Summenzeichen. Gymnasium Immensee Vertiefungskurs Mathematik. Bettina Bieri

Größe: px
Ab Seite anzeigen:

Download "Summenzeichen. Gymnasium Immensee Vertiefungskurs Mathematik. Bettina Bieri"

Transkript

1 Summenzeichen Gymnasium Immensee Vertiefungskurs Mathematik Bettina Bieri 24. Juli 2011

2 Inhaltsverzeichnis 1 Grundlagen: Summenzeichen Der Aufbau des Summenzeichens Aufgaben Sonderfälle Die untere und die obere Summationsgrenze sind gleich Die obere Summationsgrenze ist kleiner als die untere Schreibweise mit Intervallen Unendliche Summen Aufgaben Rechenregeln für das Summenzeichen Übungsmaterial Weiterführung Summenzeichen Indexverschiebung Indexverschiebung allgemein Regeln zur Indexverschiebung Aufgaben Doppelsummen Matrizen Doppelsummen Aufgaben Vollständige Induktion und spezielle Summen Beweise Vollständige Induktion Allgemeines Vorgehen bei vollständiger Induktion Beispiel Spezielle Summen Aufgaben Übungsmaterial

3 Kapitel 1 Grundlagen: Summenzeichen Auch im Grundlagenfach werdet ihr dem Summenzeichen begegnen. Allerdings wird dieses dort nur sehr oberflächlich behandelt, daher werden wir uns in diesem Kurs etwas detaillierter damit befassen. Im Studium werden lange Summen nie ausgeschrieben - es wird immer das Summenzeichen verwendet. Daher ist es wichtig, dass ihr mit dieser Schreibweise gut vertraut werdet. 1.1 Der Aufbau des Summenzeichens Wenn man lange Summen aufschreiben will, benutzt man das Summenzeichen. Beispiel 4 i=1 (2i i) = (2 1 1) + (2 2 2) + (2 3 3) + (2 4 4) = Natürlich kann man bei diesem Beispiel die Summe auch ausschreiben. Wenn wir uns nun aber vorstellen, dass wir alle ungeraden Zahlen bis 99 summieren möchten, würde dies sehr mühsam. Mit dem Summenzeichen geht auch das sehr einfach: 50 i=1 (2i 1). Allgemeine Definition Seien a 1,..., a n reelle Zahlen und n 2 eine natürliche Zahl. Die Summe der Zahlen a 1,..., a n wird bezeichnet mit: n i=1 a i = a 1 + a 2 + a a n. 1

4 Erklärung Das ist ein grosser, griechischer Buchstabe und heisst Sigma. Wenn wir ihn aber wie oben beschrieben verwenden, nennen wir ihn Summenzeichen. i=1 bedeutet, dass wir beim Summieren mit 1 beginnen. Danach wird das i bei jedem Summanden um eins erhöht, bis wir bei derjenigen Zahl angelangt sind, welche oberhalb des Summenzeichens steht. Dort hören wir mit dem Summieren auf. Die Summenzeichendarstellung besteht aus folgenden Elementen: 1. Bildungsgesetz der Summanden (im Beispiel: 2 i i) 2. Summationsvariable oder Laufindex mit Werten aus N (im Beispiel: i) 3. Summationsanfang oder untere Summationsgrenze (im Beispiel: i = 1) 4. Summationsende oder obere Summationsgrenze (im Beispiel: 4) 2

5 1.1.1 Aufgaben Aufgabe 1 Rechne die folgenden Ausdrücke aus: a) 3 i=1 4i b) 6 i=2 i c) 500 i=1 2i d) 2 i=1 log 2(i) e) 7 i=1 ( 1 i 1 i+1 ) f) n i=1 i g) n i=0 i Aufgabe 2 Schreibe die folgenden Summen mithilfe des Summenzeichens: a) b) c) d)

6 4

7 1.2 Sonderfälle Die untere und die obere Summationsgrenze sind gleich. In diesem Fall besteht die Summe aus nur einer Zahl: j i=j a i = a j Die obere Summationsgrenze ist kleiner als die untere. In diesem Fall ist das Ergebnis der Summe 0: Für n < j gilt: n i=j a i = Schreibweise mit Intervallen Sei i I, I eine Teilmenge der ganzen Zahlen und a i, i I reelle Zahlen, dann ist i I die Summe aller Zahlen a i, deren Index i in der Menge I enthalten ist. Beispiel Sei I = {1, 2, 3, 4}. Dann gilt: i I a i = 4 i=1 a i = a 1 + a 2 + a 3 + a Unendliche Summen Eine Summe muss nicht immer eine obere Grenze haben. Es gilt: i N a i = i=1 a i = a 1 + a 2 + a

8 1.2.5 Aufgaben Berechne die folgenden Summen: a) 0 i=0 2 b) 9 i=10 c) i I 1 i 2 14i+8 i, I = {2, 5, 10, 20} d) i I 1, I = {k k = 2n, n N, n < 4} i 2 6

9 1.3 Rechenregeln für das Summenzeichen Seien a 1,..., a n, b 1,..., b n, c, d reelle Zahlen und n eine natürliche Zahl. Für das Summenzeichen gelten folgende Rechenregeln: 1. Assoziativität der Addition: n i=1 a i = k i=1 a i + n i=k+1 a i mit k {1,..., n} 2. Distributivität: n i=1 (c a i) = c ( n i=1 a i) 3. Kommutativität der Addition: n i=1 (a i + b i ) = n i=1 a i + n i=1 b i 4. Kombination aus Kommutativität und Distributivität: n i=1 (c a i + d b i ) = c n i=1 a i + d n i=1 b i Es handelt sich dabei nicht um etwas Neues, sondern um die bereits bekannten Regeln, welche für die Addition mit wenigen Summanden bestens bekannt sind. 1.4 Übungsmaterial Falls ihr noch mehr üben möchtet, findet ihr Material auf verschiedenen Internetseiten. Zwei Beispiele gebe ich hier an. Ein Übungsblatt mit Lösungen gibt es unter: https : //home.zhaw.ch/ maz/aufgaben/f olgen R eihen/summenzeichen.pdf (Sinnvoll für euch sind die Aufgaben bis und mit Aufgabe 4.) Online-Aufgaben gibt es unter: http : //vilespc01.wiwi.uni oldenburg.de/navtest/viles1 (Deskriptive Statistik, Einführung und Grundlagen, Rechnen mit dem Summenzeichen) 7

10 Kapitel 2 Weiterführung Summenzeichen 2.1 Indexverschiebung Gelegentlich ist es nützlich, die Summationsgrenzen zu verschieben. Wie dies funktioniert ist an folgendem Beispiel gut ersichtlich: 2 i=1 a i = a 1 + a 2 = a a 4 2 = 4 i=3 a i Indexverschiebung allgemein n i=1 a i = n 1 i=0 a i+1 = n+1 i=2 a i 1 =... oder noch allgemeiner: Für jede natürliche Zahl k gilt: n i=1 a i = n k i=1 k a i+k = 1+k i=1+k a i k Regeln zur Indexverschiebung Bei einer Indexverschiebung sind folgende Regeln zu beachten: 1. Die obere und die untere Summationsgrenze werden um den selben Wert erniedrigt bzw. erhöht. 2. Der Summationsindex i wird in der Summation bei jedem Auftreten durch i + k bzw. i k ersetzt. Dabei ist insbesondere auf Minuszeichen vor dem Index i zu achten (1 i wird zu 1 (i + k) = 1 i k bzw. zu 1 (i k) = 1 i + k). 8

11 2.1.3 Aufgaben Berechne die folgenden Summen möglichst einfach mithilfe einer Indexverschiebung: a) 4 i=1 (i 1) b) 10 i=3 (2i 3) 2 8 i=1 i 8 c) n i=1 (a i a i 1 ) (Diese Art von Summen werden als Teleskopsummen bezeichnet.) 9

12 2.2 Doppelsummen In der Praxis kommt es oft vor, dass man zwei Summenzeichen hintereinander hat. Wir sprechen dann von Doppelsummen. Um Doppelsummen machen zu können, brauchen wir doppelindizierte Zahlen. Es handelt sich dabei um Zahlen, welche in einer sogenannten Matrix angeordnet sind Matrizen Matrizen sind rechteckige Gebilde, in denen Zahlen angeordnet sind. Definition: Matrix Eine rechteckige Anordnung von m n Zahlen a ik in m Zeilen und n Spalten wird (m n) Matrix (Mehrzahl Matrizen) genannt. Man schreibt: a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn Die Zahlen a ik heissen Komponenten von A. Das Element a ik bezeichnet das Element in der i-ten Zeile und der k-ten Spalte von A. Oft wird dieses Element auch mit (A) ik bezeichnet. Beispiel Sei die Matrix A = gegeben. Dann gilt: a 11 = 1, a 12 = 5, a 13 = 2, a 21 = 1, a 22 = 0, usw. 10

13 2.2.2 Doppelsummen Wenn wir nun alle Zahlen der oberen Matrix summieren wollen, brauchen wir eine Doppelsumme: 3 i=1 3 j=1 a ij = 3 i=1 (a i1 + a i2 + a i3 ) = (a 11 + a 12 + a 13 ) + (a 21 + a 22 + a 23 ) + (a 31 + a 32 + a 33 ) = ( ) + ( ) + ( ) = 17 Rechenregeln für Doppelsummen Auch bei Doppelsummen gilt die Kommutativität: Seien n, m natürliche Zahlen und a ij für i, j N, i n, j m reelle Zahlen, dann gilt für die Doppelsumme: m i=1 n j=1 a ij = n j=1 m i=1 a ij. Es spielt also keine Rolle, ob die Zahlen a ij zunächst zeilenweise summiert werden und dann die Summe über die Zeilensummen gebildet wird, ober ob zunächst spaltenweise summiert wird und dann die Summe über die Spaltensummen gebildet wird. 11

14 2.2.3 Aufgaben Berechne die folgenden Doppelsummen: a) 1 i=0 3 j=2 a ij b) 2 i=1 5 j=1 (2ij) c) 2 i=0 3 j=2 (2j i) 12

15 Kapitel 3 Vollständige Induktion und spezielle Summen Einige spezielle Summen lassen sich durch einfachere Formeln ersetzen. Da in der Mathematik nichts verwendet werden sollte, das man nicht bewiesen hat, werden wir hier zuerst eine wichtige Beweistechnik kennenlernen, sodass wir danach die Formeln, welche zu den speziellen Summen gehören, auch beweisen können. 3.1 Beweise Es gibt vier wichtige Beweistechniken. 1. Beweis durch Beispiel Diese Art von Beweisen ist sehr einfach, klappt nur bei ganz bestimmten Aussagen. Z.B.: Aussage: Es gibt Zahlen, die nicht durch zwei teilbar sind. Beweis: 3 ist eine Zahl und nicht durch zwei teilbar. 2. Direkter Beweis Beim direkten Beweis wird von bereits bekannten Dingen aus schrittweise auf die Aussage geschlossen. 3. Indirekter Beweis Beim indirekten Beweis nimmt man das Gegenteil der Aussage an und beweist, dass dieses nicht sein kann. 4. Vollständige Induktion Diese Beweistechnik werden wir im Folgenden kennenlernen. 13

16 3.2 Vollständige Induktion Diese Beweistechnik wird immer dann angewendet, wenn man etwas für alle natürlichen Zahlen beweisen will Allgemeines Vorgehen bei vollständiger Induktion Nennen wir die für eine natürliche Zahl n gemachte Aussage A n. Falls es gelingt zu zeigen, dass A 1 wahr ist und dass für alle natürlichen Zahlen n die Richtigkeit A n+1 aus der angenommenen Richtigkeit von A n gefolgert werden kann, dann ist der folgende Satz bewiesen: A n ist wahr für alle natürlichen Zahlen n Beispiel Behauptung Für alle natürlichen Zahlen n gilt die folgende Formel: n i=1 i = n(n+1) 2. Solche Summen heissen arithmetische Summen. Beweis n=1 1 i=1 i = 1 = 1(1+1) 2 n n+1 Wir können nun annehmen, dass die Behauptung für n gilt. Unter dieser Voraussetzung müssen wir nun beweisen, dass die Behauptung auch für n=n+1 richtig ist. Es ist also noch zu zeigen: n+1 i=1 i = (n+1)((n+1)+1) 2. 14

17 Dazu gehen wir folgendermassen vor: n+1 i=1 i = n n(n+1) i=1 i+(n+1) = +(n+1) = n(n+1) + 2(n+1) = n(n+1)+2(n+1) = n2 +n+2n+2 2 = n2 +3n+2 2 = (n+1)(n+2) 2 = (n+1)((n+1)+1) 2 (Das zweite Gleichheitszeichen ist korrekt, da wir ja annehmen dürfen, dass die Behauptung für n gilt.) 3.3 Spezielle Summen Im folgenden Unterkapitel werden Formeln für bestimmte Summen angegeben. Diese sollen auch gleich direkt oder mithilfe von vollständiger Induktion bewiesen werden Aufgaben Beweise folgende Formeln direkt oder mit vollständiger Induktion: a) Sei c R. Dann gilt n N: n i=1 c = n c. b) Sei c R. Dann gilt n, j N: n i=j c = (n j + 1) c. c) Es gilt n N: n i=1 i2 = n(n+1)(2n+1) 6. d) Sei c R. Dann gilt n N: n i=0 ci = 1 cn+1 1 c. (Solche Summen heissen geometrische Summen. Diese beweisen wir nicht mit vollständiger Induktion, sondern direkt mit einem Trick. Wir beginnen damit, dass wir uns die Summe (1 c) n i=0 ci anschauen.) e) Es gilt n N: n k=1 k3 = ( 1 n(n + 1))2 2 f) Die Summe aller ungeraden Zahlen von 1 bis 2n 1 ist gleich dem Quadrat von n n N. Sei also n N. Dann gilt: n i=1 (2n 1) = n2 15

18 16

19 17

20 3.4 Übungsmaterial Falls ihr noch mehr üben möchtet, findet ihr Material auf verschiedenen Internetseiten. Drei Beispiele gebe ich hier an. Erklärungen der Theorie mit Beispielen findet ihr unter: http : //delphi.zsg rottenburg.de/vollstind.html und unter: http : // ragenantworten/erstehilf e/induktion /induktion.html. Viele Aufgaben mit Lösungen findet ihr unter: http : // erate/induktion auf gaben loesungen.pdf (Speziell die Aufgaben aus B entsprechen unserem Thema. Allenfalls kann es aber interessant sein, die Vollständige Induktion auch an Aufgaben anzuschauen, die nichts mit Summen zu tun haben.) Literaturverzeichnis E. Cramer, J. Ne slehová, Vorkurs Mathematik, Springer-Verlag, Berlin Heidelberg, 2009 H. Heuser, Lehrbuch der Analysis, Teil 1, B. G. Teubner, Stuttgard,

Binomischer Lehrsatz. Gymnasium Immensee Vertiefungskurs Mathematik. Bettina Bieri

Binomischer Lehrsatz. Gymnasium Immensee Vertiefungskurs Mathematik. Bettina Bieri Binomischer Lehrsatz Gymnasium Immensee Vertiefungskurs Mathematik Bettina Bieri 24. Juli 20 Inhaltsverzeichnis Nötiges Vorwissen. Fakultät................................ Definition...........................2

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Lennéstraße 43, 1. OG pinger@uni-bonn.de September/Oktober 2017 JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Vorkurs Mathematik September/Oktober

Mehr

Zahlen 25 = = 0.08

Zahlen 25 = = 0.08 2. Zahlen Uns bisher bekannte Zahlenbereiche: N Z Q R ( C). }{{} später Schreibweisen von rationalen/reellen Zahlen als unendliche Dezimalbrüche = Dezimalentwicklungen. Beispiel (Rationale Zahlen) 1 10

Mehr

Rechenregeln für Summen

Rechenregeln für Summen Rechenregeln für Summen Im Umgang mit Summen sind gewisse Regeln zu beachten. 1 Summe gleicher Summanden Betrachten wir folgende Summe: x Hier enthält x keinen Summationsindex, d.h. es wird x einfach n-mal

Mehr

Lösung zu Serie 3. Lineare Algebra D-MATH, HS Prof. Richard Pink. Sei K ein beliebiger Körper.

Lösung zu Serie 3. Lineare Algebra D-MATH, HS Prof. Richard Pink. Sei K ein beliebiger Körper. Lineare Algebra D-MATH, HS 204 Prof. Richard Pink Lösung zu Serie 3 Sei K ein beliebiger Körper.. [Aufgabe] Sei n Z 0 eine gegebene nicht-negative ganze Zahl. Übersetzen Sie die folgenden Aussagen in eine

Mehr

1 Zahlenmengen und einige mathematische Symbole

1 Zahlenmengen und einige mathematische Symbole 1 Zahlenmengen und einige mathematische Symbole Inhalt 1.1 Vorbemerkung................................................... 3 1.2 Zahlenmengen................................................... 4 1.3 Summenzeichen..................................................

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Grundlagentest Bruchrechnen! Testfrage: Bruchrechnung 1 Wie lautet das Ergebnis

Mehr

MLAN1 1 MATRIZEN 1 0 = A T =

MLAN1 1 MATRIZEN 1 0 = A T = MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6. Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

Praktikum Einführung in die Mathematik 1 WS 2010/2011 Blatt 2 Lösungen

Praktikum Einführung in die Mathematik 1 WS 2010/2011 Blatt 2 Lösungen Praktikum Einführung in die Mathematik 1 WS 2010/2011 Blatt 2 Lösungen 27. bis 29. Oktober 2010 (1) Lösung von Aufgabe (1) : ad (a) : Die Aussage 2n + 1 < 2 n wird durch Induktion über n für alle n gezeigt.

Mehr

Demo für

Demo für SUMMENZEICHEN Regeln und Anwendungen Gebrauchs des Summenzeichens mit Aufgaben aus vielen Bereichen für Angela Datei Nr. 4 Stand:. Oktober INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Demo für 4 Summenzeichen

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Komplexe Zahlen 5 Lineare Algebra 6 Lineare Programme 2 Grundlegende

Mehr

Wirtschafts- und Finanzmathematik

Wirtschafts- und Finanzmathematik Prof. Dr. Stefan Etschberger HSA Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2016/17 Organisation Termine, Personen, Räume Gliederung 1 Grundlegende

Mehr

Axiomatische Beschreibung der ganzen Zahlen

Axiomatische Beschreibung der ganzen Zahlen Axiomatische Beschreibung der ganzen Zahlen Peter Feigl JKU Linz peter.feigl@students.jku.at 0055282 Claudia Hemmelmeir JKU Linz darja@gmx.at 0355147 Zusammenfassung Wir möchten in diesem Artikel die ganzen

Mehr

Vollständige Induktion

Vollständige Induktion Angenommen, wir wollen zeigen, dass eine Aussage P(n) für alle n N wahr ist. Anders ausgedrückt: Es gilt n N : P(n) Hierzu können wir die Technik der vollständigen Induktion verwenden. Wir zeigen, dass

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 8. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 8. Vorlesung 1 / 25 Themen

Mehr

1 Variablen. Wirtschaftswissenschaftliches Zentrum 0 Universität Basel. Statistik

1 Variablen. Wirtschaftswissenschaftliches Zentrum 0 Universität Basel. Statistik Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Statistik Dr. Thomas Zehrt Elementares Rechnen Variablen In vielen Vorlesungen während Ihres Ökonomiestudiums werden Ihnen mathematische Ausdrücke

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler wi Wirtschaft Pearson Studium Mathematik für Wirtschaftswissenschaftler Das Übungsbuch von Nils Heidenreich, Fred Böker, Britta Schnoor 1. Auflage Mathematik für Wirtschaftswissenschaftler Heidenreich

Mehr

Lineare Algebra. Gymnasium Immensee SPF PAM. Bettina Bieri

Lineare Algebra. Gymnasium Immensee SPF PAM. Bettina Bieri Lineare Algebra Gymnasium Immensee SPF PAM Bettina Bieri 6. Oktober 2011 Inhaltsverzeichnis 1 Matrizen 1 1.1 Einleitung............................. 1 1.2 Der Begriff Matrix........................ 1 1.2.1

Mehr

Summen, Indices und Multiindices

Summen, Indices und Multiindices Summen, Indices und Multiindices 1 Einleitung Möchten wir zwei Zahlen a und b addieren, so schreiben wir für gewöhnlich a + b. Genauso schreiben wir a + b + c, für die Summe von drei Zahlen a, b und c.

Mehr

Vollständige Induktion

Vollständige Induktion Kantonsschule Olten Hardwald 4600 Olten Vollständige Induktion Andreas Stoll Andreas Pulfer Erfänzungsfach Anwendungen der Mathematik (2017/18) 1 Beweisen 1.1 Axiome und Prämissen Bei einem Beweis wird

Mehr

2 Die Regeln der Algebra

2 Die Regeln der Algebra 15 2 Die Regeln der Algebra 2.1 Die reellen Zahlen Was versteht man unter reellen Zahlen? Die unendlichen Dezimalbrüche liefern eine ganz gute Vorstellung von ihnen, und das Rechnen mit solchen Dezimalbrüchen

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

Vollständige Induktion

Vollständige Induktion 30. September 008 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche Zahl hat genau einen Nachfolger d.h. n : (n N! n

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Vollständige Induktion

Vollständige Induktion Vollständige Induktion F. Lemmermeyer. Januar 04 Aussagen, die für alle natürlichen Zahlen gelten, kann man oft mit vollständiger Induktion beweisen. Das Vorgehen ist dabei folgendes:. Man zeigt, dass

Mehr

Vollständige Induktion

Vollständige Induktion 30. September 008 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen Kapitel 2 Die reellen Zahlen Die reellen Zahlen werden zunächst und vorübergehend als Dezimalzahlen eingeführt. Die wichtigsten Eigenschaften werden aus dieser Darstellung hergeleitet, mit denen dann die

Mehr

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit.

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit. Kapitel 4 Reelle Zahlen 4.1 Die reellen Zahlen (Schranken von Mengen; Axiomatik; Anordnung; Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die

Mehr

1 Das Prinzip der vollständigen Induktion

1 Das Prinzip der vollständigen Induktion 1 1 Das Prinzip der vollständigen Induktion 1.1 Etwas Logik Wir nennen eine Formel oder einen Satz der Alltagssprache eine Aussage, wenn sie wahr oder falsch sein kann. Die Formeln 2 = 3, 2 4, 5 5 sind

Mehr

Universität Innsbruck WS 2013/2014. Brückenkurs. Formale Konzepte. 3. Auflage. Harald Zankl. 15. Januar 2014

Universität Innsbruck WS 2013/2014. Brückenkurs. Formale Konzepte. 3. Auflage. Harald Zankl. 15. Januar 2014 Universität Innsbruck WS 013/014 Brückenkurs Formale Konzepte 3. Auflage Harald Zankl 15. Januar 014 Institut für Informatik Innsbruck, Österreich Inhaltsverzeichnis 1 Definition, Satz, Beweis 1.1 Aufgaben................................

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2011 Olga Holtz MA 378 Sprechstunde Fr 14-16 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 12-14 und nv jokar@mathtu-berlinde Kapitel

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

2 RECHENGESETZE 2 auch dieses Rechengesetz gilt, wenn einmal bewiesen, natürlich vorwärts wie rückwärts, also gilt dann ebenfalls: Es folgt wieder der

2 RECHENGESETZE 2 auch dieses Rechengesetz gilt, wenn einmal bewiesen, natürlich vorwärts wie rückwärts, also gilt dann ebenfalls: Es folgt wieder der 1 DEFINITION DER POTENZIERUNG 1 Potenzgesetze 1 Definition der Potenzierung Wir definieren für eine rationale Zahl a und eine natürliche Zahl n die Potenzierung wie folgt: a n := a a a ::: a Diese Art

Mehr

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z). 17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Zusatz: Einführung in die Mathematischen Beweistechniken

Zusatz: Einführung in die Mathematischen Beweistechniken Zusatz: Einführung in die Mathematischen Beweistechniken Quick-Start Informatik Theoretischer Teil WS 11/12 Jens Keppeler 7. Oktober 2011 Das folgende Zusatzskript, sowie die dazugehörigen Folien orientieren

Mehr

Mathematik für Informatiker II Übungsblatt 7

Mathematik für Informatiker II Übungsblatt 7 Mathematik für Informatiker II Übungsblatt 7 Vincent Blaskowitz Übungsblatt 7 vom 03.06.20 Aufgabe Aufgabenstellung Berechnen Sie die folgenden Logarithmen ohne Taschenrechner: i log 0,008 ii log 2 Lösung

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 9 20. Mai 2010 Kapitel 9. Matrizen und Determinanten Der Begriff der Matrix Die transponierte Matrix Definition 84. Unter einer (reellen) m n-matrix

Mehr

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +.

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +. Mathematik für Informatiker B, SS 202 Dienstag 2.6 $Id: reihen.tex,v.8 202/06/2 0:59:50 hk Exp $ 7 Reihen Eine Reihe ist eine unendliche Summe a + a 2 + a 3 +. Die Summanden a i können dabei reell oder

Mehr

Wirtschaftsmathematik für International Management (BA)

Wirtschaftsmathematik für International Management (BA) Wirtschaftsmathematik für International Management (BA) Wintersemester 2012/13 Hochschule Augsburg Logarithmen Wie löst man die Gleichung a x = b nach x auf? (dabei soll gelten a, b > 0 und a 1) Neues

Mehr

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0 Serie 4. Aufgabe 336 Punkte) Gegeben seien zwei reelle Zahlenfolgen durch a n : 0 n, n N b n : n n, n N Bestimmen Sie die Grenzwerte a bzw. b der Folgen a n ) n N bzw. b n ) n N. Geben Sie jeweils zu gegebenem

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken

Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Susanna Pohl Vorkurs Mathematik TU Dortmund 09.03.2015 Aussagen, Logik und Beweistechniken Aussagen und Logik Motivation

Mehr

3 Zahlen und Arithmetik

3 Zahlen und Arithmetik In diesem Kapitel werden Zahlen und einzelne Elemente aus dem Bereich der Arithmetik rekapituliert. Insbesondere werden die reellen Zahlen eingeführt und einige Rechenregeln wie Potenzrechnung und Logarithmieren

Mehr

6.2 Rechnen mit Matrizen

6.2 Rechnen mit Matrizen 62 Rechnen mit Matrizen 62 Rechnen mit Matrizen 103 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 95 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 6 Grundlagen der Mathematik Präsenzaufgaben (P9) Die Ordnung der natürlichen Zahlen I Wir hatten in der Vorlesung

Mehr

Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise

Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 15. November 2010 http://www.mathematik.uni-trier.de/

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 71 Reelle Matrizen Prof Dr Erich Walter Farkas Mathematik I+II, 71 Reelle Matrizen 1 / 31 1 2 3 4 Prof Dr Erich

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 81 Reelle Matrizen Prof Dr Erich Walter Farkas http://wwwmathethzch/ farkas 1 / 31 1 2 3 4 2 / 31 Transponierte einer Matrix 1 Transponierte

Mehr

Körperaxiome und Anordnungsaxiome. Analysis I. Guofang Wang. Universität Freiburg

Körperaxiome und Anordnungsaxiome. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 25.10.2011 Körperaxiome Wir setzen in dieser Vorlesung die reellen Zaheln als gegeben aus. Mit R bezeichnen wir die Menge aller reellen Zahlen, auf der folgende Strukturen gegeben

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 97 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann

Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann Reihen/Partialsummenfolgen und vollständige Induktion Robert Klinzmann 3. Mai 00 Reihen / Partialsummen 1 Inhaltsverzeichnis 1 Vorwort Das Prinzip der vollständigen Induktion 3 3 Herleitung der Gauß schen

Mehr

Lineare Algebra. Beni Keller SJ 16/17

Lineare Algebra. Beni Keller SJ 16/17 Lineare Algebra Beni Keller SJ 16/17 Matritzen Einführendes Beispiel Ein Betrieb braucht zur Herstellung von 5 Zwischenprodukten 4 verschiedene Rohstoffe und zwar in folgenden Mengen: Z 1 Z 2 Z Z 4 Z 5

Mehr

Partielle Ableitungen

Partielle Ableitungen Partielle Ableitungen Gymnasium Immensee Vertiefungskurs Mathematik Bettina Bieri 24. Juli 2011 Inhaltsverzeichnis 1 Funktionen von zwei Variablen 1 1.1 Aufbau solcher Funktionen.................... 1

Mehr

Kapitel 3. Natürliche Zahlen und vollständige Induktion

Kapitel 3. Natürliche Zahlen und vollständige Induktion Kapitel 3 Natürliche Zahlen und vollständige Induktion In Kapitel 1 haben wir den direkten Beweis, den modus ponens, kennen gelernt, der durch die Tautologie ( A (A = B) ) = B gegeben ist Dabei war B eine

Mehr

Mengenlehre. Aufgaben mit Lösungen

Mengenlehre. Aufgaben mit Lösungen Mengenlehre Aufgaben mit Lösungen Inhaltsverzeichnis 1 Hilfsmittel 1 1. Zahlenmengen........................................ 1 2. Symbole........................................... 1 3. Intervalle: Schreibweise...................................

Mehr

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 :

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : Blockmatrizen Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : 2 1 3 1 1 0 1 0 1 0 0 2 1 1 11 1 1 4 0 1 0 1 0 1 4 1 0 2 1 0 1 0 1 0 3 1 2 1 = 2 4 3 5 11 1 1 4 0 1 0 1 0 1 5 1 2 1 2 4 3 5

Mehr

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k).

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k). 4 Matrizenrechnung Der Vektorraum der m n Matrizen über K Sei K ein Körper und m, n N\{0} A sei eine m n Matrix über K: a a 2 a n a 2 a 22 a 2n A = = (a ij) mit a ij K a m a m2 a mn Die a ij heißen die

Mehr

Kapitel 3. Reelle Zahlen. Mit reellen Zahlen rechnen können wir im Prinzip schon. Wir können addieren, subtrahieren, multiplizieren und dividieren.

Kapitel 3. Reelle Zahlen. Mit reellen Zahlen rechnen können wir im Prinzip schon. Wir können addieren, subtrahieren, multiplizieren und dividieren. Kapitel 3 Reelle Zahlen Mit reellen Zahlen rechnen können wir im Prinzip schon. Wir können addieren, subtrahieren, multiplizieren und dividieren. Division durch Null ist nicht erlaubt! 3.1 Ergänzungen

Mehr

Kapitel 1 Die natürlichen und die ganze Zahlen

Kapitel 1 Die natürlichen und die ganze Zahlen Kapitel 1 Die natürlichen und die ganze Zahlen Inhalt 1.1 1.1 Vollständige Induktion z.b. z.b. 1+ 1+ 2 + 3 +...... + n = n(n+1)/2 1.2 1.2 Die Die Peano-Axiome Ein Ein Axiomensystem für für die die natürlichen

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

Elementare Mengenlehre

Elementare Mengenlehre Vorkurs Mathematik, PD Dr. K. Halupczok WWU Münster Fachbereich Mathematik und Informatik 5.9.2013 Ÿ2 Elementare Mengenlehre Der grundlegendste Begri, mit dem Objekte und Strukturen der Mathematik (Zahlen,

Mehr

Mengenoperationen, Abbildungen

Mengenoperationen, Abbildungen TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Z6 Rechengesetze für Mengenoperationen Lineare Algebra 1 WS 2006/07 en Blatt 3 06.11.2006 Mengenoperationen,

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 3 und lineare Gleichungssysteme und

Mehr

typische Beweismuster Allgemeine Hilfe Beweistechniken WS2014/ Januar 2015 R. Düffel Beweistechniken

typische Beweismuster Allgemeine Hilfe Beweistechniken WS2014/ Januar 2015 R. Düffel Beweistechniken Beweistechniken Ronja Düffel WS2014/15 13. Januar 2015 Warum ist Beweisen so schwierig? unsere natürliche Sprache ist oft mehrdeutig wir sind in unserem Alltag von logischen Fehlschlüssen umgeben Logik

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

Kapitel 14. Matrizenrechnung

Kapitel 14. Matrizenrechnung Kapitel 14 Matrizenrechnung Lineare Abbildungen und Matrizen Matrizenrechnung Ansatzpunkt der Matrizenrechnung sind die beiden mittlerweile wohlbekannten Sätze, welche die Korrespondenz zwischen linearen

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1 Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Zeigen Sie mit vollständiger Induktion:

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Summen von Potenzen. 8. April 2012

Summen von Potenzen. 8. April 2012 Summen von Potenzen 8. April 01 Inhaltsverzeichnis 1 Eine Übungsaufgabe zum Grenzwertbegriff 1.1 Herleitung nach dem Prinzip der Teleskopsumme.................... 1. Herleitung mit Hilfe der Differenzenfolge........................

Mehr

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 26.10.2011 Vollständige Induktion Wir unterbrechen jetzt die Diskussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Induktion kennenzulernen. Wir setzen

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite 1 / 170 Vollständige Induktion Kapitel 13 Vollständige Induktion Mathematischer Vorkurs TU Dortmund Seite 117 / 170 Vollständige

Mehr

Induktion und Rekursion

Induktion und Rekursion Induktion und Rekursion Induktion und Rekursion Vorkurs Informatik Theoretischer Teil WS 013/14. Oktober 013 Vorkurs Informatik WS 013/14 1/1 Vollständige Induktion Vorkurs Informatik WS 013/14 /1 Ziel

Mehr

$Id: reell.tex,v /11/15 13:12:24 hk Exp $

$Id: reell.tex,v /11/15 13:12:24 hk Exp $ $Id: reell.tex,v.8 200//5 3:2:24 h Exp $ 4 Die reellen Zahlen 4.3 Das Vollständigeitsaxiom Wir hatten das Supremum einer Menge M R als die leinste obere Schrane von M definiert, sofern eine solche überhaupt

Mehr

Matrizen und Drehungen

Matrizen und Drehungen Matrizen und Drehungen 20. Noember 2003 Diese Ausführungen sind im wesentlichen dem Skript zur Vorlesung Einführung in die Theoretische Physik I und II on PD Dr. Horst Fichtner entnommen. Dieses entstand

Mehr

Abschnitt: Folgen, Reihen, Grenzwerte

Abschnitt: Folgen, Reihen, Grenzwerte Abschnitt: Folgen, Reihen, Grenzwerte Entwicklung von Mathematikaufgaben Realschule 1960: Ein Bauer verkauft einen Sack Kartoffeln für 50 DM. Die Erzeugerkosten betragen 40 DM. Berechne den Gewinn! Sekundarstufe

Mehr

$Id: reell.tex,v /11/06 13:37:36 hk Exp $ M := {na n N} R. (n + 1)a = na + a > s a + a = s,

$Id: reell.tex,v /11/06 13:37:36 hk Exp $ M := {na n N} R. (n + 1)a = na + a > s a + a = s, $Id: reell.tex,v 1.49 2017/11/06 13:37:36 hk Exp $ 1 Die reellen Zahlen 1.4 Das Vollständigkeitsaxiom In der letzten Sitzung haben wir die Axiome der reellen Zahlen vervollständigt, insbesondere haben

Mehr

Vollständige Induktion

Vollständige Induktion Schweizer Mathematik-Olympiade smo osm Vollständige Induktion Aktualisiert: 1 Dezember 01 vers 100 Eine der wichtigsten Beweistechniken der Mathematik überhaupt ist die (vollständige) Induktion Wir nehmen

Mehr

4. Übungsblatt zur Mathematik II für Inf, WInf

4. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof Dr Streicher Dr Sergiy Nesenenko Pavol Safarik SS 010 11 15 Mai 4 Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G13 (Basistransformation) ( ) 15 05 Die lineare

Mehr

1 Lineare Gleichungssysteme und Matrizen

1 Lineare Gleichungssysteme und Matrizen 1 Lineare Gleichungssysteme und Matrizen Das Studium linearer Gleichungssysteme und ihrer Lösungen ist eines der wichtigsten Themen der linearen Algebra. Wir werden zunächst einige grundlegende Begriffe

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen Mathematik für Physiker I, WS 200/20 Freitag 0.2 $Id: folgen.tex,v. 200/2/06 :2:5 hk Exp $ $Id: reihen.tex,v. 200/2/0 4:4:40 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Cauchyfolgen Wir kommen nun

Mehr

Hinweise zur Logik. Ergänzung zu den Übungen Mathematische Grundlagen der Ökonomie am 22. Oktober 2009

Hinweise zur Logik. Ergänzung zu den Übungen Mathematische Grundlagen der Ökonomie am 22. Oktober 2009 Hinweise zur Logik Ergänzung zu den Übungen Mathematische Grundlagen der Ökonomie am 22. Oktober 2009 Im folgenden soll an einige Grundsätze logisch korrekter Argumentation erinnert werden. Ihre Bedeutung

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2013/14 Inhalt Übungserklärung* Beweis durch Vollständige Induktion 2

Mehr

Kapitel 16. Invertierbare Matrizen

Kapitel 16. Invertierbare Matrizen Kapitel 16. Invertierbare Matrizen Die drei Schritte des Gauß-Algorithmus Bringe erweiterte Matrix [A b] des Gleichungssystems A x auf Zeilenstufenform [A b ]. Das System A x = b ist genau dann lösbar,

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Komplexe Zahlen 5 Lineare Algebra 6 Lineare Programme 5 Lineare Algebra

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr