4. Parallelität ohne Metrik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "4. Parallelität ohne Metrik"

Transkript

1 4. Parallelität ohne Metrik In der Euklidischen Geometrie wird nicht gemessen. as hat zwei Gründe. Erstens, gab es bei den Griechen noch kein entwickeltes Stellenwertsystem. Zweitens, haben sie ja schon früh zwingend bewiesen, dass nicht alle Strecken meßbar sind (z.., wie wir wissen, nicht die iagonale im Quadrat). as Grundproblem der antiken griechischen Mathematik bestand deshalb darin, eine Geometrie zu entwickeln in der nicht gemessen wird (d.h. eine Geometrie ohne Metrik, wie wir heute sagen würde). ies ist Geometrie auf einem theoretisch ganz fundamentalen Niveau. ie Griechen haben dann sehr früh erkannt, dass das entscheidende theoretische Problem in einer Geometrie ohne Metrik die Formulierung von Parallelität ist. Man wird erst dann in der Lage sein Gegenstände der Geometrie parallel zu verschieben, wenn man weiß was Parallelität ist. Und gibt es, so werden sich die Griechen gefragt haben, überhaupt Geometrie in einem sinnvollen Sinne, wenn man nicht weiß, wie man Gegenstände in ihr parallel verschiebt? ie Griechen haben daraus den Schluß gezogen, daß man erst theoretisch einwandfrei klären muß, was eine Parallele ist und dass man danach theoretisch einwandfrei beweisen muß, daß es Parallelen gibt. as ist es, was wir in dieser 4. Vorlesung nachvollziehen wollen. Erst sehr viel später (gegen Endes 19. Jahrhunderts) haben Mathematiker und Physiker gelernt, daß der egriff der Parallelität eigentlich noch viel fundamentaler ist als der der Existenz von Parallelen. Man kann Parallelität auch definieren, wenn man keine Parallelen im Sinne der Euklidischen Geometrie hat (man braucht stattdessen den egriff des Zusammenhangs von Levi-ivita). iese Erkenntnisse hat dann zu neuartigen, ganz fundamentalen Einsichten in Raum und Zeit geführt - bis hin zu Relativitätstheorie, Quantentheorie und (heute) Stringtheorie.

2 48. Geometrie (L2) 1. Existenz und Eindeutigkeit von Parallelen. Wir kommen nun zur Existenz von Parallelen. Nach einigen Vorbereitungen wird dies in [Euklid I 31] unten bewiesen. as Ganze was hier folgt ist ein Lehrstück in axiomatischer Mathematik, und man kann den systematischen und delikaten ufbau der Euklidischen Mathematik auch hier nur bewundern. ie ganze Herleitung der Parallelen ist nicht nur wissenschaftlich einwandfrei, sondern hat auch ein ästhetisches Moment der Schönheit. ufgabe. [Euklid, I 22] (Konstruktion eines reiecks) Seien drei Strecken a,b,c gegeben mit a + b > c,b + c > a,c + a > b. Konstruiere ein reieck mit Seiten, die den Strecken a,b,c gleich sind. K a c a F b G c H Lösung. Man ziehe eine gerade Linie E und trage [Euklid, I 3] ab. F = a, FG = b und GH = c Man ziehe (Post. 3) einen Kreis mit Mittelpunkt F und Radius a und einen Kreis mit Mittelpunkt G und Radius c. ann ist (ef. 15) FK = F = a und KG = FG = b da KF Radius des Kreises um F und KG Radius des Kreises um G. amit erfüllt das schraffierte reieck die ufgabe.

3 4 Parallelität 49 ufgabe. [Euklid, I 23] (Konstruktion eines Winkels) Es sei ein Winkel E und eine Strecke gegeben. Man trage an im Punkt einen Winkel F ab mit E = F. F E G Lösung. Man wähle auf den Schenkeln des gegebenen Winkels E beliebig zwei Punkte, E. Man trage ufgabe [Euklid I 3] auf die Strecke G ab mit G = E. Man konstruiere ufgabe [Euklid I 22] ein reieck FG mit F = und FG = E. ann ist insgesamt G = E, F =, FG = E. lso stimmen die Seiten der beiden reiecke FG und E paarweise überein Somit ist (zweiter Kongruenzsatz) [Euklid I 8] FG = E und insbesondere FG = E. emerkung. Man sieht, dass bei Euklid der gesuchte Winkel nicht einfach durch Parallelverschiebung erhalten wird. ies geht auch noch nicht, weil man dazu Parallelen braucht und man erst noch die Existenz von Parallelen beweisen muss!

4 50. Geometrie (L2) Satz. [Euklid, I 27] Wenn eine gerade Linie EF beim Schnitt mit zwei geraden Linien, einander gleiche (innere) Wechselwinkel bildet, d.h. EF = EF, dann müssen diese geraden Linien einander parallel sein. E G F ngenommen und sind nicht parallel. ann müssen sie sich nach einer Seite hin treffen, etwa im Punkt G (ef 23). ann wäre EF G ein reieck mit EF = EF G. ies aber widerspricht [Euklid I 16]. ufgabe. [Euklid 31] Sei ein Punkt und eine Strecke gegeben. Man ziehe durch eine gerade Linie die zu parallel ist. E F Lösung. Man wähle einen Punkt auf der geraden Linie beliebig. Man ziehe. Man trage an die gerade Linie im Punkte auf ihr E = an [Euklid 23]. Man verlängere E gerade um die gerade Linie F. ann ist EF parallel zu [Euklid I 27] (denn die gerade Linie bildet beim Schnitt mit den zwei geraden Linien, EF einander gleiche Wechselwinkel, nämlich E = ).

5 2. Konstruktion des Quadrats. 4 Parallelität 51 Wir haben schon gesehen, dass die Griechen das 5-Eck konstruieren konnten. Sie haben sicher nach einer systematischen Methode gesucht alle n-ecke zu konstruieren. Sie konnten aber nur noch das 3-Eck, 4-Eck, 6-Eck und das 15-Eck konstruieren. Wir behandeln hier noch die Konstruktion des Quadrats = gleichseitiges und rechtwinkliges 4-Eck (ef. 22). Satz. [Euklid I 29] Sei EF eine geraden Linie die zwei parallele Strecken, schneidet. ann gilt GH = GH, EG = GH, GH + GH = 2R. E G H ad (1) ngenommen GH GH. ann müsste einer der Winkel größer sein. Sei GH > GH. ann wäre GH + GH > GH + GH ber GH + GH = 2R [Euklid I 13]. lso wären GH + GH < 2R. Von Winkeln aus, die zusammen < 2R sind, ins unendliche verlängerte gerade Linien treffen sich aber (Post. 5). lso müßten sich,, bei Verlängerung ins Unendliche, treffen. Sie treffen sich aber nicht, da sie nach Voraussetzung parallel sind (ef. 23). lso ist F GH = GH. ad (2) Weiter ist GH = EG [Euklid I 15]; also auch EG = GH.

6 52. Geometrie (L2) ad (3) Es ist EG + GH = GH + GH ber EG + GH = 2R [Euklid I 13]. lso sind auch GH + GH = 2R ies war zu zeigen. Satz. [Euklid I 34] Im Parallelogramm ist =, = und =, =, und die iagonalen und halbieren es. Es ist [Euklid I 29] =, da und parallel sind und sie von der geraden Linie geschnitten werden. Ebenso ist =, da und parallel sind und von gschnitten werden. emnach sind, zwei reiecke mit gemeinsamer Seite und =, = lso müssen (Kongruenzsatz) [Euklid I 26] und kongruent sein. Insbesondere halbiert die iagonale das Parallelogramm. Weiter sind alle Seiten und Winkel der reiecke paarweise gleich. Insbesondere ist =, = und =. Und so (x. 2) =, da =, =.

7 4 Parallelität 53 ufgabe. [Euklid I 46] Man zeichne über einer gegebenen Strecke das Quadrat. E ad (1) Man ziehe, rechtwinklig zur Strecke [Euklid I 11] und trage = ab [Euklid I 3]. Man ziehe durch die Parallele E zu und durch die Parallele E zu [Euklid I 31]. ann ist [Euklid I 34] = E und = E, d.h. E ist ein Parallelogramm. ber lso sind (x. 1) = = = E = E. as Parallelogramm E ist somit gleichseitig. ad (2) Weiter ist [Euklid I 29] + E = 2R da,e Parallelen sind, die von der geraden Linie geschnitten werden. Weiter ist = R. lso ist auch (x. 3) ann sind weiter E = R. E = R und E = R, da im Parallelogramm die gegenüberliegenden Seiten und Winkel einander gleich sind [Euklid I 34]. as Parallelogramm E ist somit rechtwinklig. Literatur: Euklid, ie Elemente

2. Kongruenzsätze (SWS und SSS) ohne Parallelen.

2. Kongruenzsätze (SWS und SSS) ohne Parallelen. 2. Kongruenzsätze (SWS und SSS) ohne Parallelen. In diesem Kapitel beginnen wir mit der systematischen ufstellung der Euklidischen Geometrie wie man sie in [Euklid, Elemente] findet. ls erstes Lehrstück

Mehr

3. Vorlesung. Die Existenz des Pentagons. (*)

3. Vorlesung. Die Existenz des Pentagons. (*) 3. Vorlesung. ie Existenz des Pentagons. (*) In dieser Vorlesung werden wir sehen wie die Griechen bewiesen haben, dass es das Pentagon wirklich gibt. ieser eweis ist schon recht anspruchsvoll. So anspruchsvoll,

Mehr

4. Kongruenz ohne Parallelen.

4. Kongruenz ohne Parallelen. 4. Kongruenz ohne Parallelen. Den Griechen war bald klar, dass es bei einer solchen fundamentalen Frage, wie der nach der Existenz eines Pentagons, nicht mehr um noch so clevere geometrische Tricks gehen

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

3. Die pythagoräische Geometrie.

3. Die pythagoräische Geometrie. II. Geometrie. 3. Die pythagoräische Geometrie. Neben der Zahlenlehre haben sich die Pythagoräer auch mit Geometrie beschäftigt. Schließlich ist ja der bekannte Satz des Pythagoras eng mit ihrem Namen

Mehr

2.3 Sätze und Konstruktionen

2.3 Sätze und Konstruktionen 43 2.3 Sätze und Konstruktionen Proposition 1. Über einer gegebenen Strecke kann ein gleichseitiges reieck errichtet werden. eweis: ie ormulierung ist etwas eigenartig. ber viele der euklidischen Sätze

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Grundlagen der Geometrie

Grundlagen der Geometrie Grundlagen der Geometrie Vorlesungsausarbeitung zum WS 2010/11 von Prof. Dr. K. Fritzsche ii Inhalt 0 Grundlagen der Schulgeometrie 1 I Die Elemente : Inzidenz und Anordnung 9 1. Die deduktive Methode

Mehr

Konstruktion: Konstruktion: Konstruktion: Konstruktion: Konstruktion: Konstruktion:

Konstruktion: Konstruktion: Konstruktion: Konstruktion: Konstruktion: Konstruktion: Lösungen Geometrie-ossier 7 - Ebene Figuren eiten 7/ 8 ufgaben reiecke (ie Lösungen sind verkleinert gezeichnet. ie hier vorgeschlagenen Konstruktionswege sind nur eispiele unter einige Möglichkeiten.)

Mehr

31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen

31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen 31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen 1 OJM 31. Mathematik-Olympiade 1. Stufe (Schulrunde) Klasse 7 Aufgaben Hinweis: er Lösungsweg mit Begründungen

Mehr

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss.

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss. 1. Konvexität in der absoluten Ebene In einem Dreieck in der Euklidischen Ebene hat die Strecke zwischen zwei Seitenmittelpunkten die halbe Länge der dritten Seite. In der absoluten Ebene hat man eine

Mehr

Grundwissen. 7. Jahrgangsstufe. Mathematik

Grundwissen. 7. Jahrgangsstufe. Mathematik Grundwissen 7. Jahrgangsstufe Mathematik Grundwissen Mathematik 7. Jahrgangsstufe Seite 1 1 Geometrie 1.1 Grundkonstruktionen Lotkonstruktion I: Gegeben ist die Gerade g und der Punkt P, der nicht auf

Mehr

Euklid von Alexandria

Euklid von Alexandria Euklid von Alexandria lebte ca. 360 v. Chr. bis ca. 280 v. Chr. systematisierte in 13 Büchern ( Elemente ) das mathematische Wissen der Antike - bis ins 19. Jahrhundert nach Bibel das am meisten verbreitete

Mehr

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE MATHEMATIK Lehreinheit 11 Geometrie: Dreiecke und Vierecke II GEOMETRIE:

Mehr

MAT746 Seminar über Euklidische Geometrie Philipp Becker

MAT746 Seminar über Euklidische Geometrie Philipp Becker MAT746 Seminar über Euklidische Geometrie Philipp Becker R David Hilbert (1862-1943) Den Begriffen aus der Anschauungswelt fehlt die notwendige mathematische Exaktheit. Gebäude der Geometrie soll nicht

Mehr

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck.

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. Beweise 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. (a) Gib Satz und Kehrsatz in der Wenn-dann-Form an! (b) Ist die Voraussetzung des Satzes notwendig,

Mehr

5. Flächenlehre ohne Rechnen

5. Flächenlehre ohne Rechnen 5. Flächenlehre ohne Rechnen Die Zielsetzung. Was ist der Flächeninhalt eines Quadrats? Zunächst erscheint die Frage als ganz leicht zu beantworten: man messe die Länge der Quadratseite und quadriere die

Mehr

Zum Einstieg. Mittelsenkrechte

Zum Einstieg. Mittelsenkrechte Zum Einstieg Mittelsenkrechte 1. Zeichne einen Kreis um A mit einem Radius r, der größer ist, als die Länge der halben Strecke AB. 2. Zeichne einen Kreis um B mit dem gleichen Radius. 3. Die Gerade durch

Mehr

Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller

Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller Übungsblatt 13 Dieses Übungsblatt wird nicht mehr zur Abgabe vorgesehen. Es dient der Wiederholung

Mehr

Geometrie der Polygone Konstruktionen Markus Wurster 1

Geometrie der Polygone Konstruktionen Markus Wurster 1 Geometrie der Polygone Teil 6 Klassische Konstruktionen Geometrie der Polygone Konstruktionen Markus Wurster 1 Sechseck Gegeben ist der Umkreis des Sechsecks Zeichne einen Kreis mit dem gewünschten Radius

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 7 Aufgabe 1. Skizze (mit zusätzlichen Punkten): Die Figur F wird begrenzt durch die Strecken AB und BC und den Kreisbogen CA auf l. Wir werden die Bilder von AB, BC und CA unter der Inversion

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Dreiecke und Vierecke

Dreiecke und Vierecke 1. Von einem reieck weiß man: (a) a = 5cm, = 65 und γ = 50 (b) a = b und β = 60 reiecke und Vierecke Fertige jeweils für den Fall (a) und für den Fall (b) eine Planfigur an. egründe damit die besonderen

Mehr

Übungsaufgaben Repetitionen

Übungsaufgaben Repetitionen TG TECHNOLOGISCHE GRUNDLAGEN LÖSUNGSSATZ Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Übungsaufgaben Repetitionen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut

Mehr

VORANSICHT. Das Geodreieck als Mess- und Prüfinstrument. 1 Mit der langen Seite kannst du messen und gerade Linien zeichnen.

VORANSICHT. Das Geodreieck als Mess- und Prüfinstrument. 1 Mit der langen Seite kannst du messen und gerade Linien zeichnen. 1 as Geodreieck als Mess- und Prüfinstrument VORNSI 1. Lies die Sätze. Ordne den ildern die richtige Nummer zu. 1 Mit der langen Seite kannst du messen und gerade Linien zeichnen. 2 Mit der Mittellinie

Mehr

Ebene und. Gerade, 2. Punkte A, B, C,..., die auf einer Geraden liegen, heißen kollinear.

Ebene und. Gerade, 2. Punkte A, B, C,..., die auf einer Geraden liegen, heißen kollinear. 16 3 Das Axiomensystem Motiviert von den Elementen des Euklid, wollen wir jetzt ein modernes Axiomensystem für die Ebene Geometrie aufstellen. Zum ersten Mal wurde das um 1900 von David Hilbert geleistet,

Mehr

Didaktik der Elementargeometrie

Didaktik der Elementargeometrie Humboldt-Universität zu Berlin Sommersemester 2014. Institut für Mathematik A. Filler Zusammenfassende Notizen zu der Vorlesung Didaktik der Elementargeometrie 2 Konstruieren im Geometrieunterricht Konstruieren

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfungsdauer: 50 Minuten bschlussprüfung 00 an den Realschulen in ayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: ufgabe Nachtermin.0 ie nebenstehende Skizze zeigt ein Schrägbild des Würfels

Mehr

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind. 1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

Übungen aus dem Buch: 65/15; 69/16; 74/8; 97/9a; 101/6c; 101/8; 106/10; 108/Beweise; 116/8a Aufgaben auf S. 151: 1; 2; 3; 4; 5; c Mc.

Übungen aus dem Buch: 65/15; 69/16; 74/8; 97/9a; 101/6c; 101/8; 106/10; 108/Beweise; 116/8a Aufgaben auf S. 151: 1; 2; 3; 4; 5; c Mc. AB 25, Seite 1 Satz von Thales 8e 08.03.2012 Aus alten Klassenarbeiten: 1) Trapez: Gegeben ist ein Trapez mit den gegenüber liegenden Seiten a und c und der Höhe h a auf a. Erläutere mit einer Skizze,

Mehr

Geometrische Konstruktionen Die Macht der Werkzeuge. Zirkel allein. Christian Dick

Geometrische Konstruktionen Die Macht der Werkzeuge. Zirkel allein. Christian Dick Geometrische Konstruktionen ie Macht der Werkzeuge Zirkel allein hristian ick dick@in.tum.de Letzte Woche Was ist mit Lineal und Zirkel konstruierbar? 2 Zirkel allein hristian ick TU München SS 2004 Heute

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $ $Id: dreieck.tex,v 1.6 2013/04/18 15:03:29 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck Wir hatten gerade begonnen uns mit den speziellen Punkten im Dreieck zu beschäftigen. Dabei beschränken

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 25 Auch Albrecht Dürer hatte Spaß an der Quadratur des Kreises Unter den drei klassischen Problemen der antiken Mathematik versteht

Mehr

3 Geometrisches Beweisen

3 Geometrisches Beweisen 22 3 Geometrisches Beweisen 3.1 Axiome Durch empirische Untersuchungen werden immer wieder Gesetzmäßigkeiten gefunden, die man versucht durch logische Schlüsse zu begründen. Irgendwann am Ende einer Schlusskette

Mehr

Anwendungen in geometrischen Konstruktionen (Konstruktionen nur mit Zirkel)

Anwendungen in geometrischen Konstruktionen (Konstruktionen nur mit Zirkel) nwendungen in geometrischen Konstruktionen (Konstruktionen nur mit Zirkel) Frage,r, sind gegeben. Kann man I,r () mit Zirkel und Lineal konstruieren? ntwort Man kann I,r () sogar nur mit Zirkel konstruieren.

Mehr

Geometrie der Polygone Zirkel und Lineal Markus Wurster 1

Geometrie der Polygone Zirkel und Lineal Markus Wurster 1 Geometrie der Polygone Teil 5 Zirkel und Lineal Geometrie der Polygone Zirkel und Lineal Markus Wurster 1 Die klassische Methode mit Zirkel und Lineal Wenn wir Geometrie treiben, verwenden wir dazu oft

Mehr

Der Weg zur Wirklichkeit

Der Weg zur Wirklichkeit Der Weg zur Wirklichkeit Die Teilübersetzung für Seiteneinsteiger Bearbeitet von Roger Penrose, Anita Ehlers 1. Auflage 2010. Taschenbuch. XXXVI, 357 S. Paperback ISBN 978 3 8274 2341 2 Format (B x L):

Mehr

Konstruktionen mit Zirkel und Lineal

Konstruktionen mit Zirkel und Lineal Konstruktionen mit Zirkel und Lineal Vor den eigentlichen Konstruktionen möchte ich einige emerkungen zu Faltungen machen, da sie leider in der Schule ein Stiefkind darstellen. Mit anderen Worten, sie

Mehr

4. Landeswettbewerb Mathematik Bayern 2. Runde 2001/2002 Aufgaben und Lösungsbeispiele

4. Landeswettbewerb Mathematik Bayern 2. Runde 2001/2002 Aufgaben und Lösungsbeispiele 4. Landeswettbewerb athematik ayern. Runde 00/00 ufgaben und Lösungsbeispiele ufgabe In einem Viereck sind die Seiten [], [] und [] gleich lang. ie Seite [] hat die gleiche Länge wie die iagonale []. iese

Mehr

Geometrie I - Winkeljagd

Geometrie I - Winkeljagd Schweizer Mathematik-Olympiade smo osm Geometrie I - Winkeljagd aniel Sprecher ktualisiert: 1. ezember 2015 vers. 1.0.0 Inhaltsverzeichnis 1 Einleitung 2 2 Winkel im reieck 2 3 Winkel im Kreis 5 4 Sehnenvierecke

Mehr

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2.

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2. GEOMETRIE PRÜFUNGSVORBEREITUNG Seite 1 Geometrie Winkel und Vierecke PRÜFUNG 02 Name: Klasse: Datum: : Note: Ausgabe: 2. Mai 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

DIE ELEMENTE EUKLID BUCH I-XIII CLEMENS THAER -.^AD'TLICHE BUCHGESELLSCHAFT DARMSTADT

DIE ELEMENTE EUKLID BUCH I-XIII CLEMENS THAER -.^AD'TLICHE BUCHGESELLSCHAFT DARMSTADT EUKLID DIE ELEMENTE BUCH I-XIII h^ Nach Heibergs Text aus dem Griechischen übersetzt und herausgegeben von CLEMENS THAER WISS1 -.^AD'TLICHE BUCHGESELLSCHAFT DARMSTADT VI Inhaltsverzeichnis X. BUCH Definitionen

Mehr

Der Feuerbach Kreis oder Neun Punkte Kreis 1. Der Feuerbach Kreis oder Neun Punkte Kreis

Der Feuerbach Kreis oder Neun Punkte Kreis 1. Der Feuerbach Kreis oder Neun Punkte Kreis er euerbach Kreis oder eun unkte Kreis 1 Geometrie er euerbach Kreis oder eun unkte Kreis utor: eter ndree Inhaltsverzeichnis 6 er euerbach Kreis oder eun unkte Kreis 1 6.1 Vorbemerkungen und Satz über

Mehr

Drei Kreise im Dreieck

Drei Kreise im Dreieck Ein Problem von, 171-1807 9. Juli 006 Gegeben sei das Dreieck ABC. Zeichne drei Kreise k 1, k, k im nneren von ABC, von denen jeder zwei Dreieckseiten und mindestens einen der übrigen zwei Kreise berührt

Mehr

3.1.1 Satz: (sws) Zwei Dreiecke sind kongruent, wenn sie ï

3.1.1 Satz: (sws) Zwei Dreiecke sind kongruent, wenn sie ï 3 Dreiecke 3.1 Grundlegende Sätze (zum Teil bewiesen in den Übungen) 3.1.1 Satz: (sws) Zwei Dreiecke sind kongruent, wenn sie ï 2 1 bereinstimmen in zwei Seiten und dem dazwischenliegenden Winkel. 3.1.2

Mehr

Beispiellösungen zu Blatt 3

Beispiellösungen zu Blatt 3 µathematischer κorrespondenz- zirkel ufgabe 1 eispiellösungen zu latt 3 Mathematisches Institut Georg-ugust-Universität Göttingen Statistiken besagen, dass unter 1000 Menschen 35 zu hohen lutdruck haben.

Mehr

21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen

21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 1 OJM 21. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

3 Nichteuklidische Geometrie

3 Nichteuklidische Geometrie 3 Nichteuklidische Geometrie 3.1 eweisversuche Schon früh störte Euklids Postulat V die ihm nachfolgenden Mathematiker, vor allem aus ästhetischen Gründen. Man kam zu der uffassung, das Postulat müsste

Mehr

Euklids Elemente Buch I und Parallelentheorie

Euklids Elemente Buch I und Parallelentheorie Universität Duisburg Essen Seminar: Quellen zur Geschichte der Mathematik Wintersemester 2006/2007 Dozent: Professor Dr. Jahnke Referatsausarbeitung Euklids Elemente Buch I und Parallelentheorie Vorgelegt

Mehr

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile Geometrie I (Sommersemester 006, Dr. Christian Werge, chwerge@web.de) Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile (Die Lösungen liegen in einer anderen Datei vor, bitte erst

Mehr

Achsen- und punktsymmetrische Figuren

Achsen- und punktsymmetrische Figuren Achsensymmetrie Der Punkt P und sein Bildpunkt P sind symmetrisch bzgl. der Achse s, wenn ihre Verbindungsstrecke [PP ] senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische......strecken

Mehr

Repetition Begriffe Geometrie. 14. Juni 2012

Repetition Begriffe Geometrie. 14. Juni 2012 Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte

Mehr

Klausur zur Akademischen Teilprüfung, Modul 2,

Klausur zur Akademischen Teilprüfung, Modul 2, PH Heidelberg, Fach Mathematik Klausur zur Akademischen Teilprüfung, Modul, GHPO I vom.7.003, RPO vom 4.08.003 Einführung in die Geometrie Wintersemester 1/13, 1. Februar 013 Klausur zur ATP, Modul, Einführung

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $ $Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis

Mehr

Geometrische Grundkonstruktionen

Geometrische Grundkonstruktionen Geometrische Grundkonstruktionen Strecken...2 Halbierung einer Strecke und Mittelsenkrechte...2 Teilung einer Strecke in eine bestimmte Anzahl gleicher Teile...2 Halbierung eines Winkels...3 Tangente an

Mehr

Geometrie (4b) Wintersemester 2015/16. Kapitel 3. Dreieck, Viereck, Fünfeck, Kreis. Anwendungen & bekannte Sätze

Geometrie (4b) Wintersemester 2015/16. Kapitel 3. Dreieck, Viereck, Fünfeck, Kreis. Anwendungen & bekannte Sätze Kapitel 3 Dreieck, Viereck, Fünfeck, Kreis Anwendungen & bekannte Sätze 1 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau Im Folgenden werden Maßzahlen für Winkelgrößen

Mehr

Grundwissen. 7. Jahrgangsstufe. Mathematik

Grundwissen. 7. Jahrgangsstufe. Mathematik Grundwissen 7. Jahrgangsstufe Mathematik Grundwissen Mathematik 7. Jahrgangsstufe Seite 1 1 Geometrie 1.1 Grundkonstruktionen Lotkonstruktion I: Gegeben ist die Gerade g und der Punkt P, der nicht auf

Mehr

Geometrie, Einführung

Geometrie, Einführung Geometrie, Einführung Punkte, Linien 1. Gib die Längen von 3 Strecken r, s. t an, welche nicht die Seiten eines Dreiecks sein können. Begründe deine Wahl. 2. a) Zeichne Punkte und Geraden, welche folgende

Mehr

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : GEOMETRIE PRÜFUNGSVORBEREITUNG Konstruktion Dreiecke und Vierecke PRÜFUNG 09 Name: Klasse: Datum: : Note: Ausgabe:. September 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Nichteuklidische Geometrien und gekrümmte Räume

Nichteuklidische Geometrien und gekrümmte Räume Nichteuklidische Geometrien und gekrümmte Räume Es begann mit dem Problem der Landvermessung... Carl Friedrich Gauß (1777-1855): Theorie gekrümmter Flächen Landesvermessung des Königreichs Hannover Entdeckung

Mehr

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass

Mehr

Themenbereich: Besondere Dreiecke Seite 1 von 6

Themenbereich: Besondere Dreiecke Seite 1 von 6 Themenbereich: Besondere Dreiecke Seite 1 von 6 Lernziele: - Kenntnis der Bezeichnungen für besondere Dreiecke - Kenntnis der Seiten- und Winkelbezeichnungen bei besonderen Dreiecken - Kenntnis der Eigenschaften

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

Didaktik der Elementargeometrie

Didaktik der Elementargeometrie Humboldt-Universität zu Berlin Sommersemester 2014 Institut für Mathematik A. Filler. Zusammenfassende Notizen zu der Vorlesung Didaktik der Elementargeometrie 3 Argumentieren, Beweisen, lokales Ordnen

Mehr

WF Mathematik: 1. Grundbegriffe der Geometrie

WF Mathematik: 1. Grundbegriffe der Geometrie WF Mathematik: 1. Grundbegriffe der Geometrie Geometrie setzt sich aus den beiden griechischen Wörtern geo (Erde) und metrein (messen) zusammen, bedeutet ursprünglich Erdvermessen. Alle Gegenstände unseres

Mehr

mentor Lernhilfe: Mathematik 7. Klasse Baumann

mentor Lernhilfe: Mathematik 7. Klasse Baumann mentor Lernhilfen mentor Lernhilfe: Mathematik 7. Klasse Geometrie: Achsen- und Punktspiegelung, Drehung, Verschiebung, Winkelgesetze von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 7. Klasse

Mehr

1. Grundlegendes in der Geometrie

1. Grundlegendes in der Geometrie 1. Grundlegendes Geometrie 1. Grundlegendes in der Geometrie 1. 1 Übliche ezeichnungen Punkte bezeichnen wir mit Grossbuchstaben:,,,D,... P 1,P 2,P 3,...,,,... Strecken und deren Masszahl, sowie Geraden

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

GEOMETRIE (4a) Kurzskript

GEOMETRIE (4a) Kurzskript GEOMETRIE (4a) Kurzskript Dieses Kurzskript ist vor allem eine Sammlung von Sätzen und Definitionen und sollte ausdrücklich nur zusammen mit weiteren Erläuterungen in der Veranstaltung genutzt werden.

Mehr

Grundlagen. y P(4;3;2) Schrägbild 1. Punkte im Raum. Ein Punkt ist im Raum durch drei Koordinaten (x,y,z) festgelegt.

Grundlagen. y P(4;3;2) Schrägbild 1. Punkte im Raum. Ein Punkt ist im Raum durch drei Koordinaten (x,y,z) festgelegt. Grundlagen Schrägbild 1 Punkte im Raum z y P(4;3;2) 2 3 4 x Ein Punkt ist im Raum durch drei Koordinaten (x,y,z) festgelegt. ufgabe Versuche die Punkte (0;0;0), (1;1;1) und (3;2;-2) in einem Schrägbild

Mehr

Aufgaben Geometrie Lager

Aufgaben Geometrie Lager Schweizer Mathematik-Olympiade Aufgaben Geometrie Lager Aktualisiert: 26. Juni 2014 Starter 1. Zwei Städte A und B liegen auf verschiedenen Seiten eines Flusses. An welcher Stelle muss eine Brücke rechtwinklig

Mehr

Lösungen Crashkurs 7. Jahrgangsstufe

Lösungen Crashkurs 7. Jahrgangsstufe Lösungen Crashkurs 7. Jahrgangsstufe I. Symmetrie und Grundkonstruktionen 1. 2. Jede Raute hat die Eigenschaften: a, b, d, e, g. 3. Der gesuchte Treffpunkt befindet sich dort, wo die Mittelsenkrechte der

Mehr

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie)

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie) Klasse 11 2. Schulaufgabe Mathematik (Thema: Raumgeometrie) Aufgabe 1 Gegeben sind die Punkte A ( 2 12 4 ); B ( 4 22 6 ); C ( 6 20 8 ); S ( 0 14 14 ) a) Zeigen Sie, dass das Dreieck ABC gleichschenklig

Mehr

Beispiellösungen zu Blatt 107

Beispiellösungen zu Blatt 107 µ κ Mathematisches Institut eorg-ugust-universität öttingen ufgabe 1 eispiellösungen zu latt 107 onstruiere eine Menge M aus 107 positiven ganzen Zahlen mit der folgenden igenschaft: eine zwei der Werte

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus Kantonsschule Solothurn Geometrie: Zentrische Streckung und Ähnlichkeit RYS Zentrische Streckung und Ähnlichkeit Einleitung Aufgaben: Vergrössern / Verkleinern 1. Die Geo-Maus a) Zeichne die Geo-Maus noch

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 DIE MERKWÜRDIGEN PUNKTE DES DREIECKS

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 DIE MERKWÜRDIGEN PUNKTE DES DREIECKS REITSLTT 14 1) Der Höhenschnittpunkt DIE MERKWÜRDIGEN PUNKTE DES DREIECKS Definition: Unter einer Höhe versteht man eine Normale auf eine Seite zum gegenüberliegenden Eckpunkt. Die Höhe h c steht also

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 23 Unter den drei klassischen Problemen der antiken Mathematik versteht man (1) die Quadratur des Kreises, (2) die Dreiteilung

Mehr

S T E R N E U N D P O L Y G O N E

S T E R N E U N D P O L Y G O N E Ornament Stern und Polygon (S. 1 von 11) / www.kunstbrowser.de S T E R N E U N D P O L Y G O N E Polygone und Sterne in regelmäßiger Form sind ein wichtiges Grundmotiv in der Ornamentik, da sie v ielf

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2012

Sekundarschulabschluss für Erwachsene. Geometrie A 2012 SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2012 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

3. Synthetische Geometrie (synthetein = zusammensetzen)

3. Synthetische Geometrie (synthetein = zusammensetzen) 3. Synthetische Geometrie (synthetein = zusammensetzen) Wichtig ist in der synthetischen Geometrie das Zusammensetzen von Grundsätzen, Voraussetzungen, Sätzen und Folgerungen. Die SuS lernen die neue Art

Mehr

B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen :

B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen : Seite I Einige interessante elementargeometrische Konstruktionen Ausgehend von einigen bekannten Sätzen aus der Elementargeometrie lassen sich einige hübsche Konstruktionen herleiten, die im folgenden

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

Methodische Hinweise und Anregungen zur Ergänzung bzw. Erweiterung der Power-Point-Präsentation

Methodische Hinweise und Anregungen zur Ergänzung bzw. Erweiterung der Power-Point-Präsentation Methodische Hinweise und nregungen zur rgänzung bzw. rweiterung der Power-Point-Präsentation ktivationen, die während der Präsentation angeboten werden n den nachfolgend beschriebenen Stellen wird der

Mehr

Vorwort: Farbe statt Formeln 7

Vorwort: Farbe statt Formeln 7 Inhaltsverzeichnis Vorwort: Farbe statt Formeln 7 1 Die Grundlagen 11 1.1 Vom Geodreieck zum Axiomensystem................ 11 1.2 Erste Folgerungen aus den Axiomen................. 24 1.3 Winkel.................................

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TEHNISHE UNIVERSITÄT MÜNHEN Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Martin von Gagern Geometriekalküle WS 00/ Lösungen u ufgabenblatt (0. Oktober 00) Präsenaufgaben ufgabe. Dualität. Gegeben

Mehr

40. Österreichische Mathematik-Olympiade Kurswettbewerb Lösungen

40. Österreichische Mathematik-Olympiade Kurswettbewerb Lösungen 40. Österreichische Mathematik-Olympiade Kurswettbewerb Lösungen TU Graz, 29. Mai 2009 1. Für welche Primzahlen p ist 2p + 1 die dritte Potenz einer natürlichen Zahl? Lösung. Es soll also gelten 2p + 1

Mehr

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7 Wissen Achsensymmetrie Beispiel Figuren die an einer Achse a gespiegelt werden nennt man achsensymmetrisch bezüglich a. Die Verbindungsstrecke zwischen zwei achsensymmetrischen Punkten wird durch die Achse

Mehr

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach):

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach): Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung ufgabe 1 1.Weg (kurz und einfach): C! **C* Umlaufsinn erhalten Verschiebung oder Drehung Verbindungsgeraden *, *, CC* nicht parallel Drehung

Mehr

mentor Lernhilfe: Mathematik 8. Klasse Baumann

mentor Lernhilfe: Mathematik 8. Klasse Baumann mentor Lernhilfen mentor Lernhilfe: Mathematik 8. Klasse Geometrie: Dreieckkonstruktionen, Kongruenzsätze, Kreis und Gerade, Raumgeometrie von Rolf aumann 1. uflage mentor Lernhilfe: Mathematik 8. Klasse

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 Landeswettbewerb athematik aden-württemberg 1996 Runde 1 ufgabe 1 Ein Rechteck mit den eitenlängen 5 cm und 9 cm wird in kleinere Rechtecke mit ganzzahligen eitenlängen, in Zentimeter gemessen, zerlegt.

Mehr

Zwillinge von Archimedes (1)

Zwillinge von Archimedes (1) Zwillinge von Archimedes (1) Zwillinge von Archimedes (2) Zwillinge von Archimedes (3) DIDAKTIK DER GEOMETRIE Elementargeometrie 2 Prof. Heinz Klemenz Universität Zürich, Kantonsschule Rychenberg Winterthur

Mehr

Mitten-Dreiund Vier-Ecke

Mitten-Dreiund Vier-Ecke Alle Ergebnisse - dazu gehören auch Kopiene der Zeichnungen - sind im Heft zu notieren Du wirst im Folgenden einiges selbst herausfinden müssen. Nutze dazu auch die Hilfen, dei dir kig liefert. 1 Mittendreieck

Mehr

2 Einfache Folgerungen aus den Axiomen. 2.1.1 Hilfssatz: Seien A, P, Q drei Punkte auf einer Geraden. Dann gilt: A liegt zwischen P und Q

2 Einfache Folgerungen aus den Axiomen. 2.1.1 Hilfssatz: Seien A, P, Q drei Punkte auf einer Geraden. Dann gilt: A liegt zwischen P und Q 2 Einfache Folgerungen aus den Axiomen 2.1 Anordnung 2.1.1 Hilfssatz: Seien A, P, Q drei Punkte auf einer Geraden. Dann gilt: A liegt zwischen P und Q d(a, P ) < d(p, Q) und d(a, Q) < d(p, Q). Bew.: :

Mehr

Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie

Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Einführung in das Thema Parallelogramm Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Lehrplanaussagen MS, RS Lehrplanaussage MS: Jahrgangsstufe

Mehr