5. Aromatische Kohlenwasserstoffe

Größe: px
Ab Seite anzeigen:

Download "5. Aromatische Kohlenwasserstoffe"

Transkript

1 Inhalt Index 5. Aromatische Kohlenwasserstoffe Aufgrund der starken Aromas, das viele Benzolderivate ausströmen, nennt man sie aromatische Verbindungen. Deshalb gilt Benzol als Stammverbindung der Aromaten. Aromatische Ringe kommen in vielen biologisch wirksamen Substanzen vor. z.b.: Wir werden hier nur Benzol-Derivate betrachten, und nicht aromatische Ringe, die ein Heteroatom enthalten (Kapitel 6), z.b. N, O oder S. 5.1 Die Benennung von Benzolderivaten Der allgemeine Ausdruck für substituierte Benzolderivate lautet Arene. Ein Aren als Substituent heisst Arylgruppe, abgekürzt Ar-. Die einfachste Arylgruppe heisst Phenyl-, C 6 H 5 -, abgekürzt Ph-. Einige Trivialnamen die häufig vorkommen: Viele monosubstituierte Benzolderivate benennt man, indem man den Substituentennamen dem Wort "Benzol" voranstellt : 1 of 16 3/27/15 2:37 PM

2 Bei disubstituierten Benzolderivaten können die Substituenten drei mögliche Stellungen zueinander einnehmen: benachbarte Substituenten 1,2- (ortho), für 1,3-disubstituierte Verbindungen 1,3- (meta), für 1,4-disubstituierte Verbindungen 1,4- (para). Die Substituenten werden in alphabetischer Reihenfolge genannt. 5.2 Die Struktur von Benzol : Aromatizität Im Jahr 1825 erhielt der englische Wissenschaftler Faraday eine farblose Flüssigkeit mit der empirischen Formel CH. Diese Verbindung war mit der Theorie, nach der jeder Kohlenstoff vier Valenzen zu anderen Atomen ausbilden musste, nicht in Einklang zu bringen. Besonders die ungewöhnliche Stabilität und chemische Trägheit dieser Substanz fiel auf. Man nannte die Verbindung Benzol und stellte schliesslich die Summenformel C 6 H 6 dafür auf. Ein Problem damals war, zu verstehen, warum nie zwei unterschiedliche Isomere von einem 1,2-disubstituierten Benzolderivat beobachtet werden konnten. Als Lösung schlug Kekulé im Jahre 1865 vor, dass Benzol aus sich rasch ineinander umwandelnden Isomeren von Cyclohexatrien bestehen sollte. Heute wissen wir, dasss diese Hypothese nicht völlig richtig ist. Nach der modernen Elektronentheorie kann man Benzol durch zwei äquivalente Resonanzstrukturen des Cyclohexatriens beschreiben: Benzol ist ungewöhnlich reaktionsträge. Es geht keine Additionsreaktionen wie normale Alkene ein. Molekülorbital-Modell des Benzols Die Abbildung zeigt uns die elektronische Struktur des Benzolrings. Alle Kohlenstoffatome sind sp 2 -hybridisiert und jedes p-orbital überlappt gleichmässig mit seinen beiden Nachbarn. Die auf diese Weise delokalisierten Elektronen bilden eine π-wolke oberhalb und unterhalb der Ringebene. 2 of 16 3/27/15 2:37 PM

3 Die sechs cyclisch angeordneten, überlappenden p-orbitale bilden einen Satz von sechs Molekülarorbitalen. Das Benzolmolekül bildet ein reglmässiges Sechseck aus sechs sp 2 -hybridisierten Kohlenstoffatomen. Die Länge der aromatischen C-C-Bindung liegt zwischen der einer Einfach- und der einer Doppelbindung (1.39 A) und die Bindungswinkel zwischen den C-Atomen betragen 120 o. Valenz-Struktur-Beschreibung des Benzols Die Struktur von Benzol kann durch zwei gleichwertige Resonanzstrukturen von Cyclohexatrien wiedergegeben werden: Der wirkliche Zustand wird dann als "Zwischenzustand " oder "Resonanz-hybrid" zwischen diesen Grenzstrukturen wiedergegeben. Das Zeichen <-> bedeutet, dass nicht etwa ein dynamisches Gleichgewicht zwischen zwei verschiedenen Molekülarten existiert, sondern dass der tatsächliche Zustand zwischen den Grenzstrukturen liegt und von diesen gewissermassen "umschrieben wird". Die Beschreibung einer wirklichen Struktur durch Kombination von nicht existierender Grenzstrukturen nennt man Resonanz. 5.3 Stabilität von Benzol Um ein Mass für die relative Stabilität einer Reihe von Alkenen zu bekommen, kann man ihre Hydrierungswärmen bestimmen. Ein ähnliches Experiment können wir mit Benzol durchführen, und seine Hydrierungswärme mit der von l,3 Cyclohexadien und Cyclohexen vergleichen : 3 of 16 3/27/15 2:37 PM

4 Obwohl Benzol nur schwer hydriert wird, kann die Reaktion katalytisch durchgeführt werden, und man erhält für die Hydrierungswärme einen Wert von ΔH o -206 kj/mol. Der Unterschied zwischen den Hydrierungswärmen (und den Bildungsenthalpien ) beträgt ungefähr 124 kj/mol und wird als Resonanzenergie von Benzol bezeichnet. Andere Namen dafür sind Delokalisierungsenergie, aromatische Stabilisierug, oder einfach Aromatizität von Benzol. 5.4 Die Hückel-Regel Mit Hilfe quantentheoretischer Rechnungen lässt sich zeigen, dass ein monocyclisches konjugiertes Polyen besonders stabil ist (d.h. Aromatizität besitzt), wenn es 4n+2 π-elektronen enthält (n ist ganzzahlig), z.b.: 5.5 Elektrophile aromatische Substitution Aufgrund seiner π-elektronen besitzt das Benzol-Molekül nucleophile Eigenschaften und reagiert deshalb vorwiegend mit Elektrophilen. z.b.: 4 of 16 3/27/15 2:37 PM

5 Im Gegensatz zu den Alkenen führt ein solcher Angriff zu einer Substitution eines H-Atoms, nicht zu einer Addition. z.b. Bromierung in Gegenwart eines Katalysators: Mechanismus der elektrophilen aromatischen Substitution: Der erste Schritt ist thermodynamisch ungünstig, da die cyclische Delokalisierung und damit der aromatische Charakter dabei verloren geht. Nach diesem Schritt wird der aromatische Ring wieder regeneriert, indem das Proton von dem sp 3 -hybridisierten Kohlenstoff abgespalten wird. Dies ist energetisch günstiger als eine Reaktion mit einem Nukleophil, wodurch das Additionsprodukt entstünde : Die Änderung der potentiellen Energie während der Reaktion von Benzol mit einem Elektrophil. Die Bildung des ersten Übergangszustand ist geschwindigkeitsbestimmend. Das Proton wird verhältnismässig rasch abgespalten. Die Reaktion von Benzol mit konz. HNO 3 bei mässig erhöhter Temperatur führt zur Nitrierung des Benzolrings: 5 of 16 3/27/15 2:37 PM

6 Konz. H 2 SO 4 reagiert bei RT nicht mit Benzol, sieht man von der Protonierung ab. "Rauchende Schwefelsäure" (Oleum) greift jedoch elektrophil an, da sie SO 3 enthält. Aufgrund der stark elektronenziehenden Wirkung der drei Sauerstoffatome ist das S-Atom in SO 3 so elektrophil, dass es Benzol direkt angreift : In Friedel-Crafts-Reaktionen entstehen neue C-C Bindungen. In Gegenwart einer Lewis Säure, gewöhnlich Aluminiumchlorid, greifen Halogenalkane Benzol unter Bildung von Alkylbenzolderivaten an (Friedel-Crafts Alkylierung), Alkanoylhalogenide ergeben Alkanoylderivate (Friedel-Crafts Acylierung): Die Reaktivität des Halogenalkans nimmt in der Reihenfolge RF > RCl > RBr > RI ab. Typische Lewis-Säuren sind bei dieser Reaktion (nach abnehmender Reaktivität geordnet) AlBr 3, AlCl 3, FeCl 3, SbCl 5 und BF 3. Weitere Beispiele: Durch Friedel-Crafts-Acylierung entstehen Aryl-Alkyl-Ketone. z.b. Benzol reagiert mit Acetylchlorid in Gegenwart von AlCl 3 und bildet Acetophenon : 6 of 16 3/27/15 2:37 PM

7 Die Bildung des Acylium-Kations geschieht allgemein durch die Reaktion von Alkanoylhalogeniden (Acylhaliden) mit AlCl 3. Ähnlich reagieren Carbonsäureanhydride mit Lewis-Säuren. z.b.: 5.6 Induktive- und Resonanz-Effekte im Benzolring Ein Substituent am Benzolring übt einen elektronischen Effekt aus, indem er entweder Elektronendichte auf den Ring überträgt, oder Elektronendichte abzieht. Auf diese Weise kann ein monosubstituierter Benzolring, verglichen mit Benzol, andere chemische und physikalische Eigenschaften aufweisen, z.b. kann eine elektrophile aromatische Substitutionsreaktion viel langsamer (d.h. wird desaktiviert) oder schneller (d.h. wird aktiviert) ablaufen als mit Benzol. Das Abziehen oder Liefern von Elektronen kann durch Induktive- und durch Resonanz-Effekte zustandekommen. Induktive- und Resonanz-Effekte beeinflussen viele chemische und physikalische Eigenschaften von Aromaten, nicht nur Ihre Reaktivität bei elektrophilen Substitutionsreaktionen. Induktive- und Resonanz-Effekte Betrachten wir Beispiele von elektronenliefernden und elektronenziehenden Substituenten: Induktive Effekte sind Polarisationseffekte, die über σ-bindungen übertragen werden (siehe Kapitel 1.10). Es ist auch möglich, dass ein Substituent an einen aromatischen Ring mit p-elektronen zu den p-elektronen des Ringes in Konjugation tritt und dadurch entweder negative Ladung aus dem ungesättigten System abzieht oder negative Ladung in dieses hineindrückt. Häufig spricht man von einem mesomeren Effekt oder Resonanzeffekt, was daherrührt, dass man in diesen Fällen die 7 of 16 3/27/15 2:37 PM

8 Ladungsdichteverteilung durch Kombination verschiedener Grenzstrukturen beschreiben kann, da eine Delokalisation der π-elektronen eintritt. z.b. ein π-akzeptor Ihre Akzeptorwirkung (die Stärke des mesomeren Effektes) steigt mit der Bereitschaft des Substituenten, negative Ladung aufzunehmen. In der folgenden Reihe nimmt er darum nach rechts zu: π-akzeptorgruppen: π-donorgruppen: Da N elektronegativer ist als C, übt die -NH Gruppe 2 einen leicht elektronenziehenden Effekt aus (induktiver Effekt). Das freie Elektronenpaar des N-Atoms kann jedoch in das aromatische π-system miteingebracht werden, sodass die Ladungsdichte des Ringes erhöht wird: Dieser Resonanzeffekt überwiegt den induktiven Effekt bei weitem. Anilin ist deshalb für weitere Substitution leicht zugänglich. Das elektronegative O-Atom in Phenol wirkt ebenfalls elektronenziehend (induktiver Effekt). Aber auch hier überwiegt der Einfluss der Resonanz, sodass der Benzolkern elektronenreicher wird: 8 of 16 3/27/15 2:37 PM

9 5.7 Orientierung und relative Geschwindigkeit einer Zweitsubstitution Übt ein bereits vorhandener Substituent einen Einfluss darauf aus, an welcher Stelle im Ring ein Elektrophil angreift, und wie schnell die reaktion abläuft (im Vergelich zum Benzol)? Schauen wir zuerst Toluol an, das die induktiv aktivierende Methylgruppe trägt: Die elektrophile Nitrierung von Toluol führt hauptsächlich zu ortho und para-substitution. Die Nitrierung ist kein Spezialfall: Trifluormethylbenzol ist gegenüber dem elektrophilen Angriff desaktiviert und reagiert deshalb nur zögernd. Unter energischen Bedingungen aber erhält man Substitution, jedoch nur in meta-stellung: Für einen elektrophilen Angriff auf einem resonanz-aktivierten Benzolring ist oft nicht einmal ein Katalysator notwendig. Die Reaktion verläuft rasch und vollständig regioselektiv zu den (oft mehrfach) substituierten ortho- und para-produkten: 9 of 16 3/27/15 2:37 PM

10 Anisol reagiert ungefähr 1000x schneller als Benzol! Wenden wir uns nun Benzolderivaten zu, die durch Resonanz desaktivierende Gruppen tragen. Hierher gehört die Benzoesäure, bei der die Nitrierung 1000x langsamer verläuft als bei Benzol: Die Nitrierung führt überwiegend zum meta-produkt. Die Halogene (-F, -Cl, -Br, -I) als Substituenten bilden eine dritte Gruppe, die den Ring desaktivieren (Chlorbenzol reagiert ca. 15-fach langsamer als Benzol), jedoch hauptsächlich ortho- und para- substituierte Produkte bilden : Dirigierende Wirkung von Substituenten bei der elektrophi Ortho- und para-dirigierend Ortho- und para-dirigierend Meta-dirigierend 10 of 16 3/27/15 2:37 PM

11 aktivierend desaktivierend desaktivierend -NH 2, -NHR, -NR 2 -F, -Cl, -Br, -I -NO 2 -CF 3 -NH-COR -NR 3 +, -COOH -OH, -OR -COOR, -CO-R -R (Alkyl, Aryl) -SO 3 H, -CN 5.8 Mechanistische Erklärung Können wir Mechanismen aufstellen, die diese Selektivitäten erklären können? Dazu wollen wir die möglichen Resonanzstrukturen des Kations zeichnen, das nach dem Angriff des Elektrophils (E + ) entsteht. Dabei stellen wir fest, dass σ und π-donorsubstituenten, die in ortho oder para Stellung stehen, das Zwischenprodukt (und den dazu führenden Übergangszustand) stabilisieren: Nur durch den Angriff in ortho- und para-stellung entsteht ein Kation mit einer Resonanzstruktur, die eine positiven Ladung neben der Alkylgruppe trägt. Da diese Struktur etwas vom Charakter eines 3 o -Carbenium-Ions hat, kommt ihr mehr Bedeutung zu als anderen, die die positive Ladung an einem 2 o C-Atom tragen. Durch einen meta-angriff dagegen entsteht eine Zwischenstufe, in der keine der möglichen Resonanzstrukturen von der Stabilität eines 3 o -Carbenium-Ions profitiert. Der elektrophile Angriff auf ein C-Atom ortho- oder para- zu einer Methyl(Alkyl)-Gruppe führt deshalb zu einer Zwischenstufe, die stabiler ist als die, die durch einen meta-angriff entstehen würde. Sie entsteht daher relativ schnell über einen Übergangszustand mit relativ niedriger Energie (Vgl. Kapitel 5.5). Auch beim elektrophilen Angriff auf einen Resonanz-aktivierten Benzol-Ring kann man die beobachtete Regioselektivitäten durch Resonanzstrukturen der verschiedenen intermediären Kationen erklären, z.b.: 11 of 16 3/27/15 2:37 PM

12 Ortho- und para-substitutionen sind bevorzugt, da sie über Kationen verlaufen, für die man vier Resonanzstrukturen aufstellen kann, während bei der Zwischenstufe eines meta-angriffs nur drei zu formulieren sind. Wenn wir nun Benzolderivate betrachten, die Resonanz desaktivierende Gruppen tragen: Der Angriff auf die meta-position vermeidet hier, dass eine positive Ladung neben der elektronenziehenden Carboxygruppe entsteht. Bei ortho- und para- Angriff hingegen müssen recht energiereiche Resonanzstrukturen formuliert werden. Bei anderen desaktivierenden Substituenten ist die Situation analog. Halogenatome wie Cl und Br sind räumlich viel grösser als O- und N-Atome. Obwohl ein π-donoreffekt von -Cl noch vorhanden ist, ist der Resonanzeffekt nicht so wirksam (wie bei N- und O-Atomen), weil die p-orbitale am -Cl schlechter mit den benachbarten p-orbitalen des Benzolringes überlappen. N-, O- und Cl-Atome sind alle elektronegativ (σ-akzeptorwirkung), aber mit O- und N-Atomen ist der Resonanzeffekt (p-donor) viel stärker. Das heisst, Chlorbenzol ist weniger reaktiv, bevorzugt aber immer noch Substitutionsreaktionen in ortho- und para-positionen. 12 of 16 3/27/15 2:37 PM

13 z.b. Der Resonanzeffekt führt ebenfalls zu ortho- und para-produkten. 5.9 Elektrophiler Angriff auf disubstituierte Benzole Die Wirkungen zweier Substituenten auf die relative Geschwindigkeit und auf die Orientierung der elektrophilen Substitution des Benzolrings addieren sich, z.b.: Wenn zwei in entgegengesetzte Richtung lenkende Gruppen vorhanden sind, sie üben ihren Einfluss gewöhnlich unabhängig voneinander aus. Konkurrieren die Substituenten miteinander um den Ort der Substitution, setzt sich die stärker aktivierende (oder desaktivierende) Gruppe durch. Resonanz-Effekte sind normalerweise stärker als Induktive-Effekte. z.b.: Wenn räumlich ausgedehnte Gruppen vorhanden sind, ist eine Stellung zwischen diesen Substituenten oft aus sterischen Gründen ungünstig: z.b. In den meisten anderen Fällen ergeben sich Produktgemische Synthetische Aspekte 13 of 16 3/27/15 2:37 PM

14 Benzol fällt bei verschiedenen technischen Prozessen an, z.b. in der aromatischen Fraktion von Rohöl-Destillat. Jährlich werden weltweit etwa 35 Millionen Tonnen Benzol hergestellt. Von 1940 bis ungefähr 1960 wurde das meiste Benzol auf der Basis der Steinkohle hergestellt. Seit 1950 wird es auch aus Erdöl gecrackt. Bei der Synthese eines spezifischen Benzolderivats hängt alles davon ab, ob der erste eingeführte Substituent weitere Substituenten in die richtige Position dirigiert: Es gibt bestimmte Reaktionen, die die dirigierende Wirkung eines Substituenten umkehren können. z.b. Der Benzolring ist wegen seiner Resonanzenergie oxidationsbeständig. Aber eine Alkylseitenkette kann zu einer Carbonsäure oxidiert werden: z.b. für die Synthese von para-brombenzoesäure : Eine meta-dirigierende Nitrogruppe kann in die ortho- und para-dirigierende Aminogruppe umgewandelt werden. Nitrogruppen können zu Aminogruppen reduziert werden: Für eine Synthese von p-aminobenzoesäure (ein Bestandteil des Vitamins Tetrahydrofolsäure) : 14 of 16 3/27/15 2:37 PM

15 (Aufpassen: Friedel-Crafts Reaktionen an Nitrobenzol sind nicht möglich - -NO 2 wirkt zu stark desaktivierend) 5.11 Mehrkernige benzoide Kohlenwasserstoffe Durch Kondensation oder Annelierung mehrerer Benzolringe ergibt sich eine Verbindungsklasse, die man als mehrkernige benzoide Kohlenwasserstoffe bezeichnet. z.b. An diesen Ringen kann man, wie zu erwarten ist, elektrophile Substitutionen durchführen, die nach demselben Mechanismus wie die entsprechenden Reaktionen an Benzol und seinen Derivaten verlaufen. Die neue Hauptschwerpunkt liegt mit der regioselektivität solche Prozesse, die wir aber hier nicht betrachten werden. Viele der mehrkernigen benzoiden Kohlenwasserstoffe sind karzinogen (krebserregend). Ein besonders gut erforschtes Molekül ist Benz[a]pyren. Benz[a]pyren entsteht bei der Verbrennung organischer Materie, wie Automobiltreibstoff und Erdöl, bei der Müllverbrennung, bei Waldbränden, man findet es in Zigaretten und im Zigarrenrauch und sogar in gegrilltem Fleisch. Wodurch kommt nun die karzinogene Wirkung von Benz[a]pyren zustande? Man nimmt an, dass ein oxidierendes Enzym (eine Oxidase) aus der Leber den Kohlenwasserstoff in das C7/C8 -Epoxid überführt. Ein anderes Enzym (Epoxid- Hydratase) katalysiert die Hydratisierung des Produkts zum trans-diol (Vgl. Seite 35). Durch weitere Oxidation entsteht dann das eigentliche Karzinogen, ein neues C9/C10 -Epoxid: 15 of 16 3/27/15 2:37 PM

16 Vermutlich erfolgt das krebsauslösende Ereignis dann, wenn der Aminstickstoff des Guanins, einer der Basen im DNA-Strang, das Epoxid Nukleophil angreift : Bei dieser Reaktion wird die Struktur eines Basenpaare der DNA geändert, was zu Fehlern und Störungen bei der DNA-Replikation führt. Diese Fehler können zu einer Veränderung (Mutation) des genetischen Information führen, wodurch dann unter Umstände das Wachstum einer Linie von rasch und undifferenziert wuchernden Zellen ausgelöst wird, was typisch für Krebs ist. Graphen ist die Bezeichnung für eine Modifikation des Kohlenstoffs mit zweidimensionaler Struktur, in der jedes Kohlenstoffatom von drei weiteren umgeben ist, so dass sich ein bienenwabenförmiges Muster ausbildet (siehe Bild links). Graphen hat ungewöhnliche Eigenschaften, die es sowohl für die Grundlagenforschung als auch für Anwendungen interessant machen, und zwar vor allem in der Physik (wie auch der Nobelpreis zeigt, der 2010 vergeben wurde). Beispielsweise sind Graphen-Flächeneinkristalle innerhalb der Flächen außerordentlich steif und fest. Wegen der hohen elektrischen Leitfähigkeit von Graphen wird derzeit an der Frage geforscht, ob Graphen Silicium als Transistormaterial ablösen könnte. Inhalt Index 16 of 16 3/27/15 2:37 PM

Aromatische Kohlenwasserstoffe.

Aromatische Kohlenwasserstoffe. Aromatische Kohlenwasserstoffe. Benzol und dessen Homologe. Mechanismus der S E 2-Ar-Reaktion. Orientierung in aromatischem Kern, abhängig vom ersten Substituent. Elektrophiler Mechanismus der Substitutionsreaktionen.

Mehr

CHE 102.1: Grundlagen der Chemie - Organische Chemie

CHE 102.1: Grundlagen der Chemie - Organische Chemie C 102.1: Grundlagen der Chemie - rganische Chemie Prof Dr.. Landau und Prof. Dr. J. A. Robinson 5. Aromatische Kohlenwasserstoffe Aufgrund des starken Aromas, das viele Benzolderivate ausströmen, nennt

Mehr

Wir werden hier nur Benzol-Derivate betrachten, und nicht aromatische Ringe, die ein Heteroatom enthalten (Kapitel-6), z.b. N, O oder S.

Wir werden hier nur Benzol-Derivate betrachten, und nicht aromatische Ringe, die ein Heteroatom enthalten (Kapitel-6), z.b. N, O oder S. 5. Aromatische Kohlenwasserstoffe 36 Aufgrund der starken Aromas, das viele Benzolderivate ausströmen, nennt man sie aromatische Verbindungen. Deshalb gilt Benzol als Stammverbindung der Aromaten. Aromatische

Mehr

Die Bearbeitung erfolgt mit Textausschnitten des Buches Chemie Teil 2 (Diesterweg Verlag)

Die Bearbeitung erfolgt mit Textausschnitten des Buches Chemie Teil 2 (Diesterweg Verlag) Pharmazeutische Chemie Seite 1 Die Bearbeitung erfolgt mit Textausschnitten des Buches Chemie Teil 2 (Diesterweg Verlag) Fragen zu der sp³ Hybridisierung (S. 124-128): 1.) Notieren Sie die Elektronenverteilung

Mehr

2. Elektroneneffekte in den organischen Molekülen

2. Elektroneneffekte in den organischen Molekülen 2. Elektroneneffekte in den organischen Molekülen Induktive und mesomere Effekte Die Ladungsverteilung in einer Kohlenwasserstoffkette wird durch Substituenten (Halogen, OH, NH 2 usw.) beeinflusst. Man

Mehr

3. Aromatische Verbindungen Benzol(en)

3. Aromatische Verbindungen Benzol(en) 3. Aromatische Verbindungen Benzol(en) Benzol erweist sich merkwürdigerweise als ungewöhnlich stabil gegen viele angreifende Reagenzien. So finden die typischen Additionen an die Doppelbindungen nicht

Mehr

Organische Chemie für MST 5. Lienkamp/ Prucker/ Rühe

Organische Chemie für MST 5. Lienkamp/ Prucker/ Rühe Organische Chemie für MST 5 Lienkamp/ Prucker/ Rühe Inhalt 5 Aromaten Struktur und Bindung im Benzol, Hückel-Regel, mesomeregrenzstrukturen, ortho-, meta-, para-substitution, elektrophile Substitution

Mehr

Lösung :Aromatische Kohlenwasserstoffe Kursleiter Klaus Bentz/ Kollegiat Andreas Maier Abiturjahrgang

Lösung :Aromatische Kohlenwasserstoffe Kursleiter Klaus Bentz/ Kollegiat Andreas Maier Abiturjahrgang Lösung :Aromatische Kohlenwasserstoffe Kursleiter Klaus Bentz/ Kollegiat Andreas Maier Abiturjahrgang 2004 1985/IV/1 Zunächst wird Methan bei Licht bromiert: 4 2 3 Gemäß der FriedelraftSynthese unter Verwendung

Mehr

1.2 Vergleichen Sie die Reaktionsbedingungen für die Bromierung von A und B und begründen Sie unter Mitverwendung von Grenzformeln den Unterschied!

1.2 Vergleichen Sie die Reaktionsbedingungen für die Bromierung von A und B und begründen Sie unter Mitverwendung von Grenzformeln den Unterschied! Aufgabe II Die aromatischen Ringsysteme folgender Verbindungen sollen zu Monobromderivaten umgesetzt werden: Benzol (A), Anilin (B) und Aniliniumchlorid (C). 1.1 Erläutern Sie unter Mitverwendung von Strukturformeln

Mehr

6. Rechenübung Organik (27.01./ )

6. Rechenübung Organik (27.01./ ) 1 6. Rechenübung Organik (27.01./03.02.2009) Literatur: 2.) Mortimer : hemie Basiswissen hemie ISBN 3 13 484308 0 Paula Y. Bruice : Organische hemie ISBN 978 3 8273 7190 4 Gesättigtes Atom Atom, nur mit

Mehr

Bundesrealgymnasium Imst. Chemie Klasse 8. Aromaten und deren Reaktionen

Bundesrealgymnasium Imst. Chemie Klasse 8. Aromaten und deren Reaktionen Bundesrealgymnasium Imst Chemie 2010-11 und deren Reaktionen Dieses Skriptum dient der Unterstützung des Unterrichtes - es kann den Unterricht aber nicht ersetzen, da im Unterricht der Lehrstoff detaillierter

Mehr

4. Alkene und Alkine : Reaktionen und Darstellung

4. Alkene und Alkine : Reaktionen und Darstellung Inhalt Index 4. Alkene und Alkine : Reaktionen und Darstellung 4.1. Elektrophile Additionen an Alkene ; Regioselektivität Das Proton einer starken Säure kann sich unter Bildung eines Carbeniumions an eine

Mehr

Eliminierung nach E1 (Konkurrenzreaktion zu S N 1) OH H + - H 2 O. (aus H 3 PO 4 H 2 SO 4 ) - H + Stichpunkte zum E1-Mechanismus:

Eliminierung nach E1 (Konkurrenzreaktion zu S N 1) OH H + - H 2 O. (aus H 3 PO 4 H 2 SO 4 ) - H + Stichpunkte zum E1-Mechanismus: Eliminierung nach E1 (Konkurrenzreaktion zu S N 1) + (aus 3 P 4 2 S 4 ) - 2 - + Stichpunkte zum E1-Mechanismus: 2-Schritt-eaktion über ein Carbenium-Ion (1. Schritt ist Abspaltung der Abgangsgruppe (im

Mehr

1.4 Die elektrophile aromatische Substitution

1.4 Die elektrophile aromatische Substitution 1.4 Die elektrophile aromatische Substitution Versuch: Bromierung von Toluol mit Eisen V In einem RG werden 2ml Toluol mit 0,5 g Eisenspänen gemischt. Hierzu werden 5 Tropfen Brom gegeben B Es bildet sich

Mehr

1. Umwandlung funktioneller Gruppen Geben Sie Reagenzien an, mit denen Sie die folgenden Umwandlungen durchführen würden!

1. Umwandlung funktioneller Gruppen Geben Sie Reagenzien an, mit denen Sie die folgenden Umwandlungen durchführen würden! Übung r. 8 Mi. 25.04.2012 bzw. Fr. 7.05.2 1. Umwandlung funktioneller Gruppen Geben Sie Reagenzien an, mit denen Sie die folgenden Umwandlungen durchführen würden! 2 CH 3 H a) b) I H c) d) C F e) f) H

Mehr

4. Alkene und Alkine : Reaktionen und Darstellung

4. Alkene und Alkine : Reaktionen und Darstellung Dienstag, 22. Oktober 2002 Allgemeine Chemie B II Page: 1 4. Alkene und Alkine : Reaktionen und Darstellung 4.1. Elektrophile Additionen an Alkene ; Regioselektivität Das Proton einer starken Säure kann

Mehr

Reaktionstypen der Aromate

Reaktionstypen der Aromate Radikalische Reaktionspartner sind Atome bzw. Atomgruppen mit einem ungepaarten Elektron, wie z. B. das Chlorradikal Cl oder das Ethylradikal C 3 C 2. Radikale sind in der Regel sehr unbeständig, kurzlebig

Mehr

Lösungen 3. Übungsblatt SS 2002

Lösungen 3. Übungsblatt SS 2002 Lösungen 3. Übungsblatt SS 2002 1. Aufgabe: omenklatur und Stereochemie a) (E)-7-(S)-om-4-nonen-2-on b) H 3- Methoxy-4-methyl-benzaldehyd 2. Aufgabe: Alkene a) A B C D E Stabilitätsbeeinflussende Faktoren

Mehr

(Anmerkung: Es sind weitere möglich. Spektren zeigen Diradikal.)

(Anmerkung: Es sind weitere möglich. Spektren zeigen Diradikal.) eispielaufgaben IChO 2. Runde 2017 Aromaten, Lösungen Aromaten eispiel 1: a) b) (Zeichnungen hier und unten teilweise ohne Wasserstoff-Atome) c) Das Anion ist planar und hat ein cyclisch konjugiertes π-elektronensystem

Mehr

Übungen zur VL Chemie für Biologen und Humanbiologen Lösung Übung 9

Übungen zur VL Chemie für Biologen und Humanbiologen Lösung Übung 9 Übungen zur VL Chemie für Biologen und Humanbiologen 13.01.2012 Lösung Übung 9 1. Geben Sie jeweils zwei Beispiele für Konformations- und Konstitutionsisomere, d.h. insgesamt vier Paare von Molekülen.

Mehr

Aromatische Kohlenwasserstoffe

Aromatische Kohlenwasserstoffe Benzol: 6 6 (Faraday 1825) Aromatische Kohlenwasserstoffe OI_folie201 Vorgeschlagene Konstitutionen von Benzol 1,3,5-yclohexatrien-Struktur 1858 Kekulé Erklärt nicht, warum es nur drei regioisomere disubstituierte

Mehr

Beispiele. Polysubstituierte Benzole. Chapter 16. Organic Chemistry. Reaktionen of Substituierter Benzole. Bezeichnung durch Numerierung oder Präfix

Beispiele. Polysubstituierte Benzole. Chapter 16. Organic Chemistry. Reaktionen of Substituierter Benzole. Bezeichnung durch Numerierung oder Präfix Organic Chemistry 4 th Edition Paula Yurkanis Bruice Beispiele Chapter 16 Reaktionen of Substituierter Benzole Irene Lee Case Western Reserve University Cleveland, OH 2004, Prentice Hall Bezeichnung durch

Mehr

Übungen zur VL Chemie für Biologen und Humanbiologen

Übungen zur VL Chemie für Biologen und Humanbiologen Übungen zur VL Chemie für Biologen und Humanbiologen 28.01.2011 1. Zeichnen Sie die Valenzstrichformeln folgender Verbindungen und benutzen Sie im Falle unbestimmter Alkylreste ein R: a) ein tertiärer

Mehr

Übungen zu den Kapiteln Ungesättigte und aromatische Kohlenwasserstoffe. 1. Wie lauten die allgemeinen Formeln für ungesättigte Kohlenwasserstoffe mit

Übungen zu den Kapiteln Ungesättigte und aromatische Kohlenwasserstoffe. 1. Wie lauten die allgemeinen Formeln für ungesättigte Kohlenwasserstoffe mit O II zu den Kapiteln Ungesättigte und aromatische Kohlenwasserstoffe 1. Wie lauten die allgemeinen Formeln für ungesättigte Kohlenwasserstoffe mit a) 2 Dreifachbindungen n 2n-6 b) 3 Dreifachbindungen n

Mehr

Chemie für Biologen, a) Was ist Hybridisierung? Und aus welchen Orbitalen bestehen jeweils sp-, sp 2 - und sp 3 - Hybride?

Chemie für Biologen, a) Was ist Hybridisierung? Und aus welchen Orbitalen bestehen jeweils sp-, sp 2 - und sp 3 - Hybride? Chemie für Biologen, 2017 Übung 9 Organische Verbindungen (Thema 10.1 10.3) Aufgabe 1: a) Was ist Hybridisierung? Und aus welchen Orbitalen bestehen jeweils sp-, sp 2 - und sp 3 - Hybride? Hybridisierung,

Mehr

13. Amine und ihre Derivate

13. Amine und ihre Derivate Inhalt Index 13. Amine und ihre Derivate Amine sind Derivate des Ammoniaks, bei dem ein bis drei Wasserstoffatome durch Alkyloder Arylgruppen ersetzt wurden. Entsprechend gibt es primäre Amine, sekundäre

Mehr

Die elektrophile Addition

Die elektrophile Addition Die elektrophile Addition Roland Heynkes 3.10.2005, Aachen Die elektrophile Addition als typische Reaktion der Doppelbindung in Alkenen bietet einen Einstieg in die Welt der organisch-chemischen Reaktionsmechanismen.

Mehr

Übung zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übung Nr. 4, 09./

Übung zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übung Nr. 4, 09./ Übung zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übung Nr. 4, 09./10.05.11 Nucleophile Substitution 1. Beschreiben Sie den Reaktionsmechanismus von a) S N 1 X = beliebige Abgangsgruppe

Mehr

a) Schlagen Sie eine Synthese für den folgenden Aromaten vor, ausgehend von den gezeigten Edukten!

a) Schlagen Sie eine Synthese für den folgenden Aromaten vor, ausgehend von den gezeigten Edukten! Übung Nr. 9 Mi. 02.05.2012 bzw. Fr. 04.05.2012 1. Aromatensynthese a) Schlagen Sie eine Synthese für den folgenden Aromaten vor, ausgehend von den gezeigten Edukten! b) Was passiert bei der Umsetzung von

Mehr

Inhaltsverzeichnis zu Kapitel 6. Aromaten

Inhaltsverzeichnis zu Kapitel 6. Aromaten Inhaltsverzeichnis zu Kapitel 6. Aromaten 6. Aromaten 6.1 Aromatizität 73 6.2 omenklatur 75 6.3 Darstellung 76 6.4 lektrophile Substitution am Aromaten 76 6.5 Beispiele für S -Reaktionen (was ist?) 77

Mehr

KW Alkene. Nomenklatur. Darstellung. Reaktionen. Elektrophile Additionen. Prof. Ivo C. Ivanov 1

KW Alkene. Nomenklatur. Darstellung. Reaktionen. Elektrophile Additionen. Prof. Ivo C. Ivanov 1 KW Alkene Nomenklatur. Darstellung. Reaktionen. Elektrophile Additionen. Prof. Ivo C. Ivanov 1 Alkene Alkene sind Kohlenwasserstoffe mit einer C=C-Bindung. Sie enthalten zwei -Atome weniger als die entsprechenden

Mehr

1. a) Geben sie den Reaktionsmechanismus für die Nitrierung und die Sulfonierung von Benzol an. Beginnen sie mit der Erzeugung des Elektrophils.

1. a) Geben sie den Reaktionsmechanismus für die Nitrierung und die Sulfonierung von Benzol an. Beginnen sie mit der Erzeugung des Elektrophils. Übungsblatt 05 - C I - SoSe 2014 (Prof. Bunz) 1. a) Geben sie den Reaktionsmechanismus für die itrierung und die Sulfonierung von Benzol an. Beginnen sie mit der rzeugung des lektrophils. I) rzeugung lektrophil:

Mehr

Chemie für Biologen, 2017

Chemie für Biologen, 2017 Chemie für Biologen, 2017 Übung 11 Organisch chemische Reaktionen (Thema 12.1 12.6) Aufgabe 1: a) Erklären Sie folgende Begriffe: i) Übergangszustand Zustand der höchsten Energie in einer Reaktion, kann

Mehr

Inhaltsverzeichnis. Teil I Volle Kraft voraus: Die Chemie des Kohlenstoffs 23. Einführung 17. Kapitel 1 Die wundervolle Welt der organischen Chemie 25

Inhaltsverzeichnis. Teil I Volle Kraft voraus: Die Chemie des Kohlenstoffs 23. Einführung 17. Kapitel 1 Die wundervolle Welt der organischen Chemie 25 Inhaltsverzeichnis Inhaltsverzeichnis Über den Autor 7 Einführung 17 Über dieses Buch 18 Konventionen in diesem Buch 19 Törichte Annahmen über den Leser 19 Wie dieses Buch aufgebaut ist 20 Teil I: Es war

Mehr

Reaktionstypen der Aliphate

Reaktionstypen der Aliphate Einleitung Klasse 8 Reine Kohlenstoffketten, wie Alkane, Alkene und Alkine werden als Aliphate bezeichnet. Bei jeder chemischen Reaktion werden bestehende Verbindungen gebrochen und neue Bindungen erstellt.

Mehr

im Molekül eine Dreifachbindung (eine σ-bindung,

im Molekül eine Dreifachbindung (eine σ-bindung, 1 14.03.2006 0.1 Grundwissen Alkane Gesättigte Kohlenwasserstoffe, die keine Mehrfachbindungen, sondern nur Einfachbindungen (σ-bindungen) zwischen den Kohlenstoffatomen im Molekül aufweisen. Die allgemeine

Mehr

3. Organische Reaktionen - Einordung nach Mechanismen. Alkene : Kohlenwasserstoffe mit Doppelbindungen.

3. Organische Reaktionen - Einordung nach Mechanismen. Alkene : Kohlenwasserstoffe mit Doppelbindungen. Inhalt Index 3. Organische Reaktionen - Einordung nach Mechanismen. Alkene : Kohlenwasserstoffe mit Doppelbindungen. 3.1 Die Nomenklatur der Alkene Eine C=C Doppelbindung ist die funktionelle Gruppe, die

Mehr

Seminar zum Organisch-Chemischen Praktikum für Biologen Sommersemester 2016

Seminar zum Organisch-Chemischen Praktikum für Biologen Sommersemester 2016 Seminar zum rganisch-chemischen Praktikum für Biologen Sommersemester 2016 Aromatische Substitution Sicherheitsbelehrung: egeln für das Arbeiten im Labor Prof. Dr. asmus Linser September 2016 Gruppe A

Mehr

CHE 172.1: Organische Chemie für die Life Sciences

CHE 172.1: Organische Chemie für die Life Sciences 1 E 172.1: Organische hemie für die Life Sciences Prof Dr. J. A. Robinson 4. Alkene und Alkine : Reaktionen und erstellung 4.1. Elektrophile Additionen an Alkene ; Regioselektivität Das Proton einer starken

Mehr

6. Carbonyl-Verbindungen

6. Carbonyl-Verbindungen 6. Carbonyl-Verbindungen Hierher gehören vor allem die Aldehyde und Ketone. (später: Die Carbonyl-Gruppe weisen auch die Carbonsäuren und ihre Derivate auf). Carbonylgruppe. Innerhalb der Sauerstoff-Kohlenstoff-Doppelbindung

Mehr

σ-bindung beide Kohlenstoffatome sp-hybridisiert => Bindungswinkel 180 eine lineare Struktur

σ-bindung beide Kohlenstoffatome sp-hybridisiert => Bindungswinkel 180 eine lineare Struktur VIII. Alkine Die C/C-Dreifachbindung als funktionelle Gruppe erste π-bindung σ-bindung zweite π-bindung orthogonal zur ersten beide Kohlenstoffatome sp-hybridisiert => Bindungswinkel 180 eine lineare Struktur

Mehr

Organische Chemie I Molekül der Woche - Azulen

Organische Chemie I Molekül der Woche - Azulen I Molekül der Woche - Azulen 1 I Alkine C n H 2n-2 Bindungslängen Der C-H-Abstand verringert sich in dem Maße, wie der s-anteil an der Hybridisierung des C-Atoms wächst Schwermetallacetylide Ag 2 C 2 und

Mehr

Übungen Kapitel 1 Alkane- Radikalische Substitution

Übungen Kapitel 1 Alkane- Radikalische Substitution Übungen Kapitel 1 Alkane- Radikalische Substitution 1. Ein Gemisch aus Halogen und Alkan reagiert bei Bestrahlung mit UV- Licht oder höheren Temperaturen (Bsp. die Gase Methan und Chlor erst bei 250-400

Mehr

10. Die Carbonylgruppe : Aldehyde und Ketone - Nucleophile Addition

10. Die Carbonylgruppe : Aldehyde und Ketone - Nucleophile Addition Inhalt Index 10. Die Carbonylgruppe : Aldehyde und Ketone - Nucleophile Addition Die C=O Doppelbindung der Carbonylgruppe ist die wichtigste funktionelle Gruppe der organischen Chemie. Dieses Kapitel befasst

Mehr

Zweite Klausur zum Organisch-Chemischen Grundpraktikum

Zweite Klausur zum Organisch-Chemischen Grundpraktikum Prof. Dr. Jens Christoffers 12. Juni 2006 Universität ldenburg Zweite Klausur zum rganisch-chemischen Grundpraktikum Vorname: Name: Matrikelnummer: Studiengang: Falls Sie zusätzliche Seiten verwenden,

Mehr

9 Aromaten. 1 Elemente Chemie Oberstufe NRW Ernst Klett Verlag GmbH, Stuttgart Lösungen zu den Durchblick-Seiten

9 Aromaten. 1 Elemente Chemie Oberstufe NRW Ernst Klett Verlag GmbH, Stuttgart Lösungen zu den Durchblick-Seiten Lösungen zu den Durchblick-Seiten 9.15 Durchblick Zusammenfassung und Übung Zu den Aufgaben A1 1. Aromaten sind ebene, cyclische Moleküle. 2. Das Ringmolekül weist ein durchgehendes System konjugierter

Mehr

Klausur Organische Chemie II für Biotechnoligen Prüfung 32330/32231

Klausur Organische Chemie II für Biotechnoligen Prüfung 32330/32231 Klausur Organische Chemie II für Biotechnoligen Prüfung 32330/32231 Fachhochschule Aachen, Campus Jülich Fachprüfung 32330/32231 Organische Chemie für Biotechnologen II Prüfungsdatum: 10.07.2013 Prüfungsdauer:

Mehr

KATA LOGO Organische Chemie - Zusammenhänge wichtiger funktioneller Gruppen

KATA LOGO Organische Chemie - Zusammenhänge wichtiger funktioneller Gruppen KATA LOGO Organische Chemie - Zusammenhänge wichtiger funktioneller Gruppen Ketone werden nicht weiter oxidiert Ether R1 - O - R2 R-O- ersetzt H bei einem Alkan Ether: MTBE (Antiklopfmittel) Tertiäre Alkohole

Mehr

IUPAC muss das denn sein?

IUPAC muss das denn sein? IUPAC muss das denn sein? Die Begriffe Methan, Aceton, Formaldehyd, Ameisensäure oder Zitronensäure haben alle schon einmal gehört. Diese Namen verraten nichts über den Aufbau der benannten Moleküle und

Mehr

Darstellung von Phenolphthalein und Fluorescein

Darstellung von Phenolphthalein und Fluorescein Philipps-Universität Marburg 04. Juli 2007 Fachbereich 15: Chemie rganisch-chemisches Grundpraktikum für Lehramtskandidaten Praktikumsleiter: Dr. Philipp Reiß SS 2007 Mario Gerwig Versuch: Darstellung

Mehr

Radikalische Substitution von Alkanen

Radikalische Substitution von Alkanen adikalische Substitution von Alkanen KW mit sp³-hybridisierten C-Atomen (z.b. in Alkanen) und alogene Gemisch aus alogenalkanen und alogenwasserstoff Licht C n n à C n n1 eaktionsmechanismus z.b. Chlorierung

Mehr

Arzneistoff der Woche. Alkohole. Eliminierungen. Organische Chemie Agenda. Johann Wolfgang Goethe -Universität Frankfurt am Main

Arzneistoff der Woche. Alkohole. Eliminierungen. Organische Chemie Agenda. Johann Wolfgang Goethe -Universität Frankfurt am Main Agenda Arzneistoff der Woche Alkohole Eliminierungen 1 Prof. Dr. Manfred Schubert-Zsilavecz Dabigatran - Struktur 2 Prof. Dr. Manfred Schubert-Zsilavecz Lucas-Test 3 Prof. Dr. Manfred Schubert-Zsilavecz

Mehr

Verwenden Sie keinen Bleistift für die Abgabe und heften Sie einzelne Blätter zusammen.

Verwenden Sie keinen Bleistift für die Abgabe und heften Sie einzelne Blätter zusammen. 1 Übung 13 AC/OC I, HS 2017 Name Assistent/in Verwenden Sie keinen Bleistift für die Abgabe und heften Sie einzelne Blätter zusammen. Ms: Mesyl-Gruppe (CH 3 SO 3 -), Tf: Triflyl-Gruppe (CF 3 SO 3 -), Ts:

Mehr

CHE 102.1: Grundlagen der Chemie - Organische Chemie

CHE 102.1: Grundlagen der Chemie - Organische Chemie CE 102.1: Grundlagen der Chemie - Organische Chemie Prof Dr. E. Landau und Prof. Dr. J.. Robinson 3. Organische Reaktionen - Einordung nach chanismen. lkene : Kohlenwasserstoffe mit Doppelbindungen. 3.1

Mehr

10. Die Carbonylgruppe : Aldehyde und Ketone - Nucleophile Addition

10. Die Carbonylgruppe : Aldehyde und Ketone - Nucleophile Addition Friday, February 2, 2001 Allgemeine Chemie B II Page: 1 Inhalt Index 10. Die Carbonylgruppe : Aldehyde und Ketone - Nucleophile Addition Die C=O Doppelbindung der Carbonylgruppe ist die wichtigste funktionelle

Mehr

Elektrophile Additionen von HX an die CC-Doppelbindung (Vollhardt, 3. Aufl., S , 4. Aufl., S ; Hart, S ; Buddrus, S.

Elektrophile Additionen von HX an die CC-Doppelbindung (Vollhardt, 3. Aufl., S , 4. Aufl., S ; Hart, S ; Buddrus, S. Vorlesung 19 Elektrophile Additionen von X an die -Doppelbindung (Vollhardt, 3. Aufl., S. 504-514, 4. Aufl., S. 566-577; art, S. 96-105; Buddrus, S. 149-155) Die Elektronenwolke der π-bindung verleiht

Mehr

π-bindung: 264 kj/mol (s c hw äc he r als die σ-bindung!)

π-bindung: 264 kj/mol (s c hw äc he r als die σ-bindung!) . Alkene (lefine) Funktionelle Gruppe: C=C-Doppelbindung π-bindung: 264 kj/mol (s c hw äc he r als die σ-bindung!) => C=C-Doppelbindung: 612 kj/mol sp 2 -hybridisierung σ-bindung: 348 kj/mol Wieder eine

Mehr

Fragen zum Thema funktionelle Gruppen Alkohol und Phenol

Fragen zum Thema funktionelle Gruppen Alkohol und Phenol 1. Was sind Derivate? 2. Was sind Substituenten? 3. Wann werden neu angehängte Atome oder Gruppen als Substituent bezeichnet? 4. Warum sind Substituenten so wichtig für organische Verbindungen? Alkohol

Mehr

Prof. Christoffers, Vorlesung Organische Chemie für Verfahrensingenieure, Umweltschutztechniker und Werkstoffwissenschaftler

Prof. Christoffers, Vorlesung Organische Chemie für Verfahrensingenieure, Umweltschutztechniker und Werkstoffwissenschaftler Prof. Christoffers, Vorlesung rganische Chemie für Verfahrensingenieure, Umweltschutztechniker und Werkstoffwissenschaftler 6. Aromaten 6.1 Aromatizität Benzol ist eine Verbindung mit der Summenformel

Mehr

9. Alkohole, Ether und Phenole

9. Alkohole, Ether und Phenole Friday, February 2, 2001 Allgemeine Chemie B II Page: 1 Inhalt Index 9. Alkohole, Ether und Phenole Bis jetzt haben wir fast bei jedem Kapitel eine neue funktionelle Gruppe und auch eine wichtige neue

Mehr

Substituenteneinflüsse bei der elektrophilen Zweit-Substitution

Substituenteneinflüsse bei der elektrophilen Zweit-Substitution Bei der Erst-Substitution am Benzol sind alle 6 C-Atome gleichberechtigt einem elektrophilen Angriff ausgesetzt, deswegen gibt es auch nur ein Monobrombenzol, ein Monochlorbenzol usw. Anders verhält es

Mehr

8 Carbonsäuren und Derivate

8 Carbonsäuren und Derivate 8 arbonsäuren und Derivate 8.1 Allgemeine Darstellungsverfahren xidation primärer Alkohole und Aldehyde (s. Kap. 6) 2 2 xidation durch r 3 /, KMn 4 /, N 3 aloform-eaktion (s. Kap. 9) 3 Br 2 xidation von

Mehr

3. Übung Grundlagen der Hauptgruppenchemie

3. Übung Grundlagen der Hauptgruppenchemie Allgemeine und Anorganische Chemie 3. Übung Grundlagen der Hauptgruppenchemie Aufgabe 1: Beschreiben Sie die Herstellung von Schwefelsäure nach dem Kontaktverfahren mit Hilfe von chemischen Gleichungen

Mehr

Alkene / Additions-, Eliminierungsreaktionen

Alkene / Additions-, Eliminierungsreaktionen 2.2.2. Alkene / Additions-, Eliminierungsreaktionen 64 65 Struktur und Bindung in Ethen Ethen ist planar 2 trigonale C-Atome Bindungswinkel annähernd 120 o C ist sp2-hybridisiert Einfachbindung durch Überlapp

Mehr

Arene (Benzolderivate)

Arene (Benzolderivate) Arene (Benzolderivate) Im Verlauf der Vorlesung haben wir bereits einige kennengelernt: DDT, DIXI, Cumol... hier nun weitere wichtige Vertreter: Acetylsalicylsäure (Aspirin) Synthese über die Kolbe-Schmitt-Synthese

Mehr

INHALTSVERZEICHNIS MC-FRAGEN 3. ORGANISCHE CHEMIE 1 3.1 Grundzüge der chemischen Bindung 1 Säuren und Basen der organischen Chemie 5 3.2 Chemische Reaktionstypen 15 3.3 Stereochemie 39 3.4 Alkane, Cycloalkane

Mehr

Versuch: Bromierung von Phenol

Versuch: Bromierung von Phenol Philipps-Universität Marburg 01.12.2007 Organisches Grundpraktikum (LA) Katrin ohmann Assistent: Beate Abé Leitung: Dr. Ph. Reiß WS 2007/08 Gruppe 4, Aromaten Versuch: omierung von Phenol Zeitbedarf: Vorbereitung:

Mehr

Organische Chemie für Technische Biologen Organische Chemie für Lehramtskandidaten Sommersemester 2005 Prof. Dr. Stephen Hashmi.

Organische Chemie für Technische Biologen Organische Chemie für Lehramtskandidaten Sommersemester 2005 Prof. Dr. Stephen Hashmi. Organische Chemie für Technische Biologen Organische Chemie für Lehramtskandidaten Sommersemester 2005 Prof Dr Gliederung des Vorlesungsstoffes I Allgemeines II Chemische Bindung III Einteilung der Organischen

Mehr

Organische Experimentalchemie

Organische Experimentalchemie PD Dr. Alexander eder (abreder@gwdg.de) Georg-August-Universität Göttingen SoSe 2017 Veranstaltungsnummer: 15 133 30200 rganische Experimentalchemie Für Studierende der umanmedizin, Zahnmedizin und Biologie

Mehr

Aromaten, Fette und Tenside Seminar zu chem2010 Stephan Bernt

Aromaten, Fette und Tenside Seminar zu chem2010 Stephan Bernt , Fette und Tenside 12.05.2010 Seminar zu chem2010 Stephan Bernt Kriterien für Aromatizität: cyclisch planar vollständig konjugiertes π-elektronensystem Hückel-Regel: 4n+2 π-elektronen Prototyp des Aromaten:

Mehr

Kohlenwasserstoffe. Alkane. Kohlenwasserstoffe sind brennbare und unpolare Verbindungen, die aus Kohlenstoff- und Wasserstoffatomen aufgebaut sind.

Kohlenwasserstoffe. Alkane. Kohlenwasserstoffe sind brennbare und unpolare Verbindungen, die aus Kohlenstoff- und Wasserstoffatomen aufgebaut sind. 2 2 Kohlenwasserstoffe Kohlenwasserstoffe sind brennbare und unpolare Verbindungen, die aus Kohlenstoff- und Wasserstoffatomen aufgebaut sind. 4 4 Alkane Alkane sind gesättigte Kohlenwasserstoffverbindungen

Mehr

Aufgabe S. 2/a (6 Punkte) Zeichnen Sie die Strukturformeln der folgenden Verbindungen! 3-Ethylheptan-2-on

Aufgabe S. 2/a (6 Punkte) Zeichnen Sie die Strukturformeln der folgenden Verbindungen! 3-Ethylheptan-2-on 15-2 2 Aufgabe S. 2/a (6 Punkte) Zeichnen Sie die Strukturformeln der folgenden Verbindungen! Pyridin Acetylchlorid p-xylol 3-Ethylheptan-2-on Glycol Ölsäure Aufgabe S. 2/b (6 Punkte) Zeichnen Sie jeweils

Mehr

OC 4 Aromaten / Heterocyclen. Aromatizität 1

OC 4 Aromaten / Heterocyclen. Aromatizität 1 OC 4 Aromaten / Heterocyclen Aromatizität 1 Benzol Der Modellaromatt Historische Entwicklung 1825 1833 Entdeckung durch Michael Faraday (Pyrolyse) Mitscherlich: Erste Benzolsynthese Entdeckung der Summenformel

Mehr

Organik-Beispiel. Inhaltsverzeichnis

Organik-Beispiel. Inhaltsverzeichnis Inhaltsverzeichnis I. Säure-Basen-Gleichungen... 2 a) Nach Arrhenius:... 2 b) Nach Broensted:... 2 c) Nach Lewis:... 2 II. H 2 O + HCl?... 4 a) Was ist in der Reaktion passiert? Welche Produkte entstehen?...

Mehr

Die Strukturabhängigkeit der chemischen Verschiebung

Die Strukturabhängigkeit der chemischen Verschiebung Die Strukturabhängigkeit der chemischen Verschiebung. Abschirmung in einem Atom (wie bisher geschildert) Die Elektronenverteilung in einem Wasserstoffatom ist sphärisch. B 0 0 0000000 000000000 000000000

Mehr

Organische Chemie I Chemie am 16.11.2012. Inhaltsverzeichnis Lewisformeln von Kohlenstoffverbindungen korrekt zeichnen!... 2

Organische Chemie I Chemie am 16.11.2012. Inhaltsverzeichnis Lewisformeln von Kohlenstoffverbindungen korrekt zeichnen!... 2 Organische Chemie I Inhaltsverzeichnis Lewisformeln von Kohlenstoffverbindungen korrekt zeichnen!... 2 Verstehen was Organische Chemie heisst und die Entstehung von Kohlenstoffverbindungen kennen!... 2

Mehr

Homoaromatizität. Charlotte Over Lara Schultes

Homoaromatizität. Charlotte Over Lara Schultes Homoaromatizität Charlotte Over Lara Schultes 02.12.2010 Übersicht 1. Einführung 2. Aromatizität 3. Homoaromatizität 4. Beispiele 4.1 Kationische Homoaromaten 4.2 Neutrale Homoaromaten 4.3 Anionische Homoaromaten

Mehr

Aldehyde und Ketone Carbonylverbindungen

Aldehyde und Ketone Carbonylverbindungen Aldehyde und Ketone Carbonylverbindungen Prof. Dr. Ivo C. Ivanov 1 Prof. Dr. Ivo C. Ivanov 2 Die Siedepunkte liegen höher als bei den jeweils zugrundeliegenden Alkanen, eine Folge des polaren Charakters

Mehr

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts Basiswissen Chemie Vorkurs des MINTroduce-Projekts Christoph Wölper christoph.woelper@uni-due.de Sprechzeiten (Raum: S07 S00 C24 oder S07 S00 D27) Was bisher geschah Redox-Reaktion Oxidation Reduktion

Mehr

Reaktionsmechanismen der Organischen Chemie

Reaktionsmechanismen der Organischen Chemie Peter Sykes Reaktionsmechanismen der Organischen Chemie Eine Einführung Mit einem Geleitwort von Lord A. R. Todd Übersetzt von Hans F. Ebel und Henning Hopf 9., überarbeitete Auflage Inhalt 1 Struktur,

Mehr

Reaktionsmechanismen nach dem gleichnahmigen Buch von R. Brückner

Reaktionsmechanismen nach dem gleichnahmigen Buch von R. Brückner Reaktionsmechanismen nach dem gleichnahmigen Buch von R. ückner Kap. 5 Substitutionsreaktionen am Aromaten Dr. ermann A. Wegner hermann.wegner@unibas.ch lektrophile aromatische Substitution Wheland-Komplex

Mehr

Wiederholung der letzten Vorlesungsstunde:

Wiederholung der letzten Vorlesungsstunde: Wiederholung der letzten Vorlesungsstunde: Chemische Bindungen, starke, schwache Bindungen, Elektronenpaarbindung, bindende und freie Elektronenpaare, Oktettregel, Edelgaskonfiguration, Lewis-Formeln,

Mehr

ALDEHYDE & KETONE. Referat über die Carbonylverbindungen: Aldehyde und Ketone Patrick König und Robert Bozsak LK C2 Sigmund-Schuckert-Gymnasium

ALDEHYDE & KETONE. Referat über die Carbonylverbindungen: Aldehyde und Ketone Patrick König und Robert Bozsak LK C2 Sigmund-Schuckert-Gymnasium ALDEHYDE & KETONE Referat über die Carbonylverbindungen: und Patrick König und Robert Bozsak LK C2 Sigmund-Schuckert-Gymnasium 1 1 GLIEDERUNG 1. Allgemeiner Vergleich der & Struktur Nomenklatur / Beispiele

Mehr

Gruppe 4 Pflichtversuch. Bromierung des Kerns von Toluol 40 % Menge R-Sätze S-Sätze Gefahrensymbole. 2 ml /

Gruppe 4 Pflichtversuch. Bromierung des Kerns von Toluol 40 % Menge R-Sätze S-Sätze Gefahrensymbole. 2 ml / Philipps- Universität Marburg FB 15 Chemie Organisch-Chemisches Grundpraktikum für das Lehramt Christian Lego Leitung: err Dr. Reiß Datum: 0.05.09 SS 09 Gruppe 4 Pflichtversuch omierung des Kerns von Toluol

Mehr

Zweite Klausur zur Vorlesung Grundlagen der Organischen Chemie

Zweite Klausur zur Vorlesung Grundlagen der Organischen Chemie Prof. Dr. Jens Christoffers 18. Februar 2008 Universität Oldenburg Zweite Klausur zur Vorlesung Grundlagen der Organischen Chemie (für Studierende der Chemie ist dies die erste Klausur, für Umweltwissenschaftler

Mehr

Wiederholung der letzten Vorlesungsstunde: Thema: Chemische Bindungen II

Wiederholung der letzten Vorlesungsstunde: Thema: Chemische Bindungen II Wiederholung der letzten Vorlesungsstunde: Thema: Chemische Bindungen II Elektronenpaarbindung, Elektronegativität, polare Atombindung, Dipolmoment, Hybridisierung von Atomorbitalen, sp 3 -, sp 2 -, sp-hybridorbitale,

Mehr

Praktikum zur Organischen Chemie für Studierende des Lehramts WS 2010/11

Praktikum zur Organischen Chemie für Studierende des Lehramts WS 2010/11 Praktikum zur Organischen Chemie für Studierende des Lehramts WS 2010/11 Praktikumsleitung: Dr. Reiß Assistent(in): Jan Schäfer Name: Johannes Hergt Datum: 23.11.2010 Gruppe 4: Aromaten Versuch (elektr.

Mehr

Std. Stoffklassen Konzepte & Methoden Reaktionen 2 Struktur und Bindung 2 Alkane Radikale Radikal-Reaktionen 2 Cycloalkane Konfiguration &

Std. Stoffklassen Konzepte & Methoden Reaktionen 2 Struktur und Bindung 2 Alkane Radikale Radikal-Reaktionen 2 Cycloalkane Konfiguration & Materialien (Version: 26.06.2001) Diese Materialien dienen zur Überprüfung des Wissens und sind keine detailierten Lernunterlagen. Vorschlag: fragen Sie sich gegenseitig entsprechend dieser Listen ab.

Mehr

Grundlagen der Organischen Chemie

Grundlagen der Organischen Chemie Grundlagen der Organischen Chemie Vorlesung im WS 2010/2011 1. Einführung 1 1.1 Die wunderbare Welt der Organischen Chemie 1.2 Kohlenstoff ein ganz besonderes Element 4 2. Die kovalente Bindung 5 2.1 Atomorbitale

Mehr

Lösungsblatt 11: Carbonsäuren und Aromaten

Lösungsblatt 11: Carbonsäuren und Aromaten 1 Lösungsblatt 11: Carbonsäuren und Aromaten Warm Up Benennen Sie die folgenden Verbindungen nach IUPAC. Finden Sie gegebenenfalls die Trivialnamen: Aufgaben 1) Carbonsäuren i. Begründen Sie aufgrund der

Mehr

Übungen zur Vorlesung Organische Chemie (Teil 2)

Übungen zur Vorlesung Organische Chemie (Teil 2) Übungen zur Vorlesung rganische Chemie (Teil 2) K. Hohmann/ J. Massoth/ F. Lehner/ H. Schwalbe Blatt 5 1) Enolat und Enamin Geben Sie das bevorzugte Deprotonierungsprodukt an a) Thermodynamisch kontrolliert

Mehr

Übung Nr. 13. Vorlesung Allgemeine Chemie II Teil Organische Chemie Frühjahrssemester Mi bzw. Fr

Übung Nr. 13. Vorlesung Allgemeine Chemie II Teil Organische Chemie Frühjahrssemester Mi bzw. Fr Übung Nr. 13 Mi. 30.05.2012 bzw. Fr. 01.06.2012 1. Eliminierungen I Geben Sie für die untenstehenden Reaktionen die jeweiligen Produkte an! Um welche Namensreaktion handelt es sich? Welcher Typ Eliminierung

Mehr

Organische Chemie. Kohlenwasserstoffe. Alkane. Alkane

Organische Chemie. Kohlenwasserstoffe. Alkane. Alkane 1 1 Organische Chemie beschäftigt sich mit Verbindungen, die C- Atome enthalten 2 2 Kohlenwasserstoffe bestehen ausschließlich aus C- und H- Atomen 3 3 es existieren nur C-H Einfachbindungen C-C Einfachbindung

Mehr

Die Substituenten und ihre Positionen werden dem Namen des Alkens als Präfixe vorgestellt:

Die Substituenten und ihre Positionen werden dem Namen des Alkens als Präfixe vorgestellt: 23 3. Organische Reaktionen - Einordung nach chanismen. lkene : Kohlenwasserstoffe mit Doppelbindungen. 3.1 Die Nomenklatur der lkene Eine C=C Doppelbindung ist die funktionelle Gruppe, die für die lkene

Mehr

VII INHALTSVERZEICHNIS

VII INHALTSVERZEICHNIS VII INHALTSVERZEICHNIS MC-FRAGEN 3. ORGANISCHE CHEMIE 1 3.1 Grundzüge der chemischen Bindung 1 3.2 Chemische Reaktionstypen 12 3.3 Stereochemie 30 3.4 Alkane, Cycloalkane 46 3.5 Alkene, Alkine 47 3.6 Aromatische

Mehr

Chemie für Biologen SS Georg Jansen AG Theoretische Organische Chemie Universität Duisburg Essen. (Teil 11: Alkine / Polyene / Aromaten)

Chemie für Biologen SS Georg Jansen AG Theoretische Organische Chemie Universität Duisburg Essen. (Teil 11: Alkine / Polyene / Aromaten) hemie für Biologen SS 2007 Georg Jansen AG Theoretische rganische hemie Universität Duisburg Essen (Teil 11: Alkine / Polyene / Aromaten) Bindungen mit sp ybridobitalen Bindungen mit sp ybridorbitalen

Mehr

8 Zusammenfassung und Ausblick

8 Zusammenfassung und Ausblick 8 Zusammenfassung und Ausblick Im Rahmen der vorliegenden Dissertation wurden die LEWIS-aciden Eigenschaften diverser Übergangsmetallverbindungen in unterschiedlichen Reaktionen untersucht. Das Augenmerk

Mehr

Aktuelle Beispiele aus der Forschung

Aktuelle Beispiele aus der Forschung Vorlesung: Allgemeine Chemie Organische Chemie 05.12.; 08.12.; Prof. Dr. C. Meier Eine Einführung in die Organische Chemie Themen: Elektronenstruktur, kovalente Bindung, Säure-Basen-Eigenschaften in Abhängigkeit

Mehr

Bindungen: Kräfte, die Atome zusammenhalten, Bindungsenergie,

Bindungen: Kräfte, die Atome zusammenhalten, Bindungsenergie, Wiederholung der letzten Vorlesungsstunde: Thema: Chemische h Bindungen Bindungen: Kräfte, die Atome zusammenhalten, Bindungsenergie, unterschiedliche Arten chemischer Bindungen, Atombindung, kovalente

Mehr

Organisch-chemisches Praktikum für Studierende des Lehramts WS 08/09

Organisch-chemisches Praktikum für Studierende des Lehramts WS 08/09 rganisch-chemisches Praktikum für Studierende des Lehramts WS 08/09 Praktikumsleitung: Dr. Reiß Assistent: Beate Abé Name: Sarah enkel Datum: 19.11.2008 Gruppe 4: Aromaten Versuch: Substituenteneinfluss

Mehr