familien für stochastische Prozesse

Einige parametrische Familien für stochastische Prozesse Einige parametrische Familien für stochastische Prozesse Seminar: Grundlagen der und Statistik von dynamischen Systemen 26. November 2014 Inhaltsverzeichnis 1 Einleitung 2 3 4 5 Einleitung Ziel des Vortrages:

Mehr

Geometrische Brownsche Bewegung und Brownsche Brücke

Geometrische Brownsche Bewegung und Brownsche Brücke Geometrische Brownsche Bewegung und Brownsche Brücke Korinna Griesing Dozentin: Prof. Dr. Christine Müller 17. April 2012 Korinna Griesing 1 (26) Inhalt Motivation Statistische Methoden Geometrische Brownsche

Mehr

Einige parametrische Familien für stochastische Prozesse

Einige parametrische Familien für stochastische Prozesse Technische Universität Dortmund Fakultät Statistik Seminar: Grundlagen der Simulation und Statistik von dynamischen Systemen Einige parametrische Familien für stochastische Prozesse Ausarbeitung Dozentin:

Mehr

Maximum-Likelihood-Schätzung für das Black-Scholes-Mertonund das Cox-Ingersoll-Ross-Modell

Maximum-Likelihood-Schätzung für das Black-Scholes-Mertonund das Cox-Ingersoll-Ross-Modell Maximum-Likelihood-Schätzung für das Black-Scholes-Mertonund das Cox-Ingersoll-Ross-Modell Vortrag im Seminar Grundlagen der Simulation und Statistik von dynamischen Systemen Philipp Aschersleben Fakultät

Mehr

Geometrische Brownsche Bewegung und Brownsche Brücke

Geometrische Brownsche Bewegung und Brownsche Brücke Seminar: Grundlagen der Simulation und Statistik von dynamischen Systemen SoSe 2012 Geometrische Brownsche Bewegung und Brownsche Brücke Korinna Griesing 10. April 2012 Dozentin: Prof. Dr. Christine Müller

Mehr

Diffusionsprozesse und lineare stochastische DGL

Diffusionsprozesse und lineare stochastische DGL Diffusionsprozesse und lineare stochastische DGL Michele Bieber TU Dortmund - Fakultät Statistik 15. Mai 2012 Inhaltsverzeichnis 1 Einleitung 2 Diffusionsprozesse Stochastische DGL eines Diffusionsprozesses

Mehr

Ein-Faktor-Zinsmodelle

Ein-Faktor-Zinsmodelle Ein-Faktor-Zinsmodelle M. Gruber 14. 05 2014 Zusammenfassung Beispiel mit Realdaten (Euro Libor overnight, Euribor 3 weeks), Vasicek-Modell mit Simulation, Cox-Ingersoll-Ross-Modell mit Simulation, Hull-White-Modell.

Mehr

Strukturerhaltende Integrationsverfahren für stochastische Differentialgleichungen in der Modellierung von Zinsderivaten

Strukturerhaltende Integrationsverfahren für stochastische Differentialgleichungen in der Modellierung von Zinsderivaten Strukturerhaltende Integrationsverfahren für stochastische Differentialgleichungen in der Modellierung von Zinsderivaten Michael Günther, Christian Kahl und Thilo Roßberg Bergische Universität Wuppertal

Mehr

Stochastik Praktikum Simulation stochastischer Prozesse

Stochastik Praktikum Simulation stochastischer Prozesse Stochastik Praktikum Simulation stochastischer Humboldt-Universität zu Berlin 15.10.2010 Übersicht 1 Brownsche Bewegung und Diffusionsprozesse 2 Brownsche Brücke 3 Ornstein Uhlenbeck 4 Zusammengesetzte

Mehr

Fokker-Planck Gleichung

Fokker-Planck Gleichung Fokker-Planck Gleichung Max Haardt WWU Münster 21. November 2008 Inhalt 1 Einleitung Langevin Gleichung Fokker-Planck Gleichung 2 Herleitung Mastergleichung Kramers-Moyal Entwicklung Fokker-Planck Gleichung

Mehr

Maximum-Likelihood-Schätzung für das Black-Scholes-Merton-Modell und das Cox-Ingersoll-Ross-Modell

Maximum-Likelihood-Schätzung für das Black-Scholes-Merton-Modell und das Cox-Ingersoll-Ross-Modell Seminar: Grundlagen der Simulation und Statistik von dynamischen Systemen SS 2012 Maximum-Likelihood-Schätzung für das Black-Scholes-Merton-Modell und das Cox-Ingersoll-Ross-Modell Thema 10 Philipp Probst

Mehr

Generalisierte Momentenmethode

Generalisierte Momentenmethode Im Rahmen des Seminars Grundlagen der Simulation und Statistik von dynamischen Systemen Generalisierte Momentenmethode Sebastian Szugat 26. Juni 2012 Prof. Dr. Christine Müller Inhaltsverzeichnis Inhaltsverzeichnis

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 2. Teil 2-1 1) Welche Garantie

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig

Mehr

TECHNISCHE UNIVERSITÄT BERLIN BACHELORARBEIT. Theorie und Simulation einer zweidimensionalen stochastischen Differentialgleichung.

TECHNISCHE UNIVERSITÄT BERLIN BACHELORARBEIT. Theorie und Simulation einer zweidimensionalen stochastischen Differentialgleichung. TECHNISCHE UNIVERSITÄT BERLIN Fakultät II Institut für Mathematik BACHELORARBEIT im Studiengang Mathematik über das Thema Theorie und Simulation einer zweidimensionalen stochastischen Differentialgleichung

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Bewertung Amerikanischer Optionen mit stochastischer Volatilität

Bewertung Amerikanischer Optionen mit stochastischer Volatilität Bewertung Amerikanischer Optionen mit stochastischer Volatilität Mathias Weigler Universität zu Köln 1. Mai 2014 Ziel dieses Vortrags: Modellierung und Einführung in die Theorie der Optionspreisbewertung

Mehr

Zufällige stabile Prozesse und stabile stochastische Integrale. Stochastikseminar, Dezember 2011

Zufällige stabile Prozesse und stabile stochastische Integrale. Stochastikseminar, Dezember 2011 Zufällige stabile Prozesse und stabile stochastische Integrale Stochastikseminar, Dezember 2011 2 Stabile Prozesse Dezember 2011 Stabile stochastische Prozesse - Definition Stabile Integrale α-stabile

Mehr

- Numerik in der Physik - Simulationen, DGL und Co. Max Menzel

- Numerik in der Physik - Simulationen, DGL und Co. Max Menzel - Numerik in der Physik - Simulationen, DGL und Co. Max Menzel 4.1.2011 1 Übersicht Differenzialgleichungen? Was ist das? Wo gibt es das? Lösen von Differenzialgleichungen Analytisch Numerisch Anwendungen

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik'

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' 1. Diskretisierung in der Zeit: Die Evolutionsgleichung Kurzzusammenfassung Zur Erprobung der Verfahren zur zeitlichen Diskretisierung

Mehr

Strukturerhaltende Approximationen von Wurzel-Diffusionsgleichungen

Strukturerhaltende Approximationen von Wurzel-Diffusionsgleichungen Strukturerhaltende Approximationen von Wurzel-Diffusionsgleichungen Bachelorarbeit 2. September 211 vorgelegt von Kirsten Bernhard Geb. am: 7. August 1987 in: Frankfurt am Main Matrikelnummer: 36849 Studienrichtung:

Mehr

Exkurs: Method of multiple scales (Mehrskalen Methode)

Exkurs: Method of multiple scales (Mehrskalen Methode) Exkurs: Method of multiple scales (Mehrskalen Methode) dr. karin mora* Im folgenden betrachten wir nichtlineare dynamische Systeme (NDS) mit sogenannten kleinen nichtlinearen Termen. Viele mathematische

Mehr

ETHZ, D-MATH. Numerische Methoden D-PHYS, WS 2015/16 Dr. V. Gradinaru

ETHZ, D-MATH. Numerische Methoden D-PHYS, WS 2015/16 Dr. V. Gradinaru ETHZ, D-MATH Prüfung Numerische Methoden D-PHYS, WS 5/6 Dr. V. Gradinaru..6 Prüfungsdauer: 8 Minuten Maximal erreichbare Punktzahl: 6. Der van-der-pol Oszillator ( Punkte) Der van-der-pol Oszillator kann

Mehr

Finite Elemente Methode für elliptische Differentialgleichungen

Finite Elemente Methode für elliptische Differentialgleichungen Finite Elemente Methode für elliptische Differentialgleichungen Michael Pokojovy 8. Oktober 2007 Das Ritzsche Verfahren Sei R n ein beschränktes offenes Gebiet mit abschnittsweise glattem Rand S. Betrachte

Mehr

Finite Elemente I Konvergenzaussagen

Finite Elemente I Konvergenzaussagen Finite Elemente I 195 5 onvergenzaussagen 5 onvergenzaussagen TU Bergakademie Freiberg, SoS 2006 Finite Elemente I 196 5.1 Interpolation in Sobolev-Räumen Wesentlicher Baustein der FE-onvergenzanalyse

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

Diffusionsprozesse und lineare stochastische Differentialgleichungen

Diffusionsprozesse und lineare stochastische Differentialgleichungen Diffusionsprozesse und lineare stochastische Differentialgleichungen Michele Bieber Projektbericht im Rahmen des Seminars Grundlagen der Simulation und Statistik von dynamischen Systemen Sommersemester

Mehr

Iterative Algorithmen für die FSI Probleme II

Iterative Algorithmen für die FSI Probleme II Iterative Algorithmen für die FSI Probleme II Rebecca Hammel 12. Juli 2011 1 / 22 Inhaltsverzeichnis 1 2 3 2 / 22 Zur Wiederholung: Wir definieren unser Fluid-Gebiet Ω(t) durch Ω(t) = {(x 1, x 2 ) R 2

Mehr

MATHEMATISCHE METHODEN DER PHYSIK 1

MATHEMATISCHE METHODEN DER PHYSIK 1 MATHEMATISCHE METHODEN DER PHYSIK 1 Helmuth Hüffel Fakultät für Physik der Universität Wien Vorlesungsskriptum Sommersemester 2012 Version vom 08-03-2012 Inhaltsverzeichnis 1 Lineare gewöhnliche Differentialgleichungen

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 8.12.2016 20. Vorlesung Differentialgleichungen n-ter Ordnung Lösung einer Differentialgleichung Veranschaulichung der Lösungsmenge Anfangswertprobleme Differentialgleichungen

Mehr

Die Fakultät. Thomas Peters Thomas Mathe-Seiten 13. September 2003

Die Fakultät. Thomas Peters Thomas Mathe-Seiten  13. September 2003 Die Fakultät Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 3. September 2003 Dieser Artikel gibt die Definition der klassischen Fakultät und führt von dort aus zunächst zu der Anwendung in Taylor-Reihen

Mehr

Gewöhnliche Differentialgleichungen Woche 1

Gewöhnliche Differentialgleichungen Woche 1 Gewöhnliche Differentialgleichungen Woche Einführung. Modelle Eine gewöhnliche Differentialgleichung gibt eine Relation zwischen einer unbekannten Funktion und deren Ableitung(en). Nun kann man unendlich

Mehr

Erste Schritte mit R. 2.1 Herunterladen der freien Software R

Erste Schritte mit R. 2.1 Herunterladen der freien Software R Erste Schritte mit R 2 BevorwirunsmitdeninKap.1 eingeführten Fragestellungen beschäftigen, brauchen wir noch ein Werkzeug, um die Datensätze später wirklich auswerten zu können. Sicher lässt sich das in

Mehr

Stochastik-Praktikum

Stochastik-Praktikum Stochastik-Praktikum Simulation stochastischer Prozesse Peter Frentrup Humboldt-Universität zu Berlin 27. November 2017 (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 27. November 2017

Mehr

Abbildung 10.1: Das Bild zu Beispiel 10.1

Abbildung 10.1: Das Bild zu Beispiel 10.1 Analysis 3, Woche Mannigfaltigkeiten I. Definition einer Mannigfaltigkeit Die Definition einer Mannigfaltigkeit braucht den Begriff Diffeomorphismus, den wir in Definition 9.5 festgelegt haben. Seien U,

Mehr

Springers Mathematische Formeln

Springers Mathematische Formeln Lennart Rade Bertil Westergren Springers Mathematische Formeln Taschenbuch für Ingenieure, Naturwissenschaftler, Informatiker, Wirtschaftswissenschaftler Übersetzt und bearbeitet von Peter Vachenauer Dritte,

Mehr

3 Das Programm 3. 4 Dateien 4. 5 Aufgaben 4. 6 Ausblick 5

3 Das Programm 3. 4 Dateien 4. 5 Aufgaben 4. 6 Ausblick 5 Contents 1 Ziele dieser Uebung 1 2 Finite-Differenzen-Methode 1 3 Das Programm 3 4 Dateien 4 5 Aufgaben 4 6 Ausblick 5 1 Ziele dieser Uebung 1.1 Einleitung Wir erweitern das Problem aus der letzten Uebung

Mehr

Kapitel 6. Suffiziente Statistiken. 6.1 Vorbetrachtungen

Kapitel 6. Suffiziente Statistiken. 6.1 Vorbetrachtungen Kapitel 6 Suffiziente Statistiken In diesem Kapitel untersuchen wir einen weiteren statistischen Begriff, der eng mit Likelihoodfunktionen zusammenhängt und mit der Frage nach eventuell möglicher Datenreduktion

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

10 Stabilität und steife Systeme

10 Stabilität und steife Systeme Numerik II 34 Stabilität und steife Systeme Inhalt. Absolute Stabilität. Was sind steife Differentialgleichungen?.3 Weitere Stabilitätsbegriffe Stabilität und steife Systeme TU Bergakademie Freiberg, SS

Mehr

Computersimulationen in der Astronomie

Computersimulationen in der Astronomie Computersimulationen in der Astronomie Fabian Heimann Universität Göttingen, Fabian.Heimann@stud.uni-goettingen.de Astronomisches Sommerlager 2013 Inhaltsverzeichnis 1 Differentialgleichungen 3 1.1 Beispiele.....................................

Mehr

2. Numerische Verfahren für AWPe 2.1 Das Euler-Verfahren

2. Numerische Verfahren für AWPe 2.1 Das Euler-Verfahren 2.1 Das Euler-Verfahren Wir betrachten das AWP y = f (t, y), y(t 0 ) = y 0. (AWP) Unter den Voraussetzungen von Satz 1.1 besitzt es eine eindeutige Lösung, sagen wir über dem Intervall I. Wir wollen diese

Mehr

Bemerkungen. f (x 1,..., x i + x i,..., x n ) f (x 1,..., x n ) lim. f xi (x 1,..., x n ) =

Bemerkungen. f (x 1,..., x i + x i,..., x n ) f (x 1,..., x n ) lim. f xi (x 1,..., x n ) = Bemerkungen Die Erweiterung der Definition von partiellen Ableitungen 1. Ordnung für Funktionen u = f (x 1,..., x n ) mit n > 2 Veränderlichen ist offensichtlich: f xi (x 1,..., x n ) = f (x 1,..., x i

Mehr

Martingal-Maße. Stochastic Finance: An Introduction in Discrete Time (Hans Föllmer, Alexander Schied) Manuel Müller Mathematisches Institut

Martingal-Maße. Stochastic Finance: An Introduction in Discrete Time (Hans Föllmer, Alexander Schied) Manuel Müller Mathematisches Institut Martingal-Maße Manuel Müller 29.04.2016 Mathematisches Institut Stochastic Finance: An Introduction in Discrete Time (Hans Föllmer, Alexander Schied) Seite 2 Martingal-Maße 29.04.2016 Inhaltsverzeichnis

Mehr

Spline-Räume - B-Spline-Basen

Spline-Räume - B-Spline-Basen Spline-Räume - B-Spline-Basen René Janssens 4. November 2009 René Janssens () Spline-Räume - B-Spline-Basen 4. November 2009 1 / 56 Übersicht 1 Erster Abschnitt: Räume von Splinefunktionen Grundlegende

Mehr

Otto-von-Guericke-Universität Magdeburg. Studienarbeit. Simulation der Euler- und Milsteinapproximation

Otto-von-Guericke-Universität Magdeburg. Studienarbeit. Simulation der Euler- und Milsteinapproximation Otto-von-Guericke-Universität Magdeburg Studienarbeit Simulation der Euler- und Milsteinapproximation Anja Schulze 8. Oktober 22 Inhaltsverzeichnis 1 Einleitung 1 2 Ein spezieller zeitstetiger Prozess:

Mehr

Brownsche Bewegung. M. Gruber. 20. März 2015, Rev.1. Zusammenfassung

Brownsche Bewegung. M. Gruber. 20. März 2015, Rev.1. Zusammenfassung Brownsche Bewegung M. Gruber 20. März 2015, Rev.1 Zusammenfassung Stochastische Prozesse, Pfade; Definition der Brownschen Bewegung; Eigenschaften der Brownschen Bewegung: Kovarianz, Stationarität, Selbstähnlichkeit;

Mehr

Brownsche Bewegung. M. Gruber SS 2016, KW 11. Zusammenfassung

Brownsche Bewegung. M. Gruber SS 2016, KW 11. Zusammenfassung Brownsche Bewegung M. Gruber SS 2016, KW 11 Zusammenfassung Stochastische Prozesse, Pfade; Definition der Brownschen Bewegung; Eigenschaften der Brownschen Bewegung: Kovarianz, Stationarität, Selbstähnlichkeit;

Mehr

Folgen und Reihen. Thomas Blasi

Folgen und Reihen. Thomas Blasi Folgen und Reihen Thomas Blasi 02.03.2009 Inhaltsverzeichnis Folgen und Grenzwerte 2. Definitionen und Bemerkungen............................. 2.2 Konvergenz und Beschränktheit.............................

Mehr

Komplexe Analyse von Wahldaten am Beispiel der Wahlen in Deutschland zwischen 1924 und 1933

Komplexe Analyse von Wahldaten am Beispiel der Wahlen in Deutschland zwischen 1924 und 1933 Komplexe Analyse von Wahldaten am Beispiel der Wahlen in Deutschland zwischen 1924 und 1933 André Klima1, Helmut Küchenhoff1, Paul W. Thurner2 1 Statistisches Beratungslabor, Institut für Statistik 2 Geschwister-Scholl-Institut

Mehr

Astrophysikalsiches Numerikum: Gewöhnliche Differentialgleichungen am Beispiel Weißer Zwerge

Astrophysikalsiches Numerikum: Gewöhnliche Differentialgleichungen am Beispiel Weißer Zwerge Astrophysikalsiches Numerikum: Gewöhnliche Differentialgleichungen am Beispiel Weißer Zwerge A. Schweitzer Wintersemester 2005/06 Links, Literatur und weitere Informationen Die Numerical Recepies sind

Mehr

Socio-Economic Modelling

Socio-Economic Modelling Socio-Economic Modelling Seminar Partielle Differentialgleichung Andreas Günnel 20. Mai 2008 1/29 Andreas Günnel Socio-Economic Modelling Inhaltsverzeichnis Einleitung 1 Einleitung 2 3 2/29 Andreas Günnel

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differentialgleichungssysteme Prof. Dr. Wandinger

Mehr

Nachklausur am Donnerstag, den 7. August 2008

Nachklausur am Donnerstag, den 7. August 2008 Nachklausur zur Vorlesung Numerische Mathematik (V2E2) Sommersemester 2008 Prof. Dr. Martin Rumpf Dr. Martin Lenz Dipl.-Math. Nadine Olischläger Nachklausur am Donnerstag, den 7. August 2008 Bearbeitungszeit:

Mehr

Rekurrente Neuronale Netze. Rudolf Kruse Neuronale Netze 227

Rekurrente Neuronale Netze. Rudolf Kruse Neuronale Netze 227 Rekurrente Neuronale Netze Rudolf Kruse Neuronale Netze 227 Rekurrente Netze: Abkühlungsgesetz Ein Körper der Temperaturϑ wird in eine Umgebung der Temperaturϑ A eingebracht. Die Abkühlung/Aufheizung des

Mehr

3. Ebene Systeme und DGL zweiter Ordnung

3. Ebene Systeme und DGL zweiter Ordnung H.J. Oberle Differentialgleichungen I WiSe 2012/13 3. Ebene Systeme und DGL zweiter Ordnung A. Ebene autonome DGL-Systeme. Ein explizites DGL-System erster Ordung, y (t) = f(t, y(t)), heißt bekanntlich

Mehr

Quasi-Monte-Carlo-Algorithmen

Quasi-Monte-Carlo-Algorithmen Quasi-Monte-Carlo-Algorithmen Peter Kritzer Institut für Finanzmathematik/Institut für Didaktik der Mathematik Johannes Kepler Universität Linz peter.kritzer@jku.at Tag der Mathematik, April 2011 P. Kritzer

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Übungen zum Ferienkurs Analysis II 2014

Übungen zum Ferienkurs Analysis II 2014 Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben

Mehr

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida GMA Grundlagen Mathematik und Analysis Reelle Funktionen 3 Christian Cenker Gabriele Uchida Data Analytics and Computing Nullstellen cos log : 0, 0,? 1 Fixpunkte Beispiel 1 Beispiel 2 1 0 0 und 1 1sin,?

Mehr

Schwache Konvergenz. Ivan Lecei. 18. Juni Institut für Stochastik

Schwache Konvergenz. Ivan Lecei. 18. Juni Institut für Stochastik Institut für Stochastik 18. Juni 2013 Inhalt 1 2 3 4 5 Nach ZGWS konvergiert für n F n (x) = P{ X 1+...+X n np npq x} gegen F(x) = 1 2π x e 1 2 u2 du, wenn die X i unabhängig und bernoulliverteilt sind

Mehr

Mathematik 2. 4y Springer Vieweg. Lehrbuch für ingenieurwissenschaftliche Studiengänge. Albert Fetzer Heiner Fränkel. 7. Auflage

Mathematik 2. 4y Springer Vieweg. Lehrbuch für ingenieurwissenschaftliche Studiengänge. Albert Fetzer Heiner Fränkel. 7. Auflage Albert Fetzer Heiner Fränkel Mathematik 2 Lehrbuch für ingenieurwissenschaftliche Studiengänge 7. Auflage Mit Beiträgen von Akad. Dir. Dr. rer. nat. Dietrich Feldmann Prof. Dr. rer. nat. Albert Fetzer

Mehr

Numerik von Anfangswertaufgaben Teil II

Numerik von Anfangswertaufgaben Teil II Institut für Numerische Mathematik und Optimierung Numerik von Anfangswertaufgaben Teil II Numerik partieller Differentialgleichungen Oliver Ernst Hörerkreis: 6. Mm, 8. Mm Sommersemester 2012 Inhalt 1.

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

7 Der Satz von Girsanov

7 Der Satz von Girsanov 7 Der Satz von Girsanov Der Satz von Girsanov wird uns eine neue Perspektive auf die Rolle des Drifts liefern. Die Prozesse Brownsche Bewegung B t, Brownsche Bewegung mit Drift X t = B t + µt haben wir

Mehr

Der Taylorsche Satz Herleitung und Anwendungen

Der Taylorsche Satz Herleitung und Anwendungen Der Taylorsche Satz Herleitung und Anwendungen Joachim Schneider Juni 2004 Zusammenfassung Es wird ein enfacher Beweis des Taylorsche Satz über die lokale Approximierbarkeit hinreichend glatter Funktionen

Mehr

Konvergenz der diskreten Lösungen und Fehlerabschätzung

Konvergenz der diskreten Lösungen und Fehlerabschätzung Konvergenz der diskreten Lösungen und Fehlerabschätzung Michael de Mourgues LMU München Bruck am Ziller, 08.01.2015 Michael de Mourgues Konvergenz der diskreten Lösungen und Fehlerabschätzung 1/14 Das

Mehr

Brownsche Bewegung. Satz von Donsker. Bernd Barth Universität Ulm

Brownsche Bewegung. Satz von Donsker. Bernd Barth Universität Ulm Brownsche Bewegung Satz von Donsker Bernd Barth Universität Ulm 31.05.2010 Page 2 Brownsche Bewegung 31.05.2010 Inhalt Einführung Straffheit Konvergenz Konstruktion einer zufälligen Funktion Brownsche

Mehr

Monotone Approximationen durch die Stirlingsche Formel. Wir beginnen mit einem einfachen Beweis einer schwachen Form von Stirlings

Monotone Approximationen durch die Stirlingsche Formel. Wir beginnen mit einem einfachen Beweis einer schwachen Form von Stirlings Monotone Approximationen durch die Stirlingsche Formel Wir beginnen mit einem einfachen Beweis einer schwachen Form von Stirlings Formel für n!: e n n e n n! e n n+/2 e n Genauer zeigen wir, dass die Folge

Mehr

Enrico G. De Giorgi. Mathematik. 2. Auflage Lehrstuhl für Mathematik Universität St.Gallen. Diese Version: August 2014.

Enrico G. De Giorgi. Mathematik. 2. Auflage Lehrstuhl für Mathematik Universität St.Gallen. Diese Version: August 2014. Enrico G. De Giorgi Mathematik 2. Auflage 2014 Lehrstuhl für Mathematik Universität St.Gallen Diese Version: August 2014. c 2014, Enrico De Giorgi, Universität St.Gallen, alle Rechte vorbehalten. Die Vervielfältigung

Mehr

3 Funktionen in mehreren Variablen

3 Funktionen in mehreren Variablen 3 Funktionen in mehreren Variablen Funktionen in mehreren Variablen Wir betrachten nun Abbildungen / Funktionen in mehreren Variablen. Dies sind Funktionen von einer Teilmenge des R d nach R. f : D f R,

Mehr

M.Sc. Brice Hakwa. Zufallsprozesse und stochastische Integration. Chap 6: Monte-Carlo-Simulation

M.Sc. Brice Hakwa. Zufallsprozesse und stochastische Integration. Chap 6: Monte-Carlo-Simulation M.Sc. Brice Hakwa Zufallsprozesse und stochastische Integration Chap 6: Monte-Carlo-Simulation Motivation 1. In vielen Problemstellungen der Finanzmathematik und des Risikomanagements ist die Dynamik der

Mehr

Springers Mathematische Formeln

Springers Mathematische Formeln г Lennart Rade Bertil Westergren Springers Mathematische Formeln Taschenbuch für Ingenieure, Naturwissenschaftler, Wirtschaftswissenschaftler Übersetzt und bearbeitet von Peter Vachenauer Inhaltsverzeichnis

Mehr

Analysis 2, Woche 3. Differentialgleichungen I. 3.1 Eine Einleitung

Analysis 2, Woche 3. Differentialgleichungen I. 3.1 Eine Einleitung Analysis, Woche 3 Differentialgleichungen I 3 Eine Einleitung Eine Differentialgleichung beschreibt eine Beziehung zwischen Ableitungen einer Funktion oder Vektorfunktion und dieser Funktion selbst Die

Mehr

11 Stochastisches Integral und Itô-Formel

11 Stochastisches Integral und Itô-Formel 11 Stochastisches Integral und Itô-Formel Im diskreten Finanzmodell bei selbstfinanzierender Strategie ϑ = {ϑ n n=,...,n mit Anfangswert V gilt : Ṽ n ϑ = V + n ϑ T j S j. j=1 Dieser diskontierte Wertprozess

Mehr

4. Differentialgleichungen

4. Differentialgleichungen 4. Differentialgleichungen Prof. Dr. Erich Walter Farkas 10.11.2011 Seite 1 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg : Gliederung 1 Finanzmathematik 2 Lineare Programme 3 Differentialgleichungen 4 Statistik:

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

Herleitung der Bessel-Funktionen mit dem Integral-Iterationsverfahren

Herleitung der Bessel-Funktionen mit dem Integral-Iterationsverfahren Herleitung der Bessel-Funktionen mit dem Integral-Iterationsverfahren Dr. rer. nat. Kuang-lai Chao Göttingen, den 3. Februar 009 Abstract Derivation of Bessel functions with the integral iterative method

Mehr

Das Black-Scholes Modell

Das Black-Scholes Modell Vathani Arumugathas Das Black-Scholes Modell 1 Das Black-Scholes Modell Vathani Arumugathas Seminar zu Finanzmarktmodellen in der Lebensversicherung, Universität zu Köln 10. Juni 016 Inhaltsverzeichnis

Mehr

Lösungsvorschläge zur Klausur

Lösungsvorschläge zur Klausur Prüfung in Höhere Mathematik 3 5. September 3 Lösungsvorschläge zur Klausur für bau, ernen, fmt, IuI, mach, tema, umw, verf, geod und so weiter ; Aufgabe : Punkte Im R 3 wird eine Fläche T durch die Abbildung

Mehr

Ingenieurmathematik mit Computeralgebra-Systemen

Ingenieurmathematik mit Computeralgebra-Systemen Hans Benker Ingenieurmathematik mit Computeralgebra-Systemen AXIOM, DERIVE, MACSYMA, MAPLE, MATHCAD, MATHEMATICA, MATLAB und MuPAD in der Anwendung vieweg X Inhaltsverzeichnis 1 Einleitung 1 1.1 Ingenieurmathematik

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Numerische Methoden von gewöhnlichen Differentialgleichungen (AWP) Prof. Dr.-Ing. K. Warendorf, Prof. Dr.-Ing. P. Wolfsteiner Hochschule für Angewandte Wissenschaften München (FH)

Mehr

Verallgemeinerte Funktionen

Verallgemeinerte Funktionen Verallgemeinerte Funktionen. Der Raum der Grundfunktionen Für den Vektorraum R n, n N, über R betrachten wir die Euklidische Norm kk W R n! R; v x 7! p ux x > x WD t n und bezeichnen eine Menge A R n als

Mehr

Vorlesung im SoSe 2010 Stochastische Analysis & Zeitstetige Finanzmathematik

Vorlesung im SoSe 2010 Stochastische Analysis & Zeitstetige Finanzmathematik Univ. Leipzig Mathematisches Institut Vertretung Professur Stochastische Prozesse Max v. Renesse email: mrenesse@math.tu-berlin.de Vorlesung im SoSe 2010 Stochastische Analysis & Zeitstetige Finanzmathematik

Mehr

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen Konvergenz gegen einen rozess mit unabhängigen Zuwächsen - Anwendungen Saskia F. Glaffig 20.07.17 "Wiederholung" Definition (vgl. Jacod, Shiryaev, I.3.26: oissonprozess). Ein erweiterter oissonprozess

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analysis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 7 4.5.7 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

Parareal. Ein paralleler Lösungsalgorithmus für gewöhnliche Differentialgleichungen. Johannes Reinhardt. Parareal 1 Johannes Reinhardt

Parareal. Ein paralleler Lösungsalgorithmus für gewöhnliche Differentialgleichungen. Johannes Reinhardt. Parareal 1 Johannes Reinhardt Ein paralleler Lösungsalgorithmus für gewöhnliche Differentialgleichungen Johannes Reinhardt 1 Johannes Reinhardt Übersicht Grundlagen Gewöhnliche Differentialgleichungen Numerische Methoden Der Algorithmus

Mehr

5 Randwertprobleme. y = f(t, y, y ) für t J, (5.2a) y(t 0 ) = y 0, y(t) = y T (5.2b) zu gegebener Funktion f und Werten y 0, y T.

5 Randwertprobleme. y = f(t, y, y ) für t J, (5.2a) y(t 0 ) = y 0, y(t) = y T (5.2b) zu gegebener Funktion f und Werten y 0, y T. 5 Randwertprobleme Bei den bisher betrachteten Problemen handelte es sich um Anfangswertprobleme. In der Praxis treten, insbesondere bei Differentialgleichungen höherer Ordnung, auch Randwertprobleme auf.

Mehr

Stabilität von geschalteten DAEs

Stabilität von geschalteten DAEs Elgersburg Workshop 2011, 16.02.2011, 17:30-18:00 Einleitung Klassische DAEs Distributionelle Lösungen für geschaltetet DAEs Inhalt 1 Einleitung Systemklasse: Definition und Motivation Beispiele 2 Klassische

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr