Wie funktioniert ein GPS System?

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Wie funktioniert ein GPS System?"

Transkript

1 GPS Sem Wie funkionie ein GPS Sem? Im Pinip gn einfh. Mehee Sellien, die ih in eine w. meheen geoionäen Umlufhnen üe de Ede efinden, hlen egelmäßig ihen deei kuellen Snd de Aomei u. D GPS Geä uf de Edoeflähe empfäng diee Signl und vegleih e mi eine eigenen Aomei. Au de Diffeen egi ih die Lufei de Signl vom Sellien um GPS Empfänge uf de Edoeflähe. Hieu wiedeum egi ih die Enfenung de Sellien vom GPS Empfänge, d mn weiß, d ih d Signl mi Lihgehwindigkei eweg.. D.h. wi ehlen um jeden Sellien in eine Umlufhn eine Kugel, n deen Oeflähe ih de GPS Empfänge deei efinden knn. Die Oeflähe eine olhen Kugel eine einelnen Sellien ilde mi de Edoeflähe einen Kei l Shniflähe. Zwei deige Keie hneiden ih in de egel in Punken (.B. in jeweil einem Punk uf de nödlihen und einem uf de üdlihen Hlkugel). Nimm mn einen dien Sellien hinu, hneiden diee Keie ih ek in einem einigen Punk, dem Sndo de GPS Empfänge. Die folgenden Zeihnungen (nih mßgeeu) mögen die vedeulihen. Aufge: Die Aufge eeh nun din, dieen Shnipunk deie Kugeln n de Edoeflähe ek u eehnen. Wolfgng Kuhn, 0

2 GPS Sem Löung: Zunäh einnen wi un n die gegeenen Konnen (Angen in.000 km). diu Umlufhn: 4,4448 diu Ede: 6, Höhe üe Äquo: 5, Den diu de Umlufhn de Sellien hen wi eei emiel, iehe du im Buh Mhemik veehen eine Len- und Üunghilfe uf dem Weg um Aiu und düe hinu, Seie 0 ff, Wolfgng Kuhn, Po Buine Velg, Belin 00. Zwei Sellien efinden ih de Einfhhei hle uf ein und deelen Umlufhn diek üe dem Äquo. Ein die Selli in eine ndeen Umlufhn. Die Sndoe diee Sellien um Zeipunk de Auhlen ihe Signl wen: Sndo Selli :P 5,000,657 0 Sndo Selli :P 8,000 -,6 0 Sndo Selli :P 0,000 7,45 7,45 De u emielnde Sndo de GPS Empfänge ei mi (,,) eeihne: Dnn gil:, owie. Nun wollen wi den Shnipunk lle dei Kugeloeflähen uf de Edoeflähe emieln. Du ellen wi die jeweiligen Oeflähengleihungen uf: ( ) ( ) ( ), ( ) ( ) ( ) owie ( ) ( ) ( ), woei fü die dien diee Kugeln gil: Wolfgng Kuhn, 0

3 GPS Sem Dei eien, und die gemeenen Zeiunehiede de jeweiligen Aomeiände im GPS Empfänge und in den dei Sellien. Au dieen Zeidiffeenen egeen ih die Enfenungen um jeweiligen Sellien und dmi die dien de Kugeloeflähen:,, mi de Lihgehwindigkei m Dmi können wi löen:. Wegen und folg du: w.. Enpehend fü den weien und dien Sellien: und. Wi ehlen einen Linee Gleihungem, welhe wi noml löen, indem wi.b. unäh die Vile eliminieen und o wei Gleihungen mi wei Uneknnen und ehlen. Dnh eliminieen wi eine weiee Vile (.B. die Vile ) und ehlen die Löung fü. Im voliegenden Fll mhen wi e un ein wenig einfhe, d wi die Sndoe de Sellien j o gewähl hen, d 0 gl. Folglih hen wi folgende Gleihungem: Hie ehen wi lo unäh die eiden een Gleihungen und löen nh und, indem wi die ee Gleihung mi :und die weie Gleihung mi mulipliieen und dnn von einnde iehen: und dmi:. Eineung von in eine de eiden Gleihungen liefe: Wolfgng Kuhn, 0

4 GPS Sem Nun een wi dieen eiden Wee in die die Gleihung ein und ehlen die Löung fü, lo die Koodine : ( ( ) ( ) ) Häen wi d Signl von nu wei Sellien voliegen, egäe ih de We fü u de Gleihung, d de Sndo de GPS Empfänge j uf de Edoeflähe lieg. D Egeni i: ± ; wi ehielen wei Löungen, eine uf de nödlihen und eine weie uf de üdlihen Hlkugel. An diee Selle wollen wi von folgenden gemeenen Zeiunehieden eim Vegleih de jeweiligen Aomeiuhen ugehen: Unehied Zei : 0,95094 e Unehied Zei : 0,55 e Unehied Zei : 0, e Du egeen ih folgende Kugeldien (nh Muliplikion mi de Lihgehwindigkei m, Angen de Enfenung in.000 km): Enfenung von : 8,899 Enfenung von : 40,5647 Enfenung von : 9,049 Al Shnipunk lle dei Kugeloeflähen ehlen wi: (,, ) ( , , ). Wenn wi diee Löung hen, können wi noh in Polkoodinen umehnen, iehe uh Mhemik veehen eine Len- und Üunghilfe uf dem Weg um Aiu und düe hinu, Seie 6 ff, Wolfgng Kuhn, Po Buine Velg, Belin 00. inϕ 0.76 und o ϑ , wou folg: ϕ , ϑ Wenn wi diee Winkel je noh in Gd, Minue und Sekunde umehnen, ehlen wi 49:47:0,5748 nödlihe Beie und 9:56:7,45709 ölihe Länge, w einem Sndo uf dem üdlihen Sding (B9) in Wüug enpih. Wolfgng Kuhn, 0 4

5 GPS Sem Heuige GPS Empfänge eien mi eine Ungenuigkei im 0 Nnoekundeneeih 9 (enpih einem 0-Millidel eine Sekunde 0 0 e ). Mulipliie mn diee Zei mi de Lihgehwindigkei, egi die eine Aweihung von ik Meen. Wolfgng Kuhn, 0 5

4 ARBEIT UND LEISTUNG

4 ARBEIT UND LEISTUNG 10PS/TG - MECHANIK P. Rendulić 2008 ARBEIT UND LEISTUNG 27 4 ARBEIT UND LEISTUNG 4.1 Mehnihe Abei 4.1.1 Definiion de Abei enn ein Köpe une de Einwikung eine konnen Kf die Seke in egihung zuükleg, dnn wid

Mehr

Affine Geometrie 11. Jahrgang

Affine Geometrie 11. Jahrgang Affine Geomeie. Jhgng Gliedeung. Vekoen. Dellung von Vekoen. Rechnen mi Vekoen. Linee Ahängigkei. Geden- und Eenengleichungen. Gedengleichungen. Eenengleichungen in Pmeefom. Inzidenzpoleme. Punk und Gede

Mehr

b) Das Restnetzwerk zu f sieht folgendermaßen aus:

b) Das Restnetzwerk zu f sieht folgendermaßen aus: Techniche Univeriä München Zenrum Mhemik Dikree Opimierung: Grundlgen (MA 0) Prof Dr R Hemmecke, Dr R Brndenerg, MSc-Mh B Wilhelm Üungl 7 Aufge 7 Die folgende Aildung zeig ein Nezwerk N mi einen Flukpziäen

Mehr

Einführungsmöglichkeiten des Skalarprodukts. r r

Einführungsmöglichkeiten des Skalarprodukts. r r Einfühungsmöglihkeiten des Sklpodukts Jügen Zumdik I. Geometishe Zugänge im Euklidishen Vektoum Euklidishe Länge eines Vektos ist eeits eingefüht Polem Winkel zwishen Vektoen R² α β ϕ α-β osϕ osα-β osαosβ

Mehr

Bewegungsgleichung einer gleichförmig beschleunigten Rakete (2)

Bewegungsgleichung einer gleichförmig beschleunigten Rakete (2) Auor: Wler Bilin von 8 wler.bilin.h/blog/.5.3 :4 Bewegunggleihung einer gleihförmig behleunigen Rkee () Dieng, 6. April 3 - :57 Auor: wbi hemen: Wien, Phyik, Komologie D Löen der reliviihen Bewegunggleihung

Mehr

Um- und Inkugelradien am allgemeinen Tetraeder

Um- und Inkugelradien am allgemeinen Tetraeder Ano Fehinge, Gymnsillehe fü Mthemtik und Physik 1 Um- und Inkugeldien m llgemeinen Tetede Oktoe 2007 In de voliegenden Aeit sollen Um- und Inkugeldien eines llgemeinen Tetedes in Ahängigkeit von den Kntenlängen

Mehr

Physikaufgabe 86. Aufgabe: Zeigen Sie, daß sich das Weltall nicht unendlich ausdehnen kann. , t 2. x 2

Physikaufgabe 86. Aufgabe: Zeigen Sie, daß sich das Weltall nicht unendlich ausdehnen kann. , t 2. x 2 Phyikufgbe 86 ome Sreie Impreum Konk Gäebuh Aufgbe: Zeigen Sie, dß ih d Welll nih unendlih udehnen knn Bewei: Einein nhm in einer Speziellen Reliiäheorie n, dß ih nih in boluer Ruhe befinde Diee Annhme

Mehr

Analytische Geometrie

Analytische Geometrie Alyihe Geomeie Leiko z Kl- d Aioeeig Eo Pojek de Mhe LK /: Fi Fedde Koie Kleiheiz Simo Ldeg Le Mo J Oeek Khi Shellh Fiedeike Th Chiohe Wehl Alyihe Geomeie Ihl Seie Seie Them ---/--- Ihl Gdegiffe Gdegiffe

Mehr

Musterlösung zur Probeklausur zur Geometrie

Musterlösung zur Probeklausur zur Geometrie UNIVERSITÄT ULM Institut für Zhlentheorie un Whrsheinlihkeitstheorie Musterlösung zur Proeklusur zur Geometrie Prof. Dr. Helmut Mier, Hns- Peter Rek Gesmtpunktzhl: 3 Punkte, Punkte= % keine Age. Gi Definitionen

Mehr

Trigonometrie Lösungen

Trigonometrie Lösungen Tigonometie Löungen 1. In einem Deiek mit de Seite = 6, m teen die Winkel, ß und in einem Veältni von 3 : 4 : 5. Beene die Länge de Seiten und owie den Fläeninlt de Deiek. 3 4 5 1 180 :1 15 3 15 45 ß 4

Mehr

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren.

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren. Kntonsschule Solothun Vektoechung RYS Vektoechnung. Gundlgen. Skl / Vekto In de Phsik untescheiden wi gundsätlich wei veschiedene Tpen phsiklische Einheiten: Skle und Vektoen. Ein Skl ist eine elle Zhl.

Mehr

TECHNISCHER BERICHT. 2. Übungsprogramm: Sphärische Geometrie 1. AUFGABENSTELLUNG:...3

TECHNISCHER BERICHT. 2. Übungsprogramm: Sphärische Geometrie 1. AUFGABENSTELLUNG:...3 Gnder Dniel 00099 GEOMATHEMATIK SS 00 TECHISCHER BERICHT. Üungprogrmm: Sphärihe Geometrie. AUFGABESTELLUG:.... LÖSUGSWEG:.... Skizze:.... Umrehnung der phärihen Ditnzen in Winkel:.... Berehnung ller fehlerfreien

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2013 Montg 15.4 $Id: dreiek.tex,v 1.5 2013/04/15 09:12:15 hk Exp hk $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

6.6 Frequenzgang ). (6.70) Man hat nur in der Übertragungsfunktion G(s) die komplexe Variable durch die rein imaginäre Variable s = jω. zu ersetzen.

6.6 Frequenzgang ). (6.70) Man hat nur in der Übertragungsfunktion G(s) die komplexe Variable durch die rein imaginäre Variable s = jω. zu ersetzen. 6.6 Fequenzgang Neben de Übeagungfunkion zu Becheibung de Signalübeagung in einem lineaen Übeagungglied im Bildbeeich wid in vechiedenen Teilgebieen de Elekoechnik noch eine andee Kennfunkion benuz, de

Mehr

Zeitabhängige Felder, Maxwell-Gleichungen

Zeitabhängige Felder, Maxwell-Gleichungen Zeiabhängige Felde, Mawell-Gleichungen Man beobache, dass ein eiabhängiges Magnefeld ein elekisches Feld eeug. Dies füh.. u eine Spannung an eine Dahschleife (ndukion). mgekeh beobache man auch: ein eiabhängiges

Mehr

Lineare Gleichungssysteme mit 3 und mehr Variablen

Lineare Gleichungssysteme mit 3 und mehr Variablen Linere Gleihungssysteme mit un mehr rilen Beispiel 1 mit rilen: 11 Zunähst estimmt mn ie rile, ie mn ls Erste eliminieren will. In iesem Fll soll von hinten nh vorn vorgegngen weren,.h. zuerst soll rile

Mehr

( ) l 2. l 3. Lösungen zu Kapitel 2 folgen nächstes Jahr oder so. Hab ich letztes Jahr auch gesagt. Zu Aufgabe 3.1 a) b. 4 a. b) b 5.

( ) l 2. l 3. Lösungen zu Kapitel 2 folgen nächstes Jahr oder so. Hab ich letztes Jahr auch gesagt. Zu Aufgabe 3.1 a) b. 4 a. b) b 5. nlytihe eoetie / eite Lö ( Löngen zz Ki ittel l Löngen z Kitel folgen nähte Jh oe o H ih letzte Jh h gegt Löngen zz Ki ittel l Z fge y 9 z z z z z z z z Z fge it n ohne TR öglih ezeihnet ein L: L Z fge

Mehr

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000 Lndeswettewer Mthemtik Bern Runde 999/000 Aufge Ein Würfel wird durh je einen Shnitt rllel zur order-, Seiten und Dekflähe in ht Quder zerlegt (siehe Skizze) Können sih die Ruminhlte dieser Quder wie :

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte

Einführung in die Physik I. Kinematik der Massenpunkte Einfühung in die Phsik I Kinemik de Mssenpunke O. von de Lühe und U. Lndgf O und Geschwindigkei Wi bechen den O eines ls punkfömig ngenommenen Köpes im Rum ls Funkion de Zei Eindimensionle Posiion O O

Mehr

Analytische Geometrie

Analytische Geometrie Pives Gymsim Mies J Mhemik Alyishe Geomeie Ueihsfzeihe de Mhemikleisskse / i de Shljhe / d / Noe Mez Am Solz He Ihlsvezeihis LÄNG BTRAG) INS VKTORS INHITSVKTOR SKALARPRODUKT WINKL ZWISCHN ZWI VKTORN NORMALNFORM

Mehr

Analytische Geometrie

Analytische Geometrie Anlytiche eometie Intention: Eeitung eine Vefhen, mit deen Hilfe mn jede geometiche Aufge duch echnung löen knn. I Vektoen und Vektoäume Pfeile und Vektoen Vektoen ind geichtete ößen. Phyik: Kft, echwindigkeit,

Mehr

A2 Potenzen, Wurzeln, Logarithmen: Beispiele und Aufgaben

A2 Potenzen, Wurzeln, Logarithmen: Beispiele und Aufgaben A Poeze, Wzel, Logihme: Beipiele d Afge Gdäzlihe Im Ahi. de Bhe Mhemik fü BWL-Bhelo [] id Seie die gdlegede Age z Poeze, Wzel d Logihme zmmegeell. Die ihee Awedg vo Poez- d Logihmegeeze i owedig, m ei

Mehr

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche Modul Integle 3 Volumen von Rottionsköpen, Bogenlänge und Mntelfläche In diesem Modul geht es um einige spezielle Anwendungen de Integlechnung, und Volumin, Längen und Flächen zu estimmen. Fngen wi mit

Mehr

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck 10 1 Grundlgen der Shulgeometrie 13 Ds Dreiek In diesem shnitt findet lles in der ffinen Stndrdeene 2 = R 2 sttt Drei Punkte, und, die niht uf einer Gerden liegen, ilden ein Dreiek Die Punkte,, nennt mn

Mehr

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B Erkundungen Terme vergleihen Forshungsuftrg : Fläheninhlte von Rehteken uf vershiedene Arten erehnen Die Terme () is (6) eshreien jeweils den Fläheninhlt von einem der drei Rehteke. Ordnet die Terme den

Mehr

Workshop zu Trigonometrie

Workshop zu Trigonometrie Wokshop zu Tigonometie Gudun Szewiezek SS 00 Wi eshäftigen uns hie mit de eenen Tigonometie (g. tigonos = Deiek, g. meton = Mß). Dei geht es huptsählih um die geometishe Untesuhung von Deieken in de Eene.

Mehr

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik)

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik) Physik EI1 Mechnik - Einfühung Seie I MECHNIK 1. EINÜHRUNG Gundlgen, Kinemik, Dynmik (Wiedeholung de Schulphysik) _Mechnik_Einfuehung1_Bneu.doc - 1/9 Die einfühenden Kpiel weden wi zunächs uf dem Niveu

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE Vektoechnung Anltische Geometie 7. VEKTORRECHNUNG ANALYTISCHE GEOMETRIE 7.1. Vektoen () Definition Schiet mn einen Punkt P 1 im Koodintensstem in eine ndee Lge P so ist diese Schieung duch Ange des Upunktes

Mehr

Protokoll zum Versuch 6 Physikpraktikum

Protokoll zum Versuch 6 Physikpraktikum Potoko zum Veuch 6 Phyikpktikum Betimmung de Oefächenpnnung eine Seifene: Nmen: tum: Ku/Guppe: Tempetu: C Luftduck: hp Veuchufu Schägohmnomete α p Seifene,Rdiu Seite.Hingmme; 0.06.0 p σ Veucheihe: ± ±

Mehr

Staatlich geprüfte Techniker

Staatlich geprüfte Techniker Auzug au dem Lernmaerial Forildunglehrgang Saalich geprüfe Techniker Auzug au dem Lernmaerial Naurwienchaf DAA-Technikum Een / www.daa-echnikum.de, Infoline: 00 83 6 50 Definiion: Die Gechwindigkei eine

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9 RMG Haßfut Gundwien Mathematik Jahgangtufe 9 Regiomontanu - Gymnaium Haßfut - Gundwien Mathematik Jahgangtufe 9 Wien und Können. Zahlenmengen Aufgaen, Beipiele, Eläuteungen N Z Q R natüliche ganze ationale

Mehr

Ohne Anspruch auf Vollständigkeit!!!

Ohne Anspruch auf Vollständigkeit!!! Mhemik Veuch eine Zummenfung de Abiu-Soffe Ohne Anpuch uf Volländigkei!!! ANALYSIS: Funkionuneuchung Funkionen: gnzionle Funkionen b e-funkionen c igonomeiche Funkionen Tngenen- und Nomlenbeimmung Okuven

Mehr

Weitere Aufgaben zum Themenkomplex 1: Grundlagen, Hauptsatz der Diff.- und Integralrechnung und Substitutionsverfahren

Weitere Aufgaben zum Themenkomplex 1: Grundlagen, Hauptsatz der Diff.- und Integralrechnung und Substitutionsverfahren Prof. Dr. Gerd von Cölln Prof. Dr. Dirk Re Mhemik II Weiere Aufgen zum hemenkomple : Grundlgen, Hupsz der Diff.- und Inegrlrechnung und Susiuionsverfhren. Sind folgende Aussgen whr oder flsch ) Sind f

Mehr

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt.

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt. Vektorlger Vektorlger Vektoren sind Grössen, die einen Betrg sowie eine Rihtung im Rum hen. Im Gegenstz zu den Vektoren estehen Sklre nur us einer Grösse ls Zhl. In Bühern wird nsttt v oft v geshrieen.

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Shufhprinzip (Folie 137) Automten und formle Sprhen Notizen zu den Folien Im Blok Ds Shufhprinzip für endlihe Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl von

Mehr

Aufgabe 1. Die Zahl 6 wird aus 3 gleichen Ziffern mit Hilfe der folgenden mathematischen

Aufgabe 1. Die Zahl 6 wird aus 3 gleichen Ziffern mit Hilfe der folgenden mathematischen Deprtment Mthemtik Tg der Mthemtik 5. Juli 008 Klssenstufen 9, 10 Aufge 1. Die Zhl 6 wird us 3 gleihen Ziffern mit Hilfe der folgenden mthemtishen Symole drgestellt: + Addition Sutrktion Multipliktion

Mehr

Magnetismus EM 48. fh-pw

Magnetismus EM 48. fh-pw Mgnetismus Hll Effekt 9 Hll Effekt (Anwenungen) 5 Dehmoment eine eiteschleife 5 eispiel: Dehmoment eine Spule 5 iot-svt Gesetz 55 Mgnetfel im nneen eine eiteschleife 56 Mgnetfel eines stomfühenen eites

Mehr

Bündelungsgrad und Abstandsfaktor

Bündelungsgrad und Abstandsfaktor ünelungga un btanfakto Die Gleihung fü ie ieale Rihthaakteitik von ikofonen lautet ( o (: Übetagungfakto : Dukanteil : Gaientenanteil mit a l ünelungga bezeihnet man a Vehältni e von einem iealen mikofon

Mehr

gehört ebenfalls zu einem Paar. Da 5 eine Primzahl und kein anderes Quadervolumen ein Vielfaches von 5 V o

gehört ebenfalls zu einem Paar. Da 5 eine Primzahl und kein anderes Quadervolumen ein Vielfaches von 5 V o Lndeswettewer Mthemtik Bden-Württemerg 999 Runde ufge Ein Würfel wird durh je einen Shnitt rllel zur order-, Seiten und Dekflähe in ht Quder zerlegt (siehe Skizze) Können sih die Ruminhlte dieser Quder

Mehr

Geometrische Abbildungen mit Matrizen

Geometrische Abbildungen mit Matrizen Geomerishe Ailungen mi Mrien A Gegeen sei ein Punk P ; un eine, Ailungsmri A. Ereug wir er Bilpunk P ; miels er Mrimuliplikion + æ ö æ ö æ ö æ ö = = ç ç ç ç + è ø è ø è ø è ø w. in Zeilenvekorshreiweise

Mehr

Analytischen Geometrie in vektorieller Darstellung

Analytischen Geometrie in vektorieller Darstellung Anltische Geometrie Anltischen Geometrie in vektorieller Drstellung Anltische Geometrie Gerden Punkt-Richtungs-Form () Mit Hilfe von Vektoren lssen sich geometrische Ojekte wie Gerden und Eenen eschreien

Mehr

1.1 Eindimensionale, geradlinige Bewegung

1.1 Eindimensionale, geradlinige Bewegung 1. Inenion O, Geschwindigkei und Beschleunigung eines Köpes zu jedem Zeipunk bescheiben. z e e z e () Oseko: () R. Giwidz 1 1.1 Eindimensionle, gedlinige Bewegung Eindimensionles Koodinenssem: 1 Veeinfchend

Mehr

Grundlagen der Kinetik

Grundlagen der Kinetik Grundlen der Kineik Gecwindikei und Becleuniun Die Gecwindikei i definier l der pro Zeieinei zurückelee We eine Körper = bzw = Die Becleuniun i definier l die Änderun der Gecwindikei pro Zeieinei: = bzw

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2015 Montg 20.4 $Id: dreiek.tex,v 1.15 2015/04/20 08:57:49 hk Exp $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

= 7,0 kg), der sich in der Höhe h = 7,5 m über B befindet, ist durch ein Seil mit dem Körper K 2

= 7,0 kg), der sich in der Höhe h = 7,5 m über B befindet, ist durch ein Seil mit dem Körper K 2 59. De Köpe K ( 7,0 kg), de ich in de öhe h 7,5 übe B befinde, i duch ein Seil i de Köpe K (,0 kg) ebunden. Die Köpe ezen ich zu Zei 0 au de Ruhe heau in Bewegung. K gleie eibungfei auf eine chiefen Ebene

Mehr

Die Näherung ist umso genauer, je kleiner die Zellen sind. Der Grenzwert ist

Die Näherung ist umso genauer, je kleiner die Zellen sind. Der Grenzwert ist Höhere Mthemtik Mehrfhintegrle sind Integrle üer eiete R n Zweifhintegrle treten B ei der Berehnung des Fläheninhltes und von Flähenträgheitsmomenten uf Dreifhintegrle kommen ei der Berehnung des Volumeninhltes

Mehr

Formelsammlung Mechanik

Formelsammlung Mechanik oellun Mechnik Beufliche Gniu chobechule oellun Phik Mechnik Heinich-Enuel-Meck-Schule Dd Snd: 8..8 oellun Mechnik Beufliche Gniu chobechule Gößen und Einheien de Mechnik oel e de Einheien Beziehun zwichen

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

a b = a b a b = 0 a b

a b = a b a b = 0 a b Vektorlger Zusmmenfssung () Sklrprodukt weier Vektoren im Rum Unter dem Sklrprodukt os os weier Vektoren und versteht mn den Sklr woei der von den eiden Vektoren eingeshlossene Winkel ist ( 8) * os Rehenregeln

Mehr

Aufgabe 124. q I = Q I. Bereich I: q II = Q II (1) (2) Bereich III: q III = Q III (3) (4) Randbedinungen (5) (6) (7)

Aufgabe 124. q I = Q I. Bereich I: q II = Q II (1) (2) Bereich III: q III = Q III (3) (4) Randbedinungen (5) (6) (7) ik und eemenre esigkeisehre Prof. Popov Wie 6/7,.Tuorium Lösungshinweise eie uperposiion, Biegespnnungen Version 6. Jnur 07 Tuorium Aufge us Due: + A w(x) w I (x) + w II (x) w I (x) q 0 4 [ 4 5 x ( x )

Mehr

Die Satzgruppe des Pythagoras

Die Satzgruppe des Pythagoras 7 Die Stzgruppe des Pythgors In Klssenstufe 7 hen wir uns ei den Inhlten zur Geometrie insesondere mit Dreieken und ihren Eigenshften eshäftigt. In diesem Kpitel wirst du erkennen, dss es ei rehtwinkligen

Mehr

Ober- und Untersummen, Riemann Integrale

Ober- und Untersummen, Riemann Integrale Oer- und Untersummen, Riemnn Integrle 1. Ds Prolem des Fläheninhlts Ausgngspunkt für die Entwiklung des Integrlegriffs wren vershiedene Frgestellungen, u.. ds Prolem der Messung des Fläheninhltes eines

Mehr

6. Energieerhaltungssatz

6. Energieerhaltungssatz 6. Enegieehaltungssatz ugae 6.: Ein Köpe de Masse wid au eine auhen ahn (Gleiteiungszahl µ) duh eine u vogespannte Fede aus de uhelage heaus eshleunigt. I Punkt kot de Köpe wiede zu Stehen. Man eehne die

Mehr

Vorlesung Diskrete Strukturen Transportnetze

Vorlesung Diskrete Strukturen Transportnetze Vorlesung Diskrete Strukturen Trnsportnetze Bernhr Gnter WS 2009/10 Gerihtete Grphen Ein shlingenloser gerihteter Grph ist ein Pr (V, A), woei V eine elieige Menge ist, eren Elemente wir Eken nennen un

Mehr

ARBEITSBLATT 14 ARBEITSBLATT 14

ARBEITSBLATT 14 ARBEITSBLATT 14 Mthemtik: Mg. Schmid Wolfgng reitsltt. Semester RBEITSBLTT RBEITSBLTT RBEITSBLTT RBEITSBLTT DS VEKTORPRODUKT Definition: Ds vektorielle Produkt (oder Kreuprodukt) weier Vektoren und ist ein Vektor mit

Mehr

Aufgaben zu den Würfen. Aufgaben

Aufgaben zu den Würfen. Aufgaben Aufaben zu den Würfen Aufaben. Ein Körper wird i der Gecwindikei 8 - nac oben eworfen. Vo Lufwiderand ee an ab. Berecnen Sie die Wurföe und die Zei bi zu Erreicen de öcen Punke der Ban. Berecnen Sie die

Mehr

Lösungen. Mathematik ISME Matura Gegeben ist die Funktionsschar f a (x) = ax e a2 x 2, wobei x R und a > 0 ist. 12 Punkte Vorerst sei a = 2.

Lösungen. Mathematik ISME Matura Gegeben ist die Funktionsschar f a (x) = ax e a2 x 2, wobei x R und a > 0 ist. 12 Punkte Vorerst sei a = 2. Mathematik ISME Matua 5. Gegeen ist die Funktionsscha f a ( = a e a, woei R und a > ist. Punkte Voest sei a =. (a Beechnen Sie i. die Nullstelle ii. die Gleichung de Asymptote fü iii. die Etema iv. die

Mehr

Fragebogen 1 zur Arbeitsmappe Durch Zusatzempfehlung zu mehr Kundenzufriedenheit

Fragebogen 1 zur Arbeitsmappe Durch Zusatzempfehlung zu mehr Kundenzufriedenheit Teilnehmer/Apotheke/Ort (Zus/1) Frgeogen 1 zur Areitsmppe Durh Zustzempfehlung zu mehr Kunenzufrieenheit Bitte kreuzen Sie jeweils ie rihtige(n) Antwort(en) in en Felern is n! 1. Worin esteht ie Beeutung

Mehr

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1.

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1. Trigonometrie In diesem Themenereih wenden wir uns den Winkeln im rehtekigen Dreiek zu. Du hst uf deinem Tshenrehner siher shon die Tsten sin, os und tn gesehen. Doh ws edeuten sie? Ds wollen wir herusfinden.

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Ergänzung Kpiel 5. Whl der Führunggröße Whl der Führunggröße für Lgeregelungen Biher wurde mei on einem prungförmigen Verluf der Führunggröße w( ugegngen. Viele regelungechniche Anwendungen weien uch ein

Mehr

Umstellen von Formeln und Gleichungen

Umstellen von Formeln und Gleichungen Umstellen von Formeln und Gleihungen. Ds Zusmmenfssen von Termen edeutet grundsätzlih ein Ausklmmern, uh wenn mn den Zwishenshritt niht immer ufshreit. 4 6 = (4 6) =. Steht eine Vrile, nh der ufgelöst

Mehr

Die Lichtablenkung an der Sonnenoberfläche

Die Lichtablenkung an der Sonnenoberfläche Die Lihlenkung n de Sonnenoeflähe Eine Üegung de iiongeee uf d Lih duh ein Modell i eine Bhnküung-Chkeiik on Ki-Uwe Eku Mi 5 Ee Fung.755 Inhleeihni Vowo Seie. eee de Newonhen Mehnik 4. D iiongee: 4. D

Mehr

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 :

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 : Hns Wlser, [20080409] Eine Visulisierung des Kosinusstzes 1 Worum es geht Es wird eine zum Pythgors-Piktogrmm nloge Figur für niht rehtwinklige Dreieke esprohen. Dei werden ähnlihe gleihshenklige Dreieke

Mehr

Die Dreiecke ADM A und BCM C sind kongruent aufgrund

Die Dreiecke ADM A und BCM C sind kongruent aufgrund Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Üungen zur Vorlesung Elementre Geometrie Sommersemester 010 Musterlösung zu ltt 4 vom 3. Mi 010

Mehr

Bonusklausur über den Stoff der Vorlesung Grundlagen der Informatik II (45 Minuten)

Bonusklausur über den Stoff der Vorlesung Grundlagen der Informatik II (45 Minuten) Institut für Angewndte Informtik und Formle Beschreiungsverfhren 5.0.208 Bonusklusur üer den Stoff der Vorlesung Grundlgen der Informtik II (45 Minuten) Nme: Vornme: Mtr.-Nr.: Semester: (WS 207/8) Ich

Mehr

Zeitverhalten eines Hochpass-Messgliedes

Zeitverhalten eines Hochpass-Messgliedes n zur Znrlübung dr Vorlsung Grundlgn dr Msshnik von Prof. Dollingr, niv. dr Bundswhr Münhn, L2 - OHNE GEWÄH - Zivrhln ins Hohpss-Mssglids Ggbn is di Shlung us Abb. mi ) Ermiln Si di Diffrnilglihung für

Mehr

Lösung zur Bonusklausur über den Stoff der Vorlesung Grundlagen der Informatik II (45 Minuten)

Lösung zur Bonusklausur über den Stoff der Vorlesung Grundlagen der Informatik II (45 Minuten) Institut für Angewndte Informtik und Formle Beschreiungsverfhren 15.01.2018 Lösung zur Bonusklusur üer den Stoff der Vorlesung Grundlgen der Informtik II (45 Minuten) Nme: Vornme: Mtr.-Nr.: Semester: (WS

Mehr

Flächenberechnung. Aufgabe 1:

Flächenberechnung. Aufgabe 1: Flächenerechnung Aufge : Berechnen Sie den Flächeninhlt zwischen dem Funktionsgrphen und der -Achse in den Grenzen von is von: ) f() = ) f() = - Skizzieren Sie die Funktionsgrphen und schrffieren Sie die

Mehr

Freier Fall. Quelle: Lösung: (a) 1 2 mv2 = mgh h = v2. 2g = (344m s )2. 2 9,81 m s 2 = 6, m

Freier Fall. Quelle:  Lösung: (a) 1 2 mv2 = mgh h = v2. 2g = (344m s )2. 2 9,81 m s 2 = 6, m Freier Fall 1. Der franzöiche Fallchirpringer Michel Fournier (geb. 14.5.1944) verfolg ei ehr al 1 Jahren da Ziel in ca. 4 Höhe i eine Sraophärenballon aufzueigen und von dor abzupringen. Dabei will er

Mehr

Dreiecke können einerseits nach den Eigenschaften ihrer Seiten und andererseits nach ihren Winkeln benannt werden. Einteilung nach den Seiten:

Dreiecke können einerseits nach den Eigenschaften ihrer Seiten und andererseits nach ihren Winkeln benannt werden. Einteilung nach den Seiten: gnz klr: Mthemtik 2 - s Ferienheft mit Erfolgsnzeiger 3 Rettungsring Eigenshften von reieken & Viereken Eigenshften von reieken Ein reiek ht immer 3 Ekpunkte, 3 Seiten un 3 Innenwinkel. ie eshriftung eines

Mehr

Keineswegs nur zum Singen

Keineswegs nur zum Singen Mateialien fü den Unteiht Keineswegs nu zum Singen Voshläge fü den Unteiht mit Mateialien aus dem Liedeuh Unisono von Ole Steinhoff und Matthias Rheinlände Liedeühe sind eigentlih zum Singen da. Ein eflektieende

Mehr

Das kleine 9er-Einmaleins mit den 10 Fingern lernen.

Das kleine 9er-Einmaleins mit den 10 Fingern lernen. Ws? Multiplizieren 9er-Finger-Einmleins Wozu? Ds kleine 9er-Einmleins mit den 10 Fingern lernen. 1. Beide Hände mit usgestrekten Fingern zeigen nh oen. 2. Die Dumen zeigen nh ußen (Hndflähen zum Gesiht).

Mehr

Aufgabe 1: Die Zahl 100 soll derart in zwei Summanden zerlegt werden, dass die Summe der Quadrate der beiden Summanden möglichst klein wird.

Aufgabe 1: Die Zahl 100 soll derart in zwei Summanden zerlegt werden, dass die Summe der Quadrate der beiden Summanden möglichst klein wird. Etremwertufgen Zhlenrätsel ufge : Die Zhl 00 soll derrt in zwei Summnden zerlegt werden, dss die Summe der Qudrte der eiden Summnden möglichst klein wird. ufge : Die Zhl 60 ist so in zwei Summnden zu zerlegen,

Mehr

9 Vektorprodukt. Dieses Gleichungssystem muss man nun lösen! Das ist allerdings nicht ganz einfach. Die Lösung lautet:

9 Vektorprodukt. Dieses Gleichungssystem muss man nun lösen! Das ist allerdings nicht ganz einfach. Die Lösung lautet: 9 Vektorprodukt 9.1 Ds Vektorprodukt Gegeen seien zwei (komplnre) Vektoren und, die eine Eene ufspnnen. Suht mn einen Vektor n, der uf diese Eene senkreht steht, dnn muss n orthogonl zu und n orthogonl

Mehr

Musterlösung - Aufgabenblatt 4. Aufgabe 1

Musterlösung - Aufgabenblatt 4. Aufgabe 1 Murlöung - Augnl 4 Aug ) Au Üungl 3 hn wir ür n ggnn Grphn G gzig, ν(g) = 9 gil, inm wir olgn Mhing M von mximlr Krinliä nggn hn: g h i j 3 4 6 7 8 9 0 E gil lo, nh König Mhing-Thorm u r Vorlung, uh τ(g)

Mehr

Schülerkurs. Mathematik > Lineare Algebra > Lineare Gleichungen Lineare Gleichungssysteme > Teil I: Theorie. Michael Buhlmann

Schülerkurs. Mathematik > Lineare Algebra > Lineare Gleichungen Lineare Gleichungssysteme > Teil I: Theorie. Michael Buhlmann Michel Buhlmnn Schülekus Mthemtik > Linee Alge > Linee Gleichungen Linee Gleichungssysteme > Teil I: Theoie Linee Gleichungen und linee Gleichungssysteme duchziehen den Mthemtikunteicht in llen Schulfomen

Mehr

Versuch 5: Untersuchungen zur Beschleunigung an der Atwoodschen Fallmaschine

Versuch 5: Untersuchungen zur Beschleunigung an der Atwoodschen Fallmaschine Veuch 5: Unteuchunen zu Bechleuniun n de Atwoodchen Fllchine Theoetiche Gundlen: I. Ekläun de Modell Mepunkt : Auedehnte Köpe weden duch einen Punkt detellt, in de n ich die ete Me de Köpe veeinit denkt.

Mehr

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09 Hns U. Simon Bohum, den 7..28 Annette Ilgen Beispiele zur Vorlesung Theoretishe Informtik WS 8/9 Voremerkung: Hier findet sih eine Smmlung von Beispielen und Motivtionen zur Vorlesung Theoretishe Informtik.

Mehr

2.2. Figuren Dreiecke Winkelsumme in Dreiecken Besondere Dreiecke Vierecke

2.2. Figuren Dreiecke Winkelsumme in Dreiecken Besondere Dreiecke Vierecke .. Figuren Figuren sind zweidimensionle Geilde in der Eene. Die einfhsten Figuren sind Dreieke und Viereke.... Dreieke Bezeihnungen in Dreieken werden die Ekpunkte A, B, sowie die dzugehörigen Innenwinkel,,

Mehr

Facharbeit über den Beweis der Existenz der Euler schen Gerade in ebenen Dreiecken.

Facharbeit über den Beweis der Existenz der Euler schen Gerade in ebenen Dreiecken. Fhreit üer den Beweis der Eistenz der Euler shen Gerde in eenen Dreieken. Verfßt von Ing. Wlter Höhlhumer im Mi und ergänzt im Juli Eistenz der Euler shen Gerde Eistenz der Euler shen Gerde Eistenz der

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Übungsaufgaben zu Mathematik 2

Übungsaufgaben zu Mathematik 2 Ü F-Studiengng Angewndte lektronik SS 8 Üungsufgen zu Mthemtik Vektor- und Mtrizenrechnung 9 Die ckpunkte des Dreiecks ABC seien durch ihre Ortsvektoren OA ( ) OB (7) und OC (8) gegeen Berechnen Sie die

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeihne ds Dreiek ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erehne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und C(8

Mehr

Aufgabe 30: Periheldrehung

Aufgabe 30: Periheldrehung Aufge 30: Periheldrehung Auf einen Plneten soll zusätzlich zum Grvittionspotentil ds folgende Potentil einwirken U z = η r. (1 Im Folgenden sollen eene Polrkoordinten verwendet werden. Ds können wir mchen,

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 5-04 1 10 mthuh 1 LU reitsheft + weitere ufgen «Grundnforderungen» Symmetrien 301 Zeihne Grossuhsten des lphets, sortiert nh vier Typen: hsensymmetrish punktsymmetrish hsen- und punktsymmetrish weder hsen-

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf Einfühung in die Phsik I Kinemaik de Massenpunke O. on de Lühe und U. Landgaf O und Geschwindigkei Wi beachen den O eines als punkfömig angenommenen Köpes im Raum als Funkion de Zei Eindimensionale Posiion

Mehr

1. Ebene Bewegung eines Punktes

1. Ebene Bewegung eines Punktes Prof. V. Prediger: ufgaen zur Lehrveransalung Kinemaik und Kineik. Eene ewegung eines Punkes ufgae.: Es is ekann, dass die ewegung eines Körpers im Zeiereich 0 0s nach dem folgenden Gesez safinde: 2 3

Mehr

9 Längen- Flächen- und Volumenmessung

9 Längen- Flächen- und Volumenmessung 9 Längen- Flächen- und Volumenmessung A Länge einer Kurve B Flächenmessung C Volumenerechnung 56 A. Länge einer Kurve ERKLÄRUNG 9.1. (Länge einer Kurve in Funktionsdrstellung.) Es sei f eine uf dem Intervll

Mehr

Pythagoras. Suche ein rechtwinkliges Dreieck mit ganzzahligen Seitenlängen. ... c Roolfs

Pythagoras. Suche ein rechtwinkliges Dreieck mit ganzzahligen Seitenlängen. ... c Roolfs Pythgors Suhe ein rehtwinkliges Dreiek mit gnzzhligen Seitenlängen..... 1 Pythgors Für ein Dreiek mit den Seitenlängen = 3 und = 4 (in m) gilt vermutlih = 5. Weise diese Vermutung nh. Tipp: Bestimme den

Mehr

Vektoren. b b. R heißt der Vektor. des. und b. . a b

Vektoren. b b. R heißt der Vektor. des. und b. . a b 6 Vektoren 66 Ds Vektorprodukt Definition des Vektorprodukts Wir etrchten im dreidimensionlen Rum zwei nicht kollinere Vektoren R, \{0} Gesucht ist ein Vektor x R, der uf jedem der eiden Vektoren und senkrecht

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

a) Behauptung: Es gibt die folgenden drei stabilen Matchings:

a) Behauptung: Es gibt die folgenden drei stabilen Matchings: Musterlösung - ufgenltt 1 ufge 1 ) ehuptung: Es git ie folgenen rei stilen Mthings: ies knn mn ntürlih für ein so kleines eispiel urh etrhten ller möglihen 3! = 6 Mthings eweisen. Mn knn er uh strukturierter

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

3.2. Flächenberechnungen

3.2. Flächenberechnungen Anlysis Inegrlrechnung.. Flächenerechnungen... Die Flächenfunkion ) Flächenfunkionen ufzeichnen Skizziere zur gegeenen Funkion diejenige Funkion, welche die Fläche unerhl der Funkionskurve miss. Die Flächenfunkion

Mehr

Mathematik Trigonometrie Einführung

Mathematik Trigonometrie Einführung Mthemtik Trigonometrie Einführung Ws edeutet ds Wort Trigonometrie und mit ws eshäftigt sih die Trigonometrie? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Ek'

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

1. Klausur Physik Leistungskurs: Kinematik Klasse Dauer: 90 min

1. Klausur Physik Leistungskurs: Kinematik Klasse Dauer: 90 min 1. Kluur Phyik Leiungkur: Kineik Kle 11 1.1.13 Duer: 9 in 1. Mx und Mäxchen chen ein Werennen über 1. Mx gewinn d Rennen i en 5 Vorprung. U Mäxchen bei Lune zu hlen, ren ie einen Rencheluf, bei de ber

Mehr