c r Addiert man nun beide Reihendarstellungen, so folgt f (ζ) Nach dem Cauchyschen Integralsatz gilt dann auch

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "c r Addiert man nun beide Reihendarstellungen, so folgt f (ζ) Nach dem Cauchyschen Integralsatz gilt dann auch"

Transkript

1 Residuen V Beweis Einsetzen in das Kurvenintegral über c r ergibt demnach f (ζ) 2πi ζ z dζ = f (ζ) 2πi (ζ z 0 ) c r k= c r k+ dζ Addiert man nun beide Reihendarstellungen, so folgt a k (z z 0 ) k, r z z 0 R. a k = k= wobei die Koeffizienten durch f (ζ) dζ : k = 0,, 2,... 2πi (ζ z 0 ) k+ gegeben sind. 2πi c R c r (z z 0 ) k. f (ζ) dζ : k =, 2, 3,... (ζ z 0 ) k+ Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen SS / 88 Laurent-Entwicklung Beweis Nach dem Cauchyschen Integralsatz gilt dann auch a k = f (ζ) dζ (k Z) 2πi (ζ z 0 ) k+ für ein beliebiges ρ [r, R]. Bemerkung ζ z 0 =ρ Die Laurent Entwicklung von f (z) ist bei vorgegebenem Kreisring eindeutig bestimmt. 2 Ist f (z) holomorph im gesamten Kreis K R (z 0), so gilt aufgrund des Cauchyschen Integralsatzes für k =, 2, 3,... die Beziehung a k = 0 und die Laurent Entwicklung stimmt dann mit der Taylor Entwicklung überein. Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen SS / 88

2 Laurent Entwicklung im Wir betrachten die Funktion sinz z 2 mit Entwicklungspunkt z 0 = 0 und Kreisring 0 < z <. Mit der Taylor Entwicklung sinz = ( ) k z 2k+ (2k + )! erhalten wir die Laurent Reihe sinz z 2 = ( ) k z 2k (2k + )! = z z 3! + z3 5!... Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen SS / 88 Laurent Entwicklung im Wir betrachten die Funktion (z + )(z 2) mit Entwicklungspunkt z 0 = 0. Der Nenner hat zwei Nullstellen in z = und z = 2. Es existieren daher drei Laurent Entwicklungen, nämlich in z <, in < z < 2, und in z > 2. Für den Kreisring < z < 2 gilt etwa: 3 z 2 3 ( = ) ( z 6 2 = k= ( ) k 3 z + = 6 ) k 3z z k + z/2 3z ( ) k z ( ) 3 2 k+ z k. + /z Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen SS / 88

3 Singularitäten Definition Sei f (y) holomorph auf einem Gebiet G. Ein Punkt z 0 C heißt isolierte Singularität von f (z), falls ein r > 0 existiert mit K 0,r (z 0 ) G. Ist a k (z z 0 ) k die Laurent Entwicklung in K 0,r (z 0 ), so nennt man den Punkt z 0 eine hebbare Singularität, falls a k = 0 für alle k < 0 gilt, 2 den Punkt z 0 einen Pol der Ordnung m N, falls gilt a m 0 k < m : a k = 0 3 den Punkt z 0 eine wesentliche Singularität, falls a k 0 für unendlich viele k < 0 gilt. Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen SS / 88 Singularitäten e Der Punkt z 0 = 0 ist eine hebbare Singularität der Funktion sinz z, denn die Taylor Entwicklung lautet 2 Die Funktion sinz z = z2 3! + z4 5!... sinz z 2 hat in z 0 = 0 einen Pol der Ordnung. 3 Rationale Funktionen haben keine wesentlichen Singularitäten: Sei p(z) q(z) Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen SS / 88

4 (Fortsetzung) 3 Sei p(z) q(z) eine rationale Funktion. Die Singularitäten sind die Nullstellen von q(x). Ist nun z 0 eine m fache Nullstelle von q(z), so gilt q(z) = (z z 0 ) m r(z), r(z 0 ) 0 wobei g holomorph in z 0 ist. Daraus folgt (z z 0 ) m a k (z z 0 ) k (z z 0 ) m g(z), d.h. z 0 ist ein Pol der Ordnung m oder eine hebbare Singularität, falls a 0 = a =...a m = 0. 4 Die Funktion e /z hat in z 0 = 0 eine wesentliche Singularität, denn es gilt e /z = +! ( ) + z 2! ( ) 2 + z 3! ( ) z Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen SS / 88 Klassifikation von Singularitäten Satz (Klassifikation von Singularitäten) Ist z 0 eine hebbare Singularität, so existiert der Grenzwert lim z z0 f (z). Die Funktion { f (z) : z z0 lim f (z) : z = z 0 z z 0 ist eine holomorphe Fortsetzung von f (z). 2 Ist f (z) in einer Umgebung von z 0 beschränkt, so ist z 0 eine hebbare Singularität. 3 Ist z 0 ein Pol von f (z), so gilt lim z z 0 4 Ist z 0 eine wesentliche Singularität von f (z), so bildet f (z) jeden Kreisring K 0,ε (z 0 ) auf C oder C \ {a} ab. Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen SS / 88

5 Komplexe Partialbruchzerlegung Definition Besitzt die Funktion f (z) bei z 0 die Laurent Entwicklung a k (z z 0 ) k, 0 < z z 0 < r, so nennt man h(z; z 0 ) = a k (z z 0 ) k den Hauptteil von f (z) zum Entwicklungspunkt z 0. Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen SS / 88 Komplexe Partialbruchzerlegung und Residuen Satz Ist r(z) = p(z)/q(z) eine rationale Funktion, wobei der Grad des Zählers echt kleiner als der Grad des Nenners ist, und sind z,...,z m die (verschiedenen) Nullstellen von q(z), so gilt r(z) = h(z; z ) + + h(z; z m ). Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen SS / 88

6 Beweis Komplexe Partialbruchzerlegung Beweis Idee: Wir zeigen, dass die Funktion g(z) definiert durch g(z) = r(z) m h(z; z j ) j= beschränkt und auf ganz C holomorph ist. Nach dem Satz von Liouville folgt dann, dass g(z) konstant ist. Mit lim g(z) = 0, folgt dann die z Behauptung. Offensichtlich ist g(z) holomorph auf dem Definitionsbereich C \ {z,...,z m } und die Hauptteile der Laurent Entwicklungen zu den Entwicklungspunkten z,...,z m verschwinden identisch. Demnach sind die Punkte z,...,z m hebbare Singularitäten und g(z) ist holomorph auf ganz C. Wegen grad p < grad q folgt lim z Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen SS / 88 Beweis Komplexe Partialbruchzerlegung Beweis und damit auch lim g(z) = 0. z Also ist g(z) beschränkt und holomorph auf ganz C. Nach dem Satz von Liouville folgt g(z) = const und aufgrund des Grenzverhaltens für z folgt g(z) = 0. Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen SS / 88

7 Komplexe Partialbruchzerlegung Anwendung Anwendung des Satzes: Die Partialbruchzerlegung einer komplexen rationalen Funktion kann über die Hauptteile der Laurent Entwicklungen berechnet werden, wobei die Entwicklungspunkte gerade die Singularitäten der rationalen Funktion sind. Wir betrachten dazu ein. Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen SS / 88 Partialbruchzerlegung Man bestimme die Partialbruchzerlegung der Funktion 4 (z + ) 2 (z ). Der Nenner besitzt die beiden Nullstellen z = und z =. Wir bestimmen daher die Hauptteile der Laurent Entwicklungen um gerade diese beiden Punkte. ) Für z = schreibt man (z + ) 2 4. } z {{ } g(z) Nun ist g(z) in einer Umgebung des Punktes z = holomorph und kann in eine Taylor Reihe entwickelt werden. Es gilt daher (z + ) 2 ( 2 (z + ) + O((z + ) 2 ) ) Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen SS / 88

8 Partialbruchzerlegung II (Fortsetzung) und wir erhalten damit 2 (z + ) z + }{{} h(z; ) 2) Analog schreiben wir für den Punkt z = z 4 (z + ) }{{ 2 } g(z) und erhalten durch Taylor Entwicklung z ( (z ) + O((z ) 2 ) ) Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen SS / 88 Partialbruchzerlegung (Fortsetzung) Demnach ist die komplexe Partialbruchzerlegung von f (z) gegeben durch 2 (z + ) 2 z + + z. Definition Ist z 0 eine isolierte Singularität von f (z), so besitzt f (z) eine Laurent Entwicklung zum Punkt z 0, d.h. a k (z z 0 ) k, 0 < z z 0 < r. Man nennt dann Res (f ; z 0 ) = a Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen SS / 88 das Residuum von f (z) in z 0.

9 Residuensatz Satz (Residuensatz) Sei G ein Gebiet, f : G \ {z,...,z m } C sei holomorph, c eine geschlossene, stückweise C Kurve in G \ {z,...,z m }, die in G nullhomotop ist, d.h. innerhalb von c liegen höchstens die isolierten Singularitäten z,...,z m. Dann gilt c f (z)dz = 2πi m Uml (c; z k ) Res (f ; z k ). k= Beweis ) Zunächst genügt es, die Singularitäten, die innerhalb von c liegen, zu untersuchen, da sonst die Umlaufzahl Null ist. 2) Man zerlegt c in geschlossene Kurven c,...,c s, sodass jede dieser Kurven c j nur Singularitäten mit gleicher Umlaufzahl l j enthält. Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen SS / 88 Residuensatz II Beweis (Fortsetzung) 3) Jede Kurve c j ist innerhalb von G \ {z,...,z m } homotop zu einer l j fach durchlaufenen einfach geschlossenen Kurve c j, siehe Zeichnung auf Folie. Daraus folgt c f (z)dz = s j= c j f (z)dz = s l j j= c j f (z)dz 4) Jeder einfach geschlossene Weg c j kann in eine Summe von Kreisen um die Singularitäten innerhalb von c j zerlegt werden. Daraus folgt c f (z)dz = m Uml (c; z k ) k= z z k =ρ k f (z)dz. Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen SS / 88

10 Residuensatz II Beweis (Fortsetzung) Mit der Laurent Entwicklung um z k gilt aber z z k =ρ k f (z)dz = = z z k =ρ k j= a j j= a j (z z k ) j dz z z k =ρ k (z z k ) j dz = 2πi a = 2πi Res (f ; z k ) Für die Kurve in der Beweisskizze erhält man also f (z)dz = 2πi [2Res (f ; z ) + Res (f ; z 2 ) c Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen SS / 88 +Res (f ; z 3 ) + 2Res (f ; z 4 ) + 2Res (f ; z 5 )] Methoden zur Berechnung von Residuen Satz Ist z 0 ein einfacher Pol von f (z), so besitzt f (z) eine Darstellung der Form g(z) z z 0 mit einer in z 0 holomorphen Funktion g(z). Für das Residuum gilt dann Res (f ; z 0 ) = g(z 0 ) = lim z z0 (z z 0 )f (z) 2 Ist p(z)/q(z) mit auch in z 0 holomorphen Funktionen p und q eine rationale Funktion und z 0 eine einfache Nullstelle von q(z), so gilt Res (f ; z 0 ) = p(z 0) q (z 0 ) Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen SS / 88

11 Berechnung von Residuen Satz (Fortsetzung) Gilt g(z)/(z z 0 ) m, m mit einer in einer Umgebung von z 0 holomorphen Funktion g(z), so gilt Res (f ; z 0 ) = g(m ) (z 0 ) (m )! Beweis Die erste Aussage ist ein Spezialfall von Teil 3), der über Taylor Entwicklung bewiesen werden kann, da g(z) in einer Umgebung von z 0 holomorph ist: g(z) (z z 0 ) m = g (k) (z 0 ) (z z 0 ) k m. k! Reiner Man Lauterbach kann(universität dann direkt Hamburg) das Residuum Komplexe Funktionen ablesen und es folgt SS / 88 Berechnung von Residuen Beweis (Fortsetzung) Für Teil 2) definieren wir q(z) = (z z 0 )r(z) Dann ist r(z) im Punkt z 0 holomorph fortsetzbar mit r(z 0 ) 0. Damit ist die Funktion g(z) = p(z) r(z) bei z = z 0 holomorph und wir erhalten für f (z) die Darstellung g(z) z z 0 Nach Teil ) folgt wegen q (z) = r(z) + (z z 0 )r (z) Res (f ; z 0 ) = g(z 0 ) = p(z 0) Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen SS / 88 r(z 0 )

12 Residuen Für die Funktion (z + )(z 2) hat man nach Teil ) des letzten Satzes Res (f ; ) = z 2 = z= 3 Res(f ; 2) = z + = z=2 3 Für gilt nach 2) + z 2 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen SS / 88 Residuen Die Funktion e iz z(z 2 + ) 2 hat bei z 0 = i einen Pol zweiter Ordnung. Nach dem letzten Satz, Teil 3), gilt Res (f ; i) = g (i) = 3 4e wobei die Funktion g(z) aufgrund der Darstellung e iz z(z + i) 2 (z i) 2 durch g(z) = e iz z(z + i) 2 gegeben ist. Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen SS / 88

H.J. Oberle Komplexe Funktionen SoSe Residuensatz

H.J. Oberle Komplexe Funktionen SoSe Residuensatz H.J. Oberle Komplexe Funktionen SoSe 2013 Partialbruch-Zerlegung. 10. Residuensatz Wir setzen unsere Untersuchung der isolierten Singularitäten einer holomorphen Funktion mit einer Methode fort, die komplexe

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 214 Dr K Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Aufgaben und Theoriehinweise zu Blatt 6 Komplexe Funktionen, K Rothe,

Mehr

6.7 Isolierte Singularitäten

6.7 Isolierte Singularitäten 6.7 Isolierte Singularitäten Definition: Eine analytische Funktion f hat in einem Punkt a C eine isolierte Singularität, falls f in einem Kreisring B r (a) \ {a} = {z C : 0 < z a < r} für r > 0, definiert

Mehr

Laurent-Reihen. Definition 1 (Laurent-Reihe) Unter einer Laurent-Reihe versteht man eine Reihe der Form. c n (z z 0 ) n (2) n=0

Laurent-Reihen. Definition 1 (Laurent-Reihe) Unter einer Laurent-Reihe versteht man eine Reihe der Form. c n (z z 0 ) n (2) n=0 Laurent-Reihen Definition (Laurent-Reihe Unter einer Laurent-Reihe versteht man eine Reihe der Form c n (z z 0 n. ( n Man nennt die Teile c n (z z 0 n n bzw. c n (z z 0 n ( n0 den Haupt- bzw. Nebenteil

Mehr

23 Laurentreihen und Residuen

23 Laurentreihen und Residuen 23 Laurentreihen und Residuen 23. Laurentreihen Ist eine Funktion f in einem Punkt z nicht holomorph (oder nicht einmal definiert), so läßt sich f nicht durch eine Potenzreihe mit Entwicklungspunkt z darstellen.

Mehr

Residuen II. Residuen III. Beispiel. Beispiel. f (z) = 1 + z 2. gilt nach 2) , Res (f ; i) = Res (f ; i) = 1 = 1. Die Funktion

Residuen II. Residuen III. Beispiel. Beispiel. f (z) = 1 + z 2. gilt nach 2) , Res (f ; i) = Res (f ; i) = 1 = 1. Die Funktion Residuen II Komplexe Partialbruchzerlegung, Residuensatz Für gilt nach 2) Res (f ; i) = 1 2z = 1 z=i 2i f (z) = 1 1 + z 2, Res (f ; i) = 1 2z = 1 z= i 2i Reiner Lauterbach (Universität Hamburg) Komplexe

Mehr

6.8 Residuenkalkül. Ziel: Weitere Verallgemeinerung auf mehrere Löcher L 1,..., L N. Kapitel 6: Komplexe Integration Γ 1

6.8 Residuenkalkül. Ziel: Weitere Verallgemeinerung auf mehrere Löcher L 1,..., L N. Kapitel 6: Komplexe Integration Γ 1 6.8 Residuenkalkül Erinnerung: Sei f analytisch auf einem zweifach zusammenhängenden Gebiet G, d.h. G besitzt genau ein Loch L. Weiterhin seien und zwei positiv orientierte geschlossene Wege, die das Loch

Mehr

Meromorphe Funktionen

Meromorphe Funktionen Kapitel Meromorphe Funktionen Der Satz von Mittag-Leffler Zur Erinnerung: Die holomorphe Funktion f habe in z 0 C eine isolierte Singularität. Liegt eine Polstelle vor, so gibt es eine offene Umgebung

Mehr

6.5 Die Taylor-Reihe. Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel

6.5 Die Taylor-Reihe. Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel 6.5 Die Taylor-Reihe Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel N q n = qn+ q für q C \ {}. Für q < ist die unendliche geometrische

Mehr

Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als.

Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als. Residuum Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als Res Res f = 1 f (z) dz, z=a a 2πi wobei C : t a + re it, 0 t 2π, ein entgegen

Mehr

Kapitel 24. Entwicklungen holomorpher Funktionen Taylor-Reihen (Potenzreihen und holomorphe Funktionen;

Kapitel 24. Entwicklungen holomorpher Funktionen Taylor-Reihen (Potenzreihen und holomorphe Funktionen; Kapitel 24 Entwicklungen holomorpher Funktionen Reihenentwicklungen spielen in der Funktionentheorie eine ganz besodere Rolle. Im Reellen wurden Potenzreihen in Kapitel 5.2 besprochen, das komplexe Gegenstück

Mehr

3 Meromorphe Funktionen und der Residuenkalkül

3 Meromorphe Funktionen und der Residuenkalkül $Id: mero.tex,v.5 203/05/4 3:0:42 hk Exp hk $ 3 Meromorphe Funktionen und der Residuenkalkül 3.2 Isolierte Singularitäten In der letzten Sitzung hatten wir die drei Typen isolierter Singularitäten und

Mehr

4 Isolierte Singularitäten und Laurentreihen

4 Isolierte Singularitäten und Laurentreihen 35 4 Isolierte Singularitäten und Laurentreihen Wir beginnen mit einer lokalen Beschreibung der Nullstellen holomorpher Funktionen. 4. Lokale Beschreibung von Nullstellen. Sei U C offen, f : U C holomorph

Mehr

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 20 Dr. Hanna Peywand Kiani Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Cauchy Integralformeln, Taylor-Reihen, Singularitäten,

Mehr

10 Logarithmus- und Potenzfunktion

10 Logarithmus- und Potenzfunktion 4 Logarithmus- und Potenzfunktion. Satz: Sei G einfach zusammenhängend, f H(G) und z G. Dann existiert genau eine Stammfunktion F von f mit F(z ) =. Für z G sei γ z ein beliebiger Integrationsweg in G,

Mehr

Lösungen zur Klausur Funktionentheorie I SS 2005

Lösungen zur Klausur Funktionentheorie I SS 2005 Universität Karlsruhe 29 September 25 Mathematisches Institut I Prof Dr M von Renteln Dr C Kaiser Aufgabe en zur Klausur Funktionentheorie I SS 25 Sei S die Möbiustransformation, die durch S(z) = i i z

Mehr

2. Klausur zur Funktionentheorie SS 2009

2. Klausur zur Funktionentheorie SS 2009 Aufgabe : Finden Sie ein Beispiel für eine meromorphe Funktion f M(C), die auf den Kreisringen A 0, (0) und A,2 (0) unterschiedliche Laurentreihenentwicklungen besitzt. Beweisen Sie, dass Ihr Beispiel

Mehr

4 Anwendungen des Cauchyschen Integralsatzes

4 Anwendungen des Cauchyschen Integralsatzes 4 Anwendungen des Cauchyschen Integralsatzes Satz 4. (Cauchysche Integralformel) Es sei f : U C komplex differenzierbar und a {z C; z z 0 r} U. Dann gilt f(a) = z z 0 =r z a dz. a z 0 9 Beweis. Aus dem

Mehr

Der Körper der elliptischen Funktionen Seminar Funktionentheorie bei Prof. Dr. Janko Latschev

Der Körper der elliptischen Funktionen Seminar Funktionentheorie bei Prof. Dr. Janko Latschev Begleittext zum Vortrag Der Körper der elliptischen Funktionen Seminar Funktionentheorie bei Prof. Dr. Janko Latschev Christian Offen 27.11.2013 Inhaltsverzeichnis 1 Die Struktur der Menge der elliptischen

Mehr

28: Holomorphe Funktionen, Potenzreihen und Laurentreihen

28: Holomorphe Funktionen, Potenzreihen und Laurentreihen Einleitung 28: Holomorphe Funktionen, Potenzreihen und Laurentreihen 28.1 Einleitung Wir wissen bereits, dass eine holomorphe Funktion f : M C unendlich oft komplex differenzierbar ist. Für jedes z 0 M

Mehr

86 Klassifizierung der isolierten Singularitäten holomorpher

86 Klassifizierung der isolierten Singularitäten holomorpher 86 Klassifizierung der isolierten Singularitäten holomorpher Funktionen 86. Isolierte Singulariäten holomorpher Funktionen 86.3 Klassifizierung der isolirerten Singularitäten 86.5 Charakterisierung hebbarer

Mehr

Kapitel 4. Der globale Cauchysche Integralsatz

Kapitel 4. Der globale Cauchysche Integralsatz Kapitel 4 Der globale Cauchysche Integralsatz Die Ergebnisse, die wir im vorigen Kapitel gewonnen haben, leben in der Regel davon, dass über einfach geschlossene Kurven integriert wird. Wie sich die Aussagen

Mehr

Einige Standard-Aufgabentypen der Funktionentheorie I

Einige Standard-Aufgabentypen der Funktionentheorie I Matthias Stemmler SS 6 stemmler@mathematik.uni-marburg.de Einige Standard-Aufgabentypen der Funktionentheorie I I. Untersuchung von Funktionen auf komplexe Differenzierbarkeit/Holomorphie gegeben: gesucht:

Mehr

5. Die Liouville'schen Sätze

5. Die Liouville'schen Sätze 5. Die Liouville'schen Sätze In diesem Vortrag wird eine Unterklasse der meromorphen Funktionen betrachtet, die Menge der elliptischen Funktionen. Diese werden zunächst formal eingeführt, es folgen die

Mehr

Höhere Mathematik Vorlesung 9

Höhere Mathematik Vorlesung 9 Höhere Mathematik Vorlesung 9 Mai 2017 ii Be yourself, everyone else is already taken. Osar Wilde 9 Integralrehnung im Komplexen Das Riemannshe Integral einer komplexwertigen Funktion: Sei f : [a, b] C

Mehr

Mathematik für Ingenieure III Kurs-Nr WS 2007/08

Mathematik für Ingenieure III Kurs-Nr WS 2007/08 Mathematik für Ingenieure III Kurs-Nr. 93 WS 7/8 Kurseinheit 7: Lösungsvorschläge zu den Einsendeaufgaben Aufgabe : Es sollen die Singularitäten deren Art der folgenden Funktionen bestimmt werden. a fz

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 24 Prof. Dr. R. Lauterbach Dr. K. Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Lösungen zu Blatt 6 Aufgabe 2: Für die folgenden

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

Lösungen zum 11. Übungsblatt Funktionentheorie I

Lösungen zum 11. Übungsblatt Funktionentheorie I Universität Karlsruhe SS 2005 Mathematisches Institut I Prof. Dr. M. von Renteln Dr. C. Kaiser Lösungen zum 11. Übungsblatt Funktionentheorie I Aufgabe 11.1 a) Nach dem Maximumprinzip nimmt die Funktion

Mehr

Komplexe Analysis D-ITET. Serie 8

Komplexe Analysis D-ITET. Serie 8 Dr. T. Bühler M. Wellershoff Frühlingssemester 206 Komplexe Analysis D-ITET Serie 8 ETH Zürich D-MATH Aufgabe 8. Umlaufzahlen Berechnen - Teil I Das Ziel der Aufgabe ist es die Umlaufzahlen in vier Zyklen

Mehr

Polynome und rationale Funktionen

Polynome und rationale Funktionen Polynome und rationale Funktionen Definition. 1) Eine Funktion P : R R (bzw. P : C C) der Form P (x) = n a k x k = a 0 + a 1 x + a 2 x 2 +... + a n x n mit a k R (bzw. C) und a n 0 heißt Polynom vom Grad

Mehr

Übungen zur Funktionentheorie

Übungen zur Funktionentheorie Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani M. Schwingenheuer A. Stadelmaier Übungen zur Funktionentheorie Lösungen zu Übungsblatt. Sei fz) = z ) z 2) 2 eine

Mehr

Laurentreihen und Singularitäten

Laurentreihen und Singularitäten Laurentreihen und Singularitäten Wichtig: Zu jeder Laurentreihe das Konvergenzgebiet angeben! Wichtig: Ob man eine Laurentreihe verwenden kann um damit Singularitäten klassifizieren und Residuen berechnen

Mehr

Funktionentheorie. Lösungsvorschläge zum 6. Übungsblatt. f (w) w z dw.

Funktionentheorie. Lösungsvorschläge zum 6. Übungsblatt. f (w) w z dw. Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz SS 04 3.06.04 Funktionentheorie Lösungsvorschläge zum 6. Übungsblatt Aufgabe (K) a) Zeigen

Mehr

Potenzreihenentwicklung im Reellen und Komplexen

Potenzreihenentwicklung im Reellen und Komplexen Potenzreihenentwicklung im Reellen und Komplexen Christoph Lassnig 26. Januar 20 Zusammenfassung Dieses Dokument bietet einen kleinen Überblick über Potenzreihen, sowie auf ihnen aufbauenden Sätzen und

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Typ der Residuum Funktion Test Singularität bei a bei a. ; a = i, Res(f; i) = lim z 2 +1 (z i)(z+i) z i 2i

Typ der Residuum Funktion Test Singularität bei a bei a. ; a = i, Res(f; i) = lim z 2 +1 (z i)(z+i) z i 2i A: Berechnung von Residuen (f Singularität in a, meist f = g, g, h analytisch in a) h Typ der Residuum Funktion Test Singularität bei a bei a. f(z) lim(z a)f(z) = hebbar z a f(z) = sin z, a = ; lim zf(z)

Mehr

Der Fundamentalsatz der Algebra. 1 Motivation

Der Fundamentalsatz der Algebra. 1 Motivation Vortrag im Rahmen des Proseminars zur Analysis, 24. April 2006 Micha Bittner Motivation Den ersten des Fundamentalsatzes der Algebra erbrachte C.F. Gauss im Jahr 799 im Rahmen seiner Dissertation. Heute

Mehr

Lösungen zum 9. Übungsblatt Funktionentheorie I

Lösungen zum 9. Übungsblatt Funktionentheorie I Universität Karlsruhe SS 25 Mathematisches Institut I Prof Dr M von nteln Dr C Kaiser Lösungen zum 9 Übungsblatt Funktionentheorie I Aufgabe 9 K a) Wir verwenden bei diesem Integranden die Partialbruchzerlegung

Mehr

Abbildungen zwischen Riemannschen Flächen und ihre Eigenschaften Seminar Funktionentheorie bei Prof. Dr. Janko Latschev

Abbildungen zwischen Riemannschen Flächen und ihre Eigenschaften Seminar Funktionentheorie bei Prof. Dr. Janko Latschev Abbildungen zwischen Riemannschen Flächen und ihre Eigenschaften Seminar Funktionentheorie bei Prof. Dr. Janko Latschev Tobias Vienenkötter 15.01.2014 1 Inhaltsverzeichnis 1 Funktionen auf Riemannschen

Mehr

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 81 Blatt 12

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 81 Blatt 12 Höhere Mathematik III WS 5/6 Lösungshinweis Aufgabe G 8 Blatt Rechenweg : Für das komplexe Wegintegral über : t z(t, t [a, b] gilt f(z dz = b a f ( z(t z (t dt. Rechenweg : Ist f stetig differenzierbar

Mehr

Musterlösungen zur Funktionentheorie II-Klausur vom. März

Musterlösungen zur Funktionentheorie II-Klausur vom. März K I T I A G D. U L D. F N. M Musterlösungen zur Funtionentheorie II-Klausur vom. März a) Formulieren Sie den Cauchyschen Integralsatz ür nullhomologe Wege sowie seine Umehrung. b) Seien U,V offen, ϕ :

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

4 Funktionen mit isolierten Singularitäten

4 Funktionen mit isolierten Singularitäten 4 Funktionen mit isolierten Singularitäten Funktionen wie z +z 2, z tanz oder z e /z sind mit Ausnahme einzelner Punkte in C holomorph. In diesem Abschnitt untersuchen wir solche Funktionen in der Nähe

Mehr

6 Komplexe Integration

6 Komplexe Integration 6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise

Mehr

Laurent-Reihen und isolierte Singularitäten

Laurent-Reihen und isolierte Singularitäten Laurent-Reihen und isolierte Singularitäten Seminar Analysis III (SoSe 203) Pascal Niehus - Vortrag vom 27.05.203 - Kontaktdaten: Name: Studiengang: Fächer: E-Mail: Pascal Niehus BfP Mathematik, Physik

Mehr

Musterlösung zu Übungsblatt 11

Musterlösung zu Übungsblatt 11 Prof. R. Pandharipande J. Schmitt, C. Schießl Funktionentheorie 2. Dezember 16 HS 2016 Musterlösung zu Übungsblatt 11 Aufgabe 1. Sei U C offen und a U. Seien f, g : U {a} folgende Formeln zur Berechnung

Mehr

3 Windungszahlen und Cauchysche Integralformeln

3 Windungszahlen und Cauchysche Integralformeln 3 3 Windungszahlen und Cauchysche Integralformeln 3. Definition: Sei geschlossener Integrationsweg oder Zyklus mit z 0 C \ Sp. Dann heißt n(, z 0 ) := dz z z 0 Windungszahl (oder: Index, Umlaufszahl) von

Mehr

52 Andreas Gathmann. =: f + (z)

52 Andreas Gathmann. =: f + (z) 52 Andreas Gathmann 9. Laurent-Reihen In den letten beiden Kapiteln haben wir gesehen, dass sich holomorphe Funktionen lokal um jeden Punkt 0 in eine Potenreihe a n( 0 n entwickeln lassen, und daraus viele

Mehr

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und Funktionentheorie, Woche 6 Analytische Funktionen 6. Holomorphe Funktionen und Potenzreihen Definition 6. Eine Funktion f : U C C nennt man analytisch in z 0 U, wenn es r > 0 gibt mit B r (z 0 ) U derart,

Mehr

Mathematik III für Physiker. Übungsblatt 15 - Musterlösung

Mathematik III für Physiker. Übungsblatt 15 - Musterlösung Aufgabe 5.. a) Mathematik III für Physiker Wintersemester /3 Übungsblatt 5 - Musterlösung sin n n n j j+ j +)! )j 3 3! + 5 5!... ) n 3! +... n 3 5! n 5 Die Funktion hat einen Pol der Ordnung n. Der Hauptteil

Mehr

Funktionentheorie I. M. Griesemer

Funktionentheorie I. M. Griesemer Funktionentheorie I M. Griesemer Übersicht der wichtigsten Definitionen und Sätze der Vorlesung Funktionentheorie I, SS 2001, Fachbereich Mathematik, Johannes Gutenberg - Universität Mainz. Inhalt der

Mehr

Vertiefung der Funktionentheorie

Vertiefung der Funktionentheorie Vertiefung der Funktionentheorie Wintersemester 2009/2010 Universität Bayreuth Michael Stoll Inhaltsverzeichnis 0. Wiederholung 2 1. Der Residuensatz 4 2. Anwendungen des Residuensatzes 7 3. Das Null-

Mehr

TU Dortmund. Residuensatz und Anwendungen

TU Dortmund. Residuensatz und Anwendungen TU Dortmund Fakultät für Mathematik Residuensatz und Anwendungen Timo Putz Matrikelnummer: 127042 Mai 2013 Inhaltsverzeichnis 1 Einleitung 1 1.1 Definition der Laurent-Reihe.......................... 1

Mehr

Doppel-periodische Funktionen und die Weierstraßsche -Funktion. 1 Doppelt-periodische Funktionen

Doppel-periodische Funktionen und die Weierstraßsche -Funktion. 1 Doppelt-periodische Funktionen Doppel-periodische Funktionen und die Weierstraßsche -Funktion Vortrag zum Seminar zur Funktionentheorie, 30.03.2009 Stefanie Kessler Die komplexen Zahlen als Erweiterung der reellen Zahlen ermöglichen

Mehr

Funktionentheorie. Karlsruher Institut für Technologie Institut für Analysis

Funktionentheorie. Karlsruher Institut für Technologie Institut für Analysis Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz SS 24 2.5.24 Funktionentheorie Lösungsvorschläge zum 3. Übungsblatt Aufgabe (K) a) Beweisen

Mehr

15 Integration (gebrochen) rationaler Funktionen

15 Integration (gebrochen) rationaler Funktionen 5 Integration (gebrochen) rationaler Funktionen Wir werden im folgenden sehen, daß sich die Integration gebrochen rationaler Funktionen auf die folgenden drei einfachen Fälle zurückführen läßt (für komplexe

Mehr

4.6. Rationale Funktionen

4.6. Rationale Funktionen Rationale Funktionen Eine Funktion der Form f() = z() n().. Rationale Funktionen heißt rationale Funktion, wenn z() und n() zwei ganzrationale Funktionen sind. Der maimale Definitionsbereich ist R\{: n()

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Laurentreihe und Residuensatz

Ferienkurs Analysis 3 für Physiker. Übung: Laurentreihe und Residuensatz Ferienkurs Analysis 3 für Physiker Übung: Laurentreihe und Residuensat Autor: Benjamin Rüth, Korbinian Singhammer Stand: 3. Mär 05 Aufgabe Laurentreihe Entwickeln Sie die Funktion + 4 3 3 + 3 in Laurentreihen.

Mehr

3.4 Analytische Fortsetzung

3.4 Analytische Fortsetzung 3.4 Analytische Fortsetzung 3.4. Analytische Fortsetzung 49 Es kann vorkommen, dass eine holomorphe Funktion f, definiert durch eine Potenzreihe um den Punkt z 0 mit Konvergenzradius R, über den Rand der

Mehr

1 Die vier Sätze von LIOUVILLE

1 Die vier Sätze von LIOUVILLE Vortrag zum Seminar Elliptische Funktionen und elliptische Kurven, 3.06.005 Marcel Carduck Es sei stets Ω ein Gitter in C und (ω 1, ω ) eine Basis von Ω. Weiter bezeichne P := (u; ω 1, ω ) := {u + λ 1

Mehr

Analytische Zahlentheorie

Analytische Zahlentheorie 4. April 005. Übungsblatt Aufgabe (4 Punkte Sei k N. Beweisen Sie, dass f : N C mit f(n := n k streng multiplikativ ist. Sei τ die Funktion, die der natürlichen Zahl n die Anzahl der Teiler von n zuordnet

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 7.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc. Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

Funktionen oder Abbildungen sind wir schon mehrere Male begegnet. Es wird Zeit mal genau fest zu legen, was gemeint ist.

Funktionen oder Abbildungen sind wir schon mehrere Male begegnet. Es wird Zeit mal genau fest zu legen, was gemeint ist. Analysis, Woche 5 Funktionen I 5. Definition Funktionen oder Abbildungen sind wir schon mehrere Male begegnet. Es wird Zeit mal genau fest zu legen, was gemeint ist. Definition 5. Eine Funktion f : A B

Mehr

Cauchys Integralsatz und Cauchys Integralformel

Cauchys Integralsatz und Cauchys Integralformel Kapitel 23 Cauchys Integralsatz und Cauchys Integralformel 23. Der Cauchysche Integralsatz (einfach zusammenhängend; einfache geschlossene Kurven; Fresnelsche Integrale) Wird die Voraussetzung f habe eine

Mehr

6 Julia-Mengen. 114 Kapitel 2 Konforme Abbildungen

6 Julia-Mengen. 114 Kapitel 2 Konforme Abbildungen 114 Kapitel 2 Konforme Abbildungen 6 Julia-Mengen Sei G C ein Gebiet. Eine holomorphe Abbildung f : G G kann eine holomorphe oder eine meromorphe Funktion auf G sein. Definition. Zwei holomorphe Abbildungen

Mehr

Examenskurs Analysis Probeklausur I

Examenskurs Analysis Probeklausur I Georg Tamme Sommersemester 14 Examenskurs Analysis Probeklausur I 5.6.14 F1II1. Sei f : C C eine ganze Funktion. Entscheiden Sie, ob die folgenden Behauptungen wahr sind. Begründen Sie Ihre Antwort jeweils

Mehr

Kapitel 6 Grenzwerte von Funktionen und Stetigkeit

Kapitel 6 Grenzwerte von Funktionen und Stetigkeit Kapitel 6 Grenzwerte von Funktionen und Stetigkeit 225 Relle Funktionen Im Folgenden betrachten wir reelle Funktionen f : D R, mit D R. Wir suchen eine formale Definition für den folgenden Sachverhalt.

Mehr

Beispiel 1: Wegverformung. Berechne: , mit. Lösung: Kurzfassung: Beispiel 1: Wegverformung, Fortsetzung. Alternative Konturverformung: Kurzfassung:

Beispiel 1: Wegverformung. Berechne: , mit. Lösung: Kurzfassung: Beispiel 1: Wegverformung, Fortsetzung. Alternative Konturverformung: Kurzfassung: Beispiel 1: Wegverformung Berechne: Lösung: [Man sagt: Folglich ist, mit existiert für alle hat eine "Singularität" oder "Pol".] analytisch auf Deswegen kann Wegunabhängigkeit (i.2) genutzt werden, um

Mehr

γ j γ j (f) = f(z) dz.

γ j γ j (f) = f(z) dz. 27 6. Globale Versionen des Cauchyschen Integralsatzes. Residuensatz 6.. Ketten und Zyklen. Es seien γ,...,γ n Wege in der Ebene und K =Bildγ... Bild γ n. Jedes γ j liefert eine lineare Abbildung γ j :

Mehr

Klausur: Höhere Mathematik IV

Klausur: Höhere Mathematik IV Prof. Dr. Josef Bemelmans Templergraben 55 52062 Aachen Raum 00 (Hauptgebäude) Klausur: Höhere Mathematik IV Tel.: +49 24 80 94889 Sekr.: +49 24 80 9492 Fax: +49 24 80 92323 bemelmans@instmath.rwth-aachen.de

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 1. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 014 Höhere Mathematik II für die Fachrichtung Informatik Lösungsvorschläge zum 1. Übungsblatt Aufgabe

Mehr

1 Das Additionstheorem und Folgerungen

1 Das Additionstheorem und Folgerungen Das Additionstheorem der -Funktion und elliptische Kurven Vortrag zum Seminar zur Funktionentheorie, 05.11.2007 Cornelia Wirtz Ziel dieses Vortrages ist es, das Additionstheorem der Weierstraß schen -Funktion

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Musterlösung zu Blatt 0 Aufgabe. Berechnen Sie

Mehr

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren.

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren. Musterlösung noch: Funktionentheorie Aufgabe 2.5 (Holomorphe Stammfunktion. Sei f : C \{±i} C gegeben durch f( + 2. (a Zeigen Sie, dass f ( + i eine Stammfunktion auf K 2 (i besitt. Hinweis: Zeigen Sie

Mehr

Formelsammlung Analysis III - Funktionentheorie für Physiker und Mathematiker

Formelsammlung Analysis III - Funktionentheorie für Physiker und Mathematiker Formelsammlung Analysis III - Funktionentheorie für Physiker und Mathematiker Stand: 2.07.2006 - Version:.0. Erhältlich unter http://privat.macrolab.de Diese Formelsammlung

Mehr

Mathematik I. k=0 c k(x a) k bilden die Teilpolynome n k=0 c k(x a) k polynomiale Approximationen für die Funktion f

Mathematik I. k=0 c k(x a) k bilden die Teilpolynome n k=0 c k(x a) k polynomiale Approximationen für die Funktion f Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 30 Zu einer konvergenten Potenzreihe f(x) = c k(x a) k bilden die Teilpolynome n c k(x a) k polynomiale Approximationen für die Funktion

Mehr

Kapitel I. Holomorphe Funktionen. 1 Potenzreihen

Kapitel I. Holomorphe Funktionen. 1 Potenzreihen Kapitel I Holomorphe Funktionen Potenzreihen Definition. Sei f a (z) = c n (z a) n eine Potenzreihe mit Entwicklungspunkt a. Die Zahl R := sup{r 0 z C, so daß f a (z) konvergent und r = z a ist.} heißt

Mehr

Wachstumsverhalten ganzer Funktionen. Inhaltsverzeichnis

Wachstumsverhalten ganzer Funktionen. Inhaltsverzeichnis Wachstumsverhalten ganzer Funktionen Vortrag zum Seminar zur Funktionentheorie, 11.6.212 Simon Langer Inhaltsverzeichnis 1 Einleitung 2 2 Wachstumsverhalten ganzer Funktionen 3 3 Ganze Funktionen endlicher

Mehr

Gebrochen-rationale Funktionen

Gebrochen-rationale Funktionen Definition Eine gebrochen-rationale Funktion ist eine Funktion, bei der sich im Zähler und Nenner eine ganzrationale Funktion (Polynom) befindet: Eigenschaften f(x) = g(x) h(x) Echt gebrochen-rationale

Mehr

2 Polynome und rationale Funktionen

2 Polynome und rationale Funktionen Gleichungen spielen auch in der Ingenieurmathematik eine große Rolle. Sie beschreiben zum Beispiel Bedingungen, unter denen Vorgänge ablaufen, Gleichgewichtszustände, Punktmengen. Gleichungen für eine

Mehr

Das Additionstheorem für die Weierstrass sche -Funktion und elliptische Integrale. Peychyn Lai

Das Additionstheorem für die Weierstrass sche -Funktion und elliptische Integrale. Peychyn Lai Das Additionstheorem für die Weierstrass sche -Funktion und elliptische Integrale Peychyn Lai 10. Oktober 2007 1 Einleitung Wir haben im letzten Vortrag die Weierstrass sche -Funktion kennengelernt, die

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 2

Technische Universität München Zentrum Mathematik. Übungsblatt 2 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 2 Hausaufgaben Aufgabe 2.1 Sei [a, b] R ein Intervall und ( ) n N [a,

Mehr

Kapitel 3. Die Stammfunktion

Kapitel 3. Die Stammfunktion Kapitel 3 Die Stammfunktion Nachdem wir im vorigen Kapitel die Grundlagen von Kurvenintegralen erarbeitet haben, befassen wir uns nun mit der konkreten Berechnung eines solchen Integrals. Besonderes Augenmerk

Mehr

8. Die Nullstellen der Zeta-Funktion

8. Die Nullstellen der Zeta-Funktion 8.. Wie vorher sei ( s ξ(s = π s/ Γ ζ(s. ξ ist meromorph in ganz C, hat Pole (erster Ordnung nur bei s = und s = und genügt der Funktionalgleichung ξ(s = ξ( s. Daraus folgt: Für Re s < hat die Zeta-Funktion

Mehr

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann AUFGABEN ZUR FUNKTIONENTHEORIE von Prof. Dr. H.-W. Burmann Bei den folgenden Aufgaben handelt es sich um Reste, die bei der Erstellung der Aufgabenblätter übriggeblieben sind. Der Schwierigkeitsgrad der

Mehr

die kanonische Faktorisierung von p. Dann besitzt q/p eine Summendarstellung

die kanonische Faktorisierung von p. Dann besitzt q/p eine Summendarstellung Partialbruchzerlegung rationaler Funktionen Satz 4 (komplexe Partialbruchzerlegung) Es sei q/p eine echt gebrochen rationale Funktion, dh deg q < deg p und es sei p(z) = c (z z 1 ) α 1 (z z k ) α k die

Mehr

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Fachbereich Mathematik Prof. Dr. H.-D. Alber Dr. N. Kraynyukova Dipl.-Ing. A. Böttcher WS / 3. Januar 3. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Gruppenübung Aufgabe

Mehr

3. Funktionen. 3.1 Grundbegriffe [Kö 4.1; Sch-St 4.3]

3. Funktionen. 3.1 Grundbegriffe [Kö 4.1; Sch-St 4.3] 13 3. Funktionen 3.1 Grundbegriffe [Kö 4.1; Sch-St 4.3] Definition 1. A und B seien Mengen. a Eine Abbildung (oder Funktion f von A nach B (Schreibweise: f: A B ist eine Vorschrift, die jedem x A genau

Mehr

6.1 Komplexe Funktionen

6.1 Komplexe Funktionen 118 6 Funktionentheorie 6.1 Komplexe Funktionen Wir kennen die komplexen Zahlen als Erweiterung des Körpers der reellen Zahlen. Man postuliert die Existenz einer imaginären Größe i mit der Eigenschaft

Mehr

Es gibt eine Heuristik, mit der sich die Primzahldichte

Es gibt eine Heuristik, mit der sich die Primzahldichte Es gibt eine Heuristik, mit der sich die Primzahldichte 1 ln(x) für großes x N plausibel machen lässt. Die Idee besteht darin, das Änderungsverhalten der Primzahldichte bei x zu untersuchen. Den Ansatz

Mehr

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,

Mehr

Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6

Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6 Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani A. Stadelmaier M. Schwingenheuer Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6. Gegeben sei folgende konforme

Mehr

Partialbruchzerlegung

Partialbruchzerlegung Partialbruchzerlegung Eine rationale Funktion r mit n verschiedenen Polstellen z j der Ordnung m j, r = p q, lässt sich in der Form r(z) = f (z) + n j=1 q(z) = c(z z 1) m1 (z z n ) mn r j (z), r j (z)

Mehr

falls falls Satz v. Cauchy: falls analytisch ist auf einfach zusammenhängendem Gebiet, gilt: Geschlossener Weg liefert 0: Wegunabhängigkeit:, mit

falls falls Satz v. Cauchy: falls analytisch ist auf einfach zusammenhängendem Gebiet, gilt: Geschlossener Weg liefert 0: Wegunabhängigkeit:, mit Zusammenfassung: Analytische Funktionen Def: Komplexe Funktion ist analytisch in, falls überall in existiert. Cauchy-Riemann- Differentialgleichungen: Def: Komplexes Wegintegral: Substitution: Wichtiges

Mehr

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter.

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter. 7 Folgen 30 7 Folgen Wir betrachten nun (unendliche) Folgen von Zahlen a 0, a, a 2, a 3,.... Dabei stehen die drei Pünktchen für unendlich oft so weiter. Bezeichnung Wir bezeichnen mit N die Menge der

Mehr

Das Newton Verfahren.

Das Newton Verfahren. Das Newton Verfahren. Ziel: Bestimme eine Nullstelle einer differenzierbaren Funktion f :[a, b] R. Verwende die Newton Iteration: x n+1 := x n f x n) f x n ) für f x n ) 0 mit Startwert x 0. Das Verfahren

Mehr

Überlagerung I. Überlagerung für z z 2 : komplexe Quadratwurzel. Christoph Schweigert, Garben p.1/19

Überlagerung I. Überlagerung für z z 2 : komplexe Quadratwurzel. Christoph Schweigert, Garben p.1/19 Überlagerung I Überlagerung für z z 2 : komplexe Quadratwurzel Christoph Schweigert, Garben p.1/19 Überlagerung II Überlagerung für z z 3 : komplexe dritte Wurzel Christoph Schweigert, Garben p.2/19 Überlagerung

Mehr

(Cauchysche Integralformel)

(Cauchysche Integralformel) H.J. Oberle Komplexe Funktionen SoSe 203 8. Die Cauhyshe Integralformel Satz (8.) (Cauhyshe Integralformel) Ist f : D C holomorph auf einem Gebiet D und ist : [a, b] D \ {z 0 } ein geshlossener, zum Punkt

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 18. Januar 2012 ZÜ DS ZÜ XII

Mehr