Zusammenfassung. Induktions-Spannungspuls in einem bewegten Leiter im homogenen Magnetfeld

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Zusammenfassung. Induktions-Spannungspuls in einem bewegten Leiter im homogenen Magnetfeld"

Transkript

1 5b Induktion

2 Zusammenfassung Induktion ist ein physikalisches Phänomen, bei der eine Spannungspuls in einem Leiter oder einer Spule induziert wird, wenn sich der Leiter in einem Magnetischen Feld befindet. Induktions-Spannungspuls in einem bewegten Leiter im homogenen Magnetfeld ind vbl Orientierung und Geschwindigkeit des Leiter sowie Magnetfeld stehen jeweils senkrecht aufeinander Faraday Gesetz für eine Spule mit N indungen ind N Φ Φ t t ΔΦ -N Δt Änderung des magnetischen Flusses bei einer icklung Lenzsche Regel Die induzierte Spannung, die durch eine Änderung des magnetischen Flusses hervorgerufen wird, führt zu einem elektrischen Strom. Die Richtung des Stroms ist so, dass das induzierte Magnetfeld der Änderung des Flusses entgegenwirkt (Energieerhaltung) Magnetischer Fluss Φ B BAcosφ B: Betrag des Magnetfeldes A: Oberfläche φ: inkel zwischen Magnetfeld und Oberflächennormalen Gegeninduktion Selbstinduktion ind ind ΔI M Δt ΔI L Δt

3 Thomsonschleuder Elihu Thomson ( ) Versuch Entladung eines Kondensators über eine Spule Ergebnis Metallring wird hoch in die Luft geschleudert Ohne Effekt Metallring wird vom Magnetfeld der Spule nicht abgestoßen, wenn der Stromkreis nicht geschlossen ist, z.b. wenn der Ring geschlitzt ist 3

4 iderstand Nahezu freier Fall.. wenn das Magnetfeld nicht wäre Magnetfeld senkrecht zur Fallbewegung F ind Fläche der Leiterschleife wird immer größer. Magnetischer Fluss erhöht sich F g mg Änderung des magnetischen Flusses erzeugt einen Induktionsstrom Rechte Hand Regel und Lenzsche Regel Stromrichtung ist gegen den hrzeigersinn gerichtet Betrachte Lorentzkraft Resultierende Kraft zeigt nach oben. Der Fall des Stabes wird dadurch verlangsamt Strom Schließlich stellt sich eine konstante Fallgeschwindigkeit ein, die gegenüber dem freien Fall reduziert ist Potentielle Energie wir nicht vollständig in kinetische Energie umgewandelt, sondern auch in thermische Energie (iderstand des Drahtes erwärmt den Leiter) 4

5 Ringfall dφ B I ind dφ B I ind X Lenzsche Regel X dφ B I ind X X X X dφ Lenzsche B I ind Regel dφ B I ind 5

6 irbelströme Bei der Bewegung von Leitern in einem Magnetfeld werden Induktionsströme erzeugt Lenzsche Regel Beim Eintritt in das Magnetfeld wird im Leiter ein Strom induziert und dadurch ein Magnetfeld, dass der Richtung des externen Magnetfeldes entgegengesetzt ist. Ladungen fließen außerhalb des Magnetfeldes zurück Induktion bewirkt Verschiebung von Ladungen Resultat der echselwirkung zusätzliche Kraft, die der Bewegung des Leiters im Magnetfeld entgegenwirkt (ansonsten Verletzung des Energiesatzes) Technische Anwendung: irbelstrombremse 6

7 irbelstrombremse Adalbert von altenhofen (88-94) S: Spule P: Polschuh K: Pendelkörper geschlitztes Blech 7

8 Diebstahlsicherung Spannungspulse durch Gegeninduktion im Empfänger werden durch irbelströme reduziert Sender erzeugt wechselndes Magnetfeld Magnetfeld erzeugt irbelströme im Metall wodurch in einer Empfängerspule ein Induktionsstrom erzeugt wird 8

9 irbelstrombremse In allen Leitern kommt es aufgrund von irbelströmen zu einer Abbremsung des Falls des Magneten. Kupfer Aluminium VA PVC Abhängigkeiten Der Effekt ist umso größer, je höher die Leitfähigkeit ist σ > σ > σ Cu Al V A Gegenprobe Bei Isolatoren stellt man dieses Verhalten nicht fest Kupfer 58x 6 /Οm Aluminium 37x 6 /Οm Stahl.4x 6 /Οm 9

10 irbelstöme Aufgrund des höheren Feldes (rechts) im Eintreten in das Magnetfeld hemmt die resultierende Kraft die Bewegung des Leiters Problem: Durch die Erzeugung von irbelströmen wird mechanische Energie in innere Energie (ärme) umgewandelt Reduzierung von irbelstromeffekten durch geschlitzte Bleche Auch der Stromzähler funktioniert nach dem Prinzip der irbelstrombremse Anwendung Induktionsherd schnell wechselnde Stromumpolung liefert hohen Induktionsstrom und damit auch hohe thermische Verluste 5 khz

11 Seismograph Chinesische Erdbebenvase 3 nchr. Seismograph mit irbelstrombremse Erdbebensignal

12 Transformatoren Primärseite echselspannung indungszahl N Sekundärseite echselspannung indungszahl N Induktionsspannung in einer Spule A ind, ind, N N dφ dφ B B N N Induktionsspannung in einer Spule dφ ind, N dφ B ind, N B Transformatorgleichung

13 Transformatoren arum verwendet man eigentlich eine HOCHSPANNNGSleitung? Leistung Spannung Strom Leistung P I P 5k R.4Ω Effektiver iderstand der Hochspannungsleitung as ist effektiver? Übertragung der Energie bei 3 V oder bei 3 V Elektrischer STROM erzeugt thermische Energie durch Streuung der Elektronen am Kristallgitter des Leiters P 3 V Verlust I 3V I P R 5 k 3 V 5 A ( 5 A) (.4 Ω) k P I 4 kv Verlust 4 kv I geringe thermische Energieverluste NR bei hohen Spannungen P R P P 5 k 3 kv ( 5 A) (.4 Ω) 4 kv Verlust 4 V Verlust % 5 A 3

14 N N Transformer Hohe Spannungen durch hohe Anzahl icklungen auf der Sekundärseite N < N < Elektrische Trennung von Stramkreisen N N wechselndes Magnetfeld erzeugt elektrisches echselstrom Niedrige Spannungen durch geringe Anzahl von icklungen auf der Sekundärseite N > N > Elektrisches echselstrom bewirkt Drehung des Magneten Generator Motor Mechanische Energie in elektrische Energie 4

15 LR-Kreis Selbstinduktivität verhindert, dass Stromstärke sich sprunghaft ändert! iderstand Spule Aufladung eines Kondensators Kondensator Selbstinduktion unterdrückt Stromfluss Änderung des Stromes in der Anfangsphase Einschaltvorgang di IR L zu Beginn t I di di kein Beitrag durch Induktion bei konstantem Stromfluss () t A t L später IR L L I t groß R Kirchhoffsche Maschenregel Ausschaltvorgang d IR L I Vergleich zwischen RC und RL Schaltkreis R I( t) I exp t L d R I I L I t) I exp ( ( τt) Ladung Kapazität iderstand Strom iderstand Induktivität 5

16 Energiespeicherung Energie gespeichert im magnetischen Feld Leistung Spannung x Strom Batterieleistung Leistung Arbeit pro Zeit Energie geleistete Arbeit M Spezialfall lange Spule B μ ni I L µ n Al B μ n I d t M w M d IR + L I ärme I d M M M R M B μ V LI + LI la M LI d LI I B μ I max B V μ d LI I Leistung der Spule di Energiedichte einer langen Spule Energie gespeichert in einem Kondensator w C C C Q C Q C Energiedichte in einem Kondensator C V C w w ε E Gesamte Energiedichte + w M B w + ε E μ e 6

17 LC-Schaltkreis Stromkreis aus Kondensator und Spule Ein Schaltkreis gebildet aus einer Spule und einem Kondensator zeigt ein neues Phänomen Ladung und Strom oszilliert 7

18 LC- Schaltkreis System Spule-Kondensator magnetische Energie LI elektrische Energie CQ LI + CQ i² ± LC dq i ω LC x Q cos ( Q q ) LC ( ωt + ϕ) Q C Analoges mechanisches System System Masse-Feder kinetische Energie potentielle Energie kx² mv² + mv² k v² ± m dx v ω mv² x Acos ( A x ) k m ka ( ωt + ϕ) 8

19 LRC-Schaltkreis Analoges mechanisches System Masse und Feder in Flüssigkeit Zusätzlicher Term: Dissipation von Energie durch mwandlung in ärme im iderstand R Dämpfung der Oszillation Resultat: gedämpfte Oszillation des Schwingkreises Mathematische Beschreibung di q IR L + C d q + ω LRC R L dq i dq + LC LC q R 4L Resonanzfrequenz des schwach gedämpften LRC-Schwingkreis 9

Änderung im magnetischen Fluss ist Ursache für induzierte Spannung. Faradaysches Gesetz. d dt

Änderung im magnetischen Fluss ist Ursache für induzierte Spannung. Faradaysches Gesetz. d dt 5b nduktion Zusammenfassung Änderung im magnetischen Fuss ist rsache für induzierte Spannung Faradaysches Gesetz ind d Lenzsche Rege Φ d r r da A Der induzierte Strom fießt stets so, dass er der Erregung

Mehr

Vorlesung 5: Magnetische Induktion

Vorlesung 5: Magnetische Induktion Vorlesung 5: Magnetische Induktion, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2016/17 Magnetische Induktion Bisher:

Mehr

4 Induktion. Worum geht es? Ein veränderliches Magnetfeld (allgemein Änderung von Φ B ) in der Spule,

4 Induktion. Worum geht es? Ein veränderliches Magnetfeld (allgemein Änderung von Φ B ) in der Spule, 4 Induktion Worum geht es? Ein veränderliches Magnetfeld (allgemein Änderung von Φ B ) in der Spule, induziert eine Spannung ( Stromfluss U=RI) in der Spule. Caren Hagner / PHYSIK 2 / Sommersemester 2015

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 )

Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) Induktionsbeispiele Rotierende eiterschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) A φ B ω Induktionsspannung: U ind = dφ m = AB [ ω sin(ωt + φ 0 )] = ABω sin(ωt + φ 0 ) (Wechselspannung)

Mehr

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld. Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,

Mehr

Induktion. Bewegte Leiter

Induktion. Bewegte Leiter Induktion Bewegte Leiter durch die Kraft werden Ladungsträger bewegt auf bewegte Ladungsträger wirkt im Magnetfeld eine Kraft = Lorentzkraft Verschiebung der Ladungsträger ruft elektrisches Feld hervor

Mehr

was besagt das Induktionsgesetz? was besagt die Lenzsche Regel?

was besagt das Induktionsgesetz? was besagt die Lenzsche Regel? Induktion Einleitung Thema: Induktion Fragen: was ist Induktion? was besagt das Induktionsgesetz? was besagt die Lenzsche Regel? Frage: was, wenn sich zeitlich ändernde E- und -Felder sich gegenseitig

Mehr

Elektromagnetische Induktion

Elektromagnetische Induktion Elektromagnetische M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis im bewegten und im ruhenden Leiter Magnetischer Fluss und sgesetz Erzeugung sinusförmiger Wechselspannung In diesem Abschnitt

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

O. Sternal, V. Hankele. 4. Magnetismus

O. Sternal, V. Hankele. 4. Magnetismus 4. Magnetismus Magnetfelder N S Rotationsachse Eigenschaften von Magneten und Magnetfeldern Ein Magnet hat Nord- und Südpol Ungleichnamige Pole ziehen sich an, gleichnamige Pole stoßen sich ab. Es gibt

Mehr

Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung.

Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung. 7. Die elektromagnetische Induktion ------------------------------------------------------------------------------------------------------------------ A Die Induktion im bewegten Leiter Bewegt man einen

Mehr

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen)

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen) Magnetismus Magnetit (Fe 3 O 4 ) Sonne λ= 284Å Magnetare/ Kernspintomographie = Neutronensterne Magnetresonanztomographie Ein Magnetfeld wird erzeugt durch: Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls

Mehr

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle

Mehr

1 Elektrostatik Elektrische Feldstärke E Potential, potentielle Energie Kondensator... 4

1 Elektrostatik Elektrische Feldstärke E Potential, potentielle Energie Kondensator... 4 Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Feldstärke E............................... 3 1.2 Potential, potentielle Energie............................ 4 1.3 Kondensator.....................................

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektrizität und Magnetismus IV.4 Wechselstromkreise Physik für Mediziner Ohmscher Widerstand bei Wechselstrom Der Ohmsche Widerstand verhält sich bei Wechselstrom genauso wie bei Gleichstrom zu jedem

Mehr

Klassische Theoretische Physik III WS 2014/ Elektromagnetische Induktion: (3+3+4=10 Punkte)

Klassische Theoretische Physik III WS 2014/ Elektromagnetische Induktion: (3+3+4=10 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik III WS 014/015 Prof Dr A Shnirman Blatt 8 Dr B Narozhny Lösungen 1 Elektromagnetische Induktion:

Mehr

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen)

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen) Magnetismus Magnetit (Fe 3 O 4 ) Sonne λ= 284Å Magnetare/ Kernspintomographie = Neutronensterne Magnetresonanztomographie Ein Magnetfeld wird erzeugt durch: Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls

Mehr

Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom

Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom Ferienkurs Sommersemester 009 Martina Stadlmeier 09.09.009 Inhaltsverzeichnis 1 Zeitlich veränderliche Felder 1.1 Faradaysches Induktionsgesetz.....................

Mehr

Die Lenzsche Regel. Frage : In welche Richtung fließt der Induktionsstrom? Versuch :

Die Lenzsche Regel. Frage : In welche Richtung fließt der Induktionsstrom? Versuch : Die Lenzsche Regel Frage : In welche Richtung fließt der Induktionsstrom? Versuch : Beobachtung : Bewegungsrichtung des Magneten in den Ring hinein aus dem Ring heraus Bewegungsrichtung des Metallringes

Mehr

5.1 Statische und zeitlich veränderliche

5.1 Statische und zeitlich veränderliche 5.1 Statische und zeitlich veränderliche Felder 5 Induktion 5.1 Statische und zeitlich veränderliche Felder Bisher haben wir elektrische und magnetische Felder betrachtet, die durch zeitlich konstante

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

4.10 Induktion. [23] Michael Faraday. Gedankenexperiment:

4.10 Induktion. [23] Michael Faraday. Gedankenexperiment: 4.10 Induktion Die elektromagnetische Induktion wurde im Jahre 1831 vom englischen Physiker Michael Faraday entdeckt, bei dem Bemühen die Funktions-weise eines Elektromagneten ( Strom erzeugt Magnetfeld

Mehr

(1) (4) Integralform. Differentialform ρ. Hier fehlt noch. etwas!

(1) (4) Integralform. Differentialform ρ. Hier fehlt noch. etwas! Zeitlich veränderliche Felder: Elektrodynamik Die Maxwell-Gleichungen im statischen Fall (1) 1 E d = ρdv E = V( ) (2) B d = B = etwas! (3) E dr = E = (4) Integralform ε Hier fehlt noch Differentialform

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr

Versuch: Induktions - Dosenöffner. Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25

Versuch: Induktions - Dosenöffner. Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25 Versuch: Induktions - Dosenöffner Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25 Der schwebende Supraleiter (idealer Diamagnet) Supraleiter B ind Magnet B Magnet

Mehr

Energie eines bewegten Körpers (kinetische Energie) Energie eines rotierenden Körpers. Energie im elektrischen Feld eines Kondensators

Energie eines bewegten Körpers (kinetische Energie) Energie eines rotierenden Körpers. Energie im elektrischen Feld eines Kondensators Formeln und Naturkonstanten 1. Allgemeines Energieströme P = v F P = ω M P = U I P = T I S Energiestromstärke bei mechanischem Energietransport (Translation) Energiestromstärke bei mechanischem Energietransport

Mehr

Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt?

Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? elektrischer Strom Stromstärke elektrische Spannung Spannungsquelle Gerichtete Bewegung von Ladungsträgern in einem elektrischen

Mehr

6.4.4 Elihu-Thomson ****** 1 Motivation

6.4.4 Elihu-Thomson ****** 1 Motivation V644 6.4.4 ****** 1 Motivation Ein als Sekundärspule dienender geschlossener Aluminiumring wird durch Selbstinduktion von der Primärspule abgestossen und in die Höhe geschleudert. Ein offener Aluminiumring

Mehr

Grundkurs Physik (2ph2) Klausur

Grundkurs Physik (2ph2) Klausur 1. Ernest O. Lawrence entwickelte in den Jahren 1929-1931 den ersten ringförmigen Teilchenbeschleuniger, das Zyklotron. Dieses Zyklotron konnte Protonen auf eine kinetische Energie von 80 kev beschleunigen.

Mehr

Hertzsche Wellen. Physik 9

Hertzsche Wellen. Physik 9 Hertzsche Wellen Physik 9 ohne Hertzsche Wellen geht nichts? Wie entstehen Hertzsche Wellen? Man braucht eine Spule mit Eisenkern und einen Kondensator Fließt durch eine Spule ein Strom, so wird ein magnetisches

Mehr

III Elektrizität und Magnetismus

III Elektrizität und Magnetismus 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion Versuche: Diamagnetismus, Supraleiter Induktion Leiterschleife, bewegter Magnet Induktion mit Änderung der Fläche

Mehr

20. Vorlesung EP. III Elektrizität und Magnetismus. 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21.

20. Vorlesung EP. III Elektrizität und Magnetismus. 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21. 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder Fortsetzung: Materie im Magnetfeld 20. Induktion 21. Wechselstrom Versuche: Induktion: Handdynamo und Thomson-Transformator Diamagnetismus:

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.

Mehr

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld

Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld 37 3 Transformatoren 3. Magnetfeldgleichungen 3.. Das Durchflutungsgesetz Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: H I Abb. 3..- Verknüpfung von elektrischem Strom und Magnetfeld

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld

Mehr

=N 2. 10 Induktivität

=N 2. 10 Induktivität 10 Induktivität Fließt in einem Leiterkreis ein zeitlich veränderlicher Strom, so erzeugt dieser ein zeitlich veränderliches magnetisches Feld. Dieses wiederum wird in einem Nachbarkreis eine Spannung

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 18. 06. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 18. 06. 2009

Mehr

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer TUM EM-Tutorübung SS 1 1.5.21 Formelsammlung EM SS 21 Diese Formelsammlung dient nur zur Orientierung und stellt keinen nspruch auf ollständigkeit. Zudem darf sie während der Prüfung nicht benutzt werden,

Mehr

Physik II für Bauingenieure. Vorlesung 03 (08. Mai 2007)

Physik II für Bauingenieure. Vorlesung 03 (08. Mai 2007) Physik II für Bauingenieure Vorlesung 03 (08. Mai 2007) http://homepage.rub.de/daniel.haegele Prof. D. Hägele Vorlesung Stoff umfangreich, Zeit knapp. Probleme beim Verständnis der Vorlesung Übungen. Schulgrundlagen

Mehr

Zusammenfassung EPII. Elektromagnetismus

Zusammenfassung EPII. Elektromagnetismus Zusammenfassung EPII Elektromagnetismus Elektrodynamik: Überblick Dynamik (Newton): Elektromagnetische Kräfte zw. Ladungen: Definition EFeld: Kraft auf ruhende Testladung Q: BFeld: Kraft auf bewegte Testladung:

Mehr

1.10 Elektromagnetische Induktion

1.10 Elektromagnetische Induktion 1.10 Elektromagnetische Induktion Wasserkraft: Deutschland 5% weltweit 18% Deutschland 30% weltweit 17% Deutschland 59% weltweit 64% Quelle: Wikipedia 1.10.1 Experimente zur elektromagnetischen Induktion

Mehr

4.4 Induktion. Bisher: Strom durch einen Draht Magnetfeld Jetzt: zeitlich veränderliches Magnetfeld Strom

4.4 Induktion. Bisher: Strom durch einen Draht Magnetfeld Jetzt: zeitlich veränderliches Magnetfeld Strom Bisher: Strom durch einen Draht Magnetfeld Jetzt: zeitlich veränderliches Magnetfeld Strom 4.4 Induktion Spannungen und Ströme, die durch Veränderungen von Magnetfeldern entstehen, bezeichnet man als Induktionsspannungen,

Mehr

17. Wechselströme. me, 18.Elektromagnetische Wellen. Wechselstromtransformation. = = (gilt bei Ohm schen Lasten

17. Wechselströme. me, 18.Elektromagnetische Wellen. Wechselstromtransformation. = = (gilt bei Ohm schen Lasten Wechselstromtransformation Idee: Anwendung der Induktion und der Feldführung in einem Eisenkern zur verlustarmen Transformation der Amplitude von Wechselspannungen Anwendung (n >>n 1 ): Hochspannungserzeugung

Mehr

Elektrizitätslehre. Zusammenfassung. Aufbau des Stoffes. Elektrische Wechselwirkung. Elektrische Ladung geladener Zustand

Elektrizitätslehre. Zusammenfassung. Aufbau des Stoffes. Elektrische Wechselwirkung. Elektrische Ladung geladener Zustand Aufbau des toffes Elektrizitätslehre 7 Elektrische Ladung Elektrisches Feld Elektrische Ww Zusammenfassung tromkreise trom nduzierter trom Magnetfeld magnetische Ww Dauermagnet Elektromagnetische chwingungen

Mehr

I = I 0 exp. t + U R

I = I 0 exp. t + U R Betrachten wir einen Stromkreis bestehend aus einer Spannungsquelle, einer Spule und einem ohmschen Widerstand, so können wir auf diesen Stromkreis die Maschenregel anwenden: U L di dt = IR 141 Dies ist

Mehr

Übungsblatt 06 Grundkurs IIIb für Physiker

Übungsblatt 06 Grundkurs IIIb für Physiker Übungsblatt 06 Grundkurs IIIb für Physiker Othmar Marti, (othmar.marti@physik.uni-ulm.de) 20. 1. 2003 oder 27. 1. 2003 1 Aufgaben für die Übungsstunden Quellenfreiheit 1, Hall-Effekt 2, Lorentztransformation

Mehr

Basiswissen Physik Jahrgangsstufe (G9)

Basiswissen Physik Jahrgangsstufe (G9) Wärmelehre (nur nspr. Zweig) siehe 9. Jahrgangsstufe (mat-nat.) Elektrizitätslehre Basiswissen Physik - 10. Jahrgangsstufe (G9) Ladung: Grundeigenschaft der Elektrizität, positive und negative Ladungen.

Mehr

Bewegter Leiter im Magnetfeld

Bewegter Leiter im Magnetfeld Bewegter Leiter im Magnetfeld Die Leiterschaukel mal umgedreht: Bewegt man die Leiterschaukel im Magnetfeld, so wird an ihren Enden eine Spannung induziert. 18.12.2012 Aufgaben: Lies S. 56 Abschnitt 1

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

Ladungsfluss durch geschlossene Fläche = zeitliche Änderung der Ladung im Volumen 4.2 Elektrischer Widerstand

Ladungsfluss durch geschlossene Fläche = zeitliche Änderung der Ladung im Volumen 4.2 Elektrischer Widerstand E-Dynamik Teil II IV Der elektrische Strom 4.1 Stromstärke, Stromdichte, Kontinuitätsgleichung Definition der Stromstärke: ist die durch eine Querschnittsfläche pro Zeitintervall fließende Ladungsmenge

Mehr

Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie

Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie Aufgaben 12 Magnetisches Feld Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen

Mehr

1.Schulaufgabe aus der Physik Lösungshinweise

1.Schulaufgabe aus der Physik Lösungshinweise 1.Schulaufgabe aus der Physik Lösungshinweise Gruppe A Aufgabe 1 (Grundwissen) Größe Energie Stromstärke Widerstand Ladung Kraft Buchstabe E I R Q F Einheit Joule: J Ampere: A Ohm: Ω Coulomb: C Newton:

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 19. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 19. 06.

Mehr

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum Fachbereich El Gruppe : Namen, Matrikel Nr.: Versuchstag: Vorgelegt: Hochschule Düsseldorf Testat : V 401 : Induktion Zusammenfassung: 01.04.16 Versuch: Induktion Seite 1 von 6 Gruppe : Korrigiert am:

Mehr

Vorlesung : Roter Faden:

Vorlesung : Roter Faden: Vorlesung 18+19+20: Roter Faden: Heute: Elektrostatik, Magnetostatik, Elektrodynamik, Magnetodynamik, Elektromagnetische Schwingungen Versuche: Feldlinien, Kondensator, Spule, Generator, Elektromoter Applets:

Mehr

20. Vorlesung. III Elektrizität und Magnetismus. 21. Wechselstrom 22. Elektromagnetische Wellen IV. Optik 22. Elektromagnetische Wellen (Fortsetzung)

20. Vorlesung. III Elektrizität und Magnetismus. 21. Wechselstrom 22. Elektromagnetische Wellen IV. Optik 22. Elektromagnetische Wellen (Fortsetzung) 20. Vorlesung III Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen IV. Optik 22. Elektromagnetische Wellen (Fortsetzung) Versuche: Aluring (Nachtrag zur Lenzschen Regel, s.20)

Mehr

6 Elektromagnetische Schwingungen und Wellen

6 Elektromagnetische Schwingungen und Wellen 6 Elektroagnetische Schwingungen und Wellen Elektroagnetischer Schwingkreis Schaltung it Kondensator C und Induktivität L. Kondensator wird periodisch aufgeladen und entladen. Tabelle 6.1: Vergleich elektroagnetischer

Mehr

Letzte Vorlesung Dienstag, :15 Uhr Seminarraum 1. Letzte Übung Mittwoch, :30 Uhr Seminarraum Didaktik.

Letzte Vorlesung Dienstag, :15 Uhr Seminarraum 1. Letzte Übung Mittwoch, :30 Uhr Seminarraum Didaktik. Letzte Voresung Dienstag, 14.7.9 9:15 hr Seminarraum 1 Letzte Übung Mittwoch, 15.7.9 13:3 hr Seminarraum Didaktik 5a Induktion 1 Stromimpus durch ewegung Reaktion Zeigerausschag nach rechts Aktion ewegung

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 26. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 26. 06.

Mehr

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft Inhalt 10. Elektrodynamik 10.3 Das elektrische Potential 10.4 Elektrisches Feld und Potential ti 10.5 Magnetische Kraft und Felder 1051M 10.5.1 Magnetische Kraft 10.3 Das elektrische Potential ti Wir hatten

Mehr

Physik GK ph1, 2. Kursarbeit Elektromagnetismus Lösung =10V ein Strom von =2mA. Berechne R 0.

Physik GK ph1, 2. Kursarbeit Elektromagnetismus Lösung =10V ein Strom von =2mA. Berechne R 0. Physik GK ph,. Kursarbeit Elektromagnetismus Lösung.04.05 Aufgabe : Stromkreise / Ohmsches Gesetz. Durch einen Widerstand R 0 fließt bei einer Spannung von U 0 =0V ein Strom von I 0 =ma. Berechne R 0.

Mehr

15. Elektromagnetische Schwingungen

15. Elektromagnetische Schwingungen 5. Elektromagnetische Schwingungen Elektromagnetischer Schwingkreis Ein Beispiel für eine mechanische harmonische Schwingung wäre eine schwingende Feder, die im Normalfall durch den uftwiderstand gedämpft

Mehr

Learn4Vet. Magnete. Man kann alle Stoffe in drei Klassen einteilen:

Learn4Vet. Magnete. Man kann alle Stoffe in drei Klassen einteilen: Magnete Die Wirkung und der Aufbau lassen sich am einfachsten erklären mit dem Modell der Elementarmagneten. Innerhalb eines Stoffes (z.b. in ein einem Stück Eisen) liegen viele kleine Elementarmagneten

Mehr

6.4.2 Induktion erzeugt Gegenkraft ******

6.4.2 Induktion erzeugt Gegenkraft ****** V642 6.4.2 ****** Motivation Ein permanenter Stabmagnet wird durch einen luminiumring bewegt. Der dabei im Ring fliessende Induktionsstrom bewirkt, dass der Ring der Bewegung des Stabmagneten folgt. 2

Mehr

1 Gesetz von Biot-Savart

1 Gesetz von Biot-Savart 1 1 Gesetz von Biot-Savart d l: Längenelement entlang der Stromrichtung für eine beliebige Anordnung von Strömen gilt: L I = B( r 2 ) = µ 4π I L A I d l = j d A L ( B( r 2 ) = µ 4π A d l r 12 r12 3 dv

Mehr

Magnetfeld in Leitern

Magnetfeld in Leitern 08-1 Magnetfeld in Leitern Vorbereitung: Maxwell-Gleichungen, magnetischer Fluss, Induktion, Stromdichte, Drehmoment, Helmholtz- Spule. Potentiometer für Leiterschleifenstrom max 5 A Stufentrafo für Leiterschleife

Mehr

Wechselstromwiderstände (Impedanzen) Parallel- und Reihenschaltungen. RGes = R1 + R2 LGes = L1 + L2

Wechselstromwiderstände (Impedanzen) Parallel- und Reihenschaltungen. RGes = R1 + R2 LGes = L1 + L2 Wechselstromwiderstände (Impedanzen) Ohm'scher Widerstand R: Kondensator mit Kapazität C: Spule mit Induktivität L: RwR = R RwC = 1/(ωC) RwL = ωl Parallel- und Reihenschaltungen bei der Reihenschaltung

Mehr

Elektrisches Feld ================================================================== 1. a) Was versteht man unter einem elektrischen Feld?

Elektrisches Feld ================================================================== 1. a) Was versteht man unter einem elektrischen Feld? Elektrisches Feld 1. a) Was versteht man unter einem elektrischen Feld? b) Zwei Metallplatten, die mit der Ladung + Q bzw. Q aufgeladen sind, stehen sich parallel gegenüber. Zeichne das Feldlinienbild

Mehr

Ferienkurs der Experimentalphysik II Musterlösung Übung 3

Ferienkurs der Experimentalphysik II Musterlösung Übung 3 Ferienkurs der Experimentalphysik II Musterlösung Übung 3 Michael Mittermair 29. August 213 1 Aufgabe 1 Wie groß ist die Leistung, die von einem geladenen Teilchen mit der Ladung q abgestrahlt wird, das

Mehr

Elektrisches und magnetisches Feld. Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion

Elektrisches und magnetisches Feld. Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion Elektrisches und magnetisches Feld Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion Elektrostatik Elektrostatische Grundbegriffe Zusammenhang zwischen Ladung und Stromstärke

Mehr

THEMEN UND INHALTE TUTORIUM FÜR AUSLANDSSTUDENTEN 2

THEMEN UND INHALTE TUTORIUM FÜR AUSLANDSSTUDENTEN 2 THEMEN UND INHALTE Kapitel Themen Inhalte 1. Kapitel Made in Germany 1.1 Was in Ingenieurwesen? 1.2 Ingenieur Studium an der OTH Regensburg? 1.3 Überblick über die OTH Regensburg 1.4 Studienordnung: SWS,

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Leisi, Tipler, Gerthsen, Känzig, Alonso-Finn Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2002-2003

Mehr

2Fs m = 2 600N 0.225m. t = s v = 30m 30m/s = 1s = gt = 10 m s21s = 10m/s. v y. tanα = (v y /v x ) α = 18. m 1 v 1 = (m 1 + m 2 )v 2

2Fs m = 2 600N 0.225m. t = s v = 30m 30m/s = 1s = gt = 10 m s21s = 10m/s. v y. tanα = (v y /v x ) α = 18. m 1 v 1 = (m 1 + m 2 )v 2 Lösungen Vorschlag I: Massepunkte im Gravitationsfeld 1. (a) (b) Fallzeit = Flugzeit: a = F m v = 2as = v y 2Fs m = 2 600N 0.225m = 30 m/s 0.3kg t = s v = 30m 30m/s = 1s = gt = 10 m s21s = 10m/s v x α

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

R C 1s =0, C T 1

R C 1s =0, C T 1 Aufgaben zum Themengebiet Aufladen und Entladen eines Kondensators Theorie und nummerierte Formeln auf den Seiten 5 bis 8 Ein Kondensator mit der Kapazität = 00μF wurde mit der Spannung U = 60V aufgeladen

Mehr

Vorlesung Physik für Pharmazeuten PPh - 09 b

Vorlesung Physik für Pharmazeuten PPh - 09 b Vorlesung Physik für Pharmazeuten PPh - 09 b Elektrizitätslehre (II) 29.01.2007 IONENLEITUNG 2 Elektrolytische Leitfähigkeit Kationen und Anionen tragen zum Gesamtstrom bei. Die Ionenleitfähigkeit ist

Mehr

Physik-Skript. Teil II. Melanchthon-Gymnasium Nürnberg

Physik-Skript. Teil II. Melanchthon-Gymnasium Nürnberg Physik-Skript Teil II Melanchthon-Gymnasium Nürnberg Volker Dickel 3. überarbeitete Auflage, 2014 2. überarbeitete Auflage, 2012 1. Auflage 2009 Inhaltsverzeichnis EINLEITUNG: ELEMENTARTEILCHEN UND WECHSELWIRKUNGEN...

Mehr

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t. Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a

Mehr

6.4.8 Induktion von Helmholtzspulen ******

6.4.8 Induktion von Helmholtzspulen ****** V648 6.4.8 ****** Motivation Das Induktionsgesetz von Faraday wird mit einer ruhenden Leiterschleife im zeitabhängigen B-Feld und mit einer bewegten Leiterschleife im stationären B-Feld untersucht. 2 Experiment

Mehr

Magnetisches Induktionsgesetz

Magnetisches Induktionsgesetz Magnetisches Induktionsgesetz Michael Faraday entdeckte, dass ein sich zeitlich veränderndes Magnetfeld eine elektrische Spannung in einer Schleife oder Spule aus leitendem Material erzeugt: die Induktionsspannung

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #17 14/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Laden eines Kondensators Aufladen erfolgt durch eine Spannungsquelle, z.b. Batterie, die dabei

Mehr

ELEKTRIZITÄT & MAGNETISMUS

ELEKTRIZITÄT & MAGNETISMUS ELEKTRIZITÄT & MAGNETISMUS Elektrische Ladung / Coulombkraft / Elektrisches Feld Gravitationsgesetz ( = Gewichtskraft) ist die Ursache von Gravitationskonstante Coulombgesetz ( = Coulombkraft) Elementarladung

Mehr

Elektrotechnik II Formelsammlung

Elektrotechnik II Formelsammlung Elektrotechnik II Formelsammlung Achim Enthaler 20.03.2007 Gleichungen Allgemeine Gleichungen aus Elektrotechnik I siehe Formelsammlung Elektrotechnik I, SS2006 Maxwell Gleichungen in Integralform Durchutungsgesetz

Mehr

Elektrotechnik: Zusatzaufgaben

Elektrotechnik: Zusatzaufgaben Elektrotechnik: Zusatzaufgaben 1.1. Aufgabe: Rechnen Sie die abgeleiteten Einheiten der elektrischen Spannung, des elektrischen Widerstandes und der elektrischen Leistung in die Basiseinheiten des SI um.

Mehr

Elektrische Schwingungen und Wellen

Elektrische Schwingungen und Wellen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #4 am 0.07.2007 Vladimir Dyakonov Elektrische Schwingungen und Wellen Wechselströme Wechselstromgrößen

Mehr

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker 11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 19. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 19. 05.

Mehr

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2015-1 1 Aufgabe 1 ( 5 Punkte) Ein Elektronenstrahl ist entlang der z-achse gerichtet. Bei z = 0 und bei z = L befindet sich jeweils eine Lochblende, welche

Mehr

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2 IK Induktion Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfelder....................... 2 2.2 Spule............................ 2

Mehr

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016 Institut für Experimentelle Kernphysik, KIT Übungen zur Klassischen Physik II Elektrodynamik) SS 206 Prof. Dr. T. Müller Dr. F. Hartmann 2tes und letztes Übungsblatt - Spulen, Wechselstrom mit komplexen

Mehr

PS II - Verständnistest

PS II - Verständnistest Grundlagen der Elektrotechnik PS II - Verständnistest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 4 2 2 5 3 4 4 erreicht Aufgabe 8 9 10 11 Summe Punkte 3 3 3 2 35 erreicht Hinweise:

Mehr

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker 11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter

Mehr

Potential und Spannung

Potential und Spannung Potential und Spannung Arbeit bei Ladungsverschiebung: Beim Verschieben einer Ladung q im elektrischen Feld E( r) entlang dem Weg C wird Arbeit geleistet: W el = F C d s = q E d s Vorzeichen: W el > 0

Mehr

Vorstudienlehrgang der Wiener Universitäten VWU. Skriptum. Physik-Kurs

Vorstudienlehrgang der Wiener Universitäten VWU. Skriptum. Physik-Kurs Vorstudienlehrgang der Wiener Universitäten VWU Skriptum Physik-Kurs Abschnitt 6: Elektromagnetische Strahlung, Optik, ausgewählte Gebiete der modernen Physik Katharina Durstberger-Rennhofer Version Dezember

Mehr

Magnetische Induktion Φ = Der magnetische Fluss Φ durch eine Fläche A ist definiert als

Magnetische Induktion Φ = Der magnetische Fluss Φ durch eine Fläche A ist definiert als E8 Magnetische Induktion Die Induktionsspannung wird in Abhängigkeit von Magnetfeldgrößen und Induktionsspulenarten untersucht und die Messergebnisse mit den theoretischen Voraussagen verglichen.. heoretische

Mehr