Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m)

Größe: px
Ab Seite anzeigen:

Download "Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m)"

Transkript

1 Minimumproblem Definition 4.7 Ein LP der Form nx Minimiere Z = c j x j j=1 unter den Nebenbedingungen nx d ij x j b i (i =1,...,m) j=1 und den Vorzeichenbedingungen x j 0(j =1,...,n) heißt Minimumproblem. Kompakt: min Z = c T x u.d.n. Dx b, x 0 Peter Becker (H-BRS) Operations Research I Sommersemester / 298

2 Simplextableau für Minimumproblem Für die Anwendung des Simplexalgorithmus benötigen wir ein Maximumproblem in kanonischer Form. Wir können die Zielfunktion umformen zu max z := Z = c T x und die Nebenbedingungen zu Dx apple b, x 0. Problem: Wenn vorher b 0 galt, dann ist die Basislösung des Starttableaus nicht zulässig. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

3 Mit A := D entsteht das Starttableau Der Vektor x = BV x 1 x n x n+1 x n+m z b x n+1 a 1,1 a 1,n b x n+m a m,1 a m,n b m z c 1 c n b 1. b m 1 2 R n+m ist damit zwar eine Basislösung, aber C A keine zulässige Basislösung und somit auch keine Ecke von X. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

4 Dual zulässiges Tableau Definition 4.8 Ein Tableau der Form von Folie 215 mit c 0 heißt dual zulässig. Die zugehörige Basislösung ist eine dual zulässige Basislösung. Bemerkung: Wegen c 0 erfüllt ein dual zulässiges Tableau die Optimalitätsbedingung des Simplexalgorithmus. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

5 Grundidee des dualen Simplexalgorithmus Idee: Durch Pivotieren unter Wahrung der dualen Zulässigkeit (c 0) in Richtung primaler Zulässigkeit gehen. Wenn wir b 0 erreichen, dann haben wir eine zulässige Basislösung und damit eine Ecke. Wegen c 0 ist diese Ecke dann sogar eine optimale Lösung! Peter Becker (H-BRS) Operations Research I Sommersemester / 298

6 Dualer Simplex: Wahl der Pivotzeile und -spalte Wir wählen als erstes die Pivotzeile s durch b s (r) =min{ b (r) i b (r) i < 0, i =1,...,m} Anschließend die Pivotspalte t durch 8 c (r) < t a (r) =min : s,t c (r) j a (r) s,j 9 = s,j < 0 ; a (r) Damit ist das gewählte Pivotelement stets negativ. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

7 Satz 4.9 Das r-te Tableau sei dual zulässig. Wählen wir Pivotzeile und Pivotspalte gemäß Folie 218 und führen einen Basiswechsel gemäß Algorithmus 4.4 durch, dann ist das (r + 1)-te Tableau wieder dual zulässig und für den Zielfunktionswert gilt z (r+1) apple z (r). Bemerkungen: Der Basiswechsel im dualen Simplexalgorithmus wird als dualer Austauschschritt bezeichnet. Beim dualen Simplexalgorithmus wird nun solange ein dualer Austauschschritt durchgeführt, bis das Tableau auch primal zulässig ist, also b 0 gilt. Ein Tableau ist immer genau dann optimal, wenn es primal und dual zulässig ist. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

8 Beispiel zum dualen Simplexalgorithmus Beispiel 4.10 Gegeben sei das LP unter den Nebenbedingungen min Z = x 1 + x 2 x 1 2x 2 1 x 1 + 2x 2 4 x 1 + x 2 2 x 1, x 2 0 Peter Becker (H-BRS) Operations Research I Sommersemester / 298

9 Fortsetzung Beispiel Umformung ergibt unter den Nebenbedingungen Simplex-Verfahren max z = Z = x 1 x 2 x 1 + 2x 2 apple 1 x 1 2x 2 apple 4 x 1 x 2 apple 2 x 1, x 2 0 Starttableau: BV x 1 x 2 x 3 x 4 x 5 z b x x x z Pivotzeile: x 4, Pivotspalte: x 2, Pivotelement: 2 Peter Becker (H-BRS) Operations Research I Sommersemester / 298

10 Fortsetzung Beispiel Tableau: BV x 1 x 2 x 3 x 4 x 5 z b x x 2 1/ / x 5 1/ / z 1/ / Pivotzeile: x 3, Pivotspalte: x 1, Pivotelement: 2 3. Tableau: BV x 1 x 2 x 3 x 4 x 5 z b x /2 1/ /2 x /4 1/ /4 x /4 3/ /4 z 0 0 1/4 3/ /4 Peter Becker (H-BRS) Operations Research I Sommersemester / 298

11 Fortsetzung Beispiel Lösung: x 1 = 5 2, x 2 = 3 4 Simplex-Verfahren mit Z = z = Peter Becker (H-BRS) Operations Research I Sommersemester / 298

12 Primal-dualer Simplexalgorithmus Primaler und dualer Simplexalgorithmus sind nicht nur zwei alternative Verfahren. Ein großer Vorteil ergibt sich beim Zusammenspiel der beiden Varianten. Wenn eine Basislösung nicht primal aber dual zulässig ist, können wir durch duale Austauschschritte zu einer primal zulässigen Lösung kommen. Beispielanwendung: Nachträgliches Hinzufügen von Nebenbedingungen bzw. Variablen Dies nutzen wir später bei Schnittebenenverfahren bzw. großen Problemen in der ganzzahligen Programmierung. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

13 Beispiel: nachträglich Nebenbedingung hinzufügen Beispiel 4.11 Wir wollen zunächst das folgende LP lösen: max 2x 1 +3x 2 unter den Neben- und Vorzeichenbedingungen 2x 1 + x 2 apple 10 x 2 apple 3 x 1, x 2 0 Starttableau für primalen Simplexalgorithmus: x 1 x 2 x 3 x 4 b x x z Peter Becker (H-BRS) Operations Research I Sommersemester / 298

14 Fortsetzung Beispiel. Nach erstem primalen Austauschschritt: x 1 x 2 x 3 x 4 b x x z Nach zweitem primalen Austauschschritt: x 1 x 2 x 3 x 4 b x /2 1/2 7/2 x z Zunächst optimale Lösung x =(7/2, 3). Peter Becker (H-BRS) Operations Research I Sommersemester / 298

15 Fortsetzung Beispiel. Simplex-Verfahren Jetzt führen wir die zusätzliche Nebenbedingung x 1 +2x 2 apple 8 ein, die von x nicht erfüllt wird. Mit zusätzlicher Schlupfvariable x 5 0 entsteht die Gleichung x 1 +2x 2 + x 5 =8. Wir drücken nun die Basisvariablen x 1 und x 2 durch Nichtbasisvariablen aus: x x x 4 = 7 2 ) x 1 = 1 2 x x x 2 + x 4 =3 ) x 2 = x 4 +3 Damit ergibt sich für die zusätzliche Nebenbedingung x 1 +2x 2 + x 5 =8, 1 2 x x 4 + x 5 = 3 2. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

16 Fortsetzung Beispiel. Das erweiterte Simplextableau lautet damit x 1 x 2 x 3 x 4 x 5 b x /2 1/2 0 7/2 x x /2 3/2 1 3/2 z Dieses Tableau ist nicht primal aber dual zulässig. Ein dualer Austauschschritt liefert die optimale Lösung für das erweiterte LP: x 1 x 2 x 3 x 4 x 5 b x /3 0 1/3 4 x /3 0 2/3 2 x /3 1 2/3 1 z 0 0 1/3 0 4/3 14 Peter Becker (H-BRS) Operations Research I Sommersemester / 298

17 Beispiel: nachträglich Variable hinzufügen Beispiel 4.12 Wir wollen zunächst das folgende LP lösen: min 10x 1 +3x 2 unter den Neben- und Vorzeichenbedingungen 2x 1 2 x 1 + x 2 3 x 1, x 2 0 Starttableau für dualen Simplexalgorithmus: x 1 x 2 x 3 x 4 b x (I ) x (II) z (III) Peter Becker (H-BRS) Operations Research I Sommersemester / 298

18 Fortsetzung Beispiel. Operationen (II) =(II) ( 1) und (III) =(III) 3 (II) ergeben: x 1 x 2 x 3 x 4 b x (I ) x (II) z (III) Operationen (I )=(I) ( 1/2), (II) =(II) (I )und(iii) =(III) 7 (I ) ergeben: x 1 x 2 x 3 x 4 b x /2 0 1 x /2 1 2 z 0 0 7/ Zunächst optimale Lösung x =(1, 2). Peter Becker (H-BRS) Operations Research I Sommersemester / 298

19 Fortsetzung Beispiel. Jetzt erweitern wir das ursprüngliche LP um eine Variable x 5 : min 10x 1 +3x 2 +8x 5 unter den Neben- und Vorzeichenbedingungen 2x 1 + x 5 2 x 1 + x 2 + 2x 5 3 x 1, x 2 0 x 5 1 Auf die neue ursprüngliche Tableauspalte wenden wir die gleichen 2 8 Operationen an, wie auf das ursprüngliche Tableau. Dies entspricht der Multiplikation mit den angewendeten Elementarmatrizen. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

20 Fortsetzung Beispiel. So entsteht das um die Variable x 5 erweiterte Tableau x 1 x 2 x 3 x 4 x 5 b x /2 0 1/2 1 x /2 1 3/2 2 z 0 0 7/2 3 3/2 16 Dieses Tableau ist nicht dual aber primal zulässig. Ein primaler Austausschritt liefert die optimale Lösung für das erweiterte LP: x 1 x 2 x 3 x 4 x 5 b x 1 1 1/3 1/3 1/3 1/2 1/3 x 5 0 2/3 1/3 2/3 1 4/3 z Peter Becker (H-BRS) Operations Research I Sommersemester / 298

21 Fortsetzung Beispiel. Die Matrix zur Transformation des Starttableaus in das zunächst optimale lautet B A Herleitung Übungsaufgabe.. Probe: B 1 C C A = C A Peter Becker (H-BRS) Operations Research I Sommersemester / 298

22 Vermeidung von Zyklen Zyklen im Simplexalgorithmus Bisher haben wir nicht spezifiziert, welche Spalte beim primaler Simplexalgorithmus Pivotzeile werden soll. Eine übliche Wahl für die Pivotspalte s: c s =min{c j c j < 0} Bei entarteten Basislösungen ist damit aber nicht garantiert, dass der Simplexalgorithmus terminiert. Prinzipiell möglich, wenn auch unwahrscheinlich: Es treten zyklisch immer wieder die gleichen Basislösungen auf. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

23 Beispiel 4.13 Simplex-Verfahren Vermeidung von Zyklen unter den Nebenbedingungen Starttableau: max z = 10x 1 57x 2 9x 3 24x 4 0.5x 1 5.5x 2 2.5x 3 +9x 4 apple 0 0.5x 1 1.5x 2 0.5x 3 +x 4 apple 0 x 1 apple 1 x 1, x 2, x 3, x 4 0 BV x 1 x 2 x 3 x 4 x 5 x 6 x 7 z b x x x z Peter Becker (H-BRS) Operations Research I Sommersemester / 298

24 Vermeidung von Zyklen Fortsetzung Beispiel Für Starttableau: Pivotspalte: x 1, Pivotzeile: x 5 Daraus können nun die nachfolgenden Basislösungen entstehen: Tafel. BV (2) = {x 1, x 6, x 7 }, Pivotspalte: x 2, Pivotzeile: x 6 BV (3) = {x 1, x 2, x 7 }, Pivotspalte: x 3, Pivotzeile: x 1 BV (4) = {x 2, x 3, x 7 }, Pivotspalte: x 4, Pivotzeile: x 2 BV (5) = {x 3, x 4, x 7 }, Pivotspalte: x 5, Pivotzeile: x 5 BV (6) = {x 4, x 5, x 7 }, Pivotspalte: x 6, Pivotzeile: x 4 BV (7) = {x 5, x 6, x 7 } Damit haben wir jetzt wieder das gleiche Tableau wie zu Beginn. Der Simplexalgorithmus würde nicht terminieren. Alle Basislösungen beschreiben die gleiche Ecke! Peter Becker (H-BRS) Operations Research I Sommersemester / 298

25 Vermeidung von Zyklen Maßnahmen zur Vermeidung von Zyklen Maßnahmen sind nur dann notwendig, wenn wir nicht zu einer neuen Ecke kommen. Protokollierung der Indexmenge der Basisvariablen. Tritt die gleiche Basislösung wieder auf, führen wir ein Backtracking durch, d.h. wählen eine andere Möglichkeit für die Pivotzeile oder -spalte. Die Bland sche Anti-Zyklusregel garantiert Zyklenfreiheit: Wähle bei jedem Basiswechsel für die Pivotspalte und die Pivotzeile den jeweils kleinstmöglichen Index. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

26 Vermeidung von Zyklen Beispiel 4.14 Das 6-te Tableau von Beispiel 4.13 lautet: BV x 1 x 2 x 3 x 4 x 5 x 6 x 7 z b x x x z Statt x 6 wählen wir x 1 als Pivotspalte und damit x 4 als Pivotzeile. Dann lautet das neue Tableau: BV x 1 x 2 x 3 x 4 x 5 x 6 x 7 z b x x x z Peter Becker (H-BRS) Operations Research I Sommersemester / 298

27 Vermeidung von Zyklen Fortsetzung Beispiel Damit haben zwar keine neue Ecke, aber eine neue Basislösung. Nun wird x 3 die Pivotspalte und x 7 die Pivotzeile. Es entsteht: und damit ist das LP gelöst. BV x 1 x 2 x 3 x 4 x 5 x 6 x 7 z b x x x z Peter Becker (H-BRS) Operations Research I Sommersemester / 298

28 Vermeidung von Zyklen Zusammenfassung Primaler Simplexalgorithmus für LPs in kanonischer Maximumsform. Start mit zulässiger Basislösung bzw. Ecke, pro Iteration ein Basisaustausch. Opportunitätskosten bzw. Schattenpreise bewerten die knappen Ressourcen. für Minimumsproblem. Dual zulässige Basislösungen sind i.a. keine Ecken. Optimale Lösung ist primal und dual zulässig. Zusammenspiel von primalen und dualen Austauschschritten bei zusätzlichen Nebenbedingungen oder Variablen. Vermeidung von Zyklen z.b. mit der Bland schen Anti-Zyklusregel. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 4 Simplex-Verfahren Peter Becker (H-BRS) Operations Research I Sommersemester 24 86 / 298 Inhalt Inhalt 4 Simplex-Verfahren Dualer Simplexalgorithmus Vermeidung von Zyklen Peter Becker (H-BRS)

Mehr

Lösung allgemeiner linearer Programme

Lösung allgemeiner linearer Programme Lösung allgemeiner linearer Programme Bisher: Für Anwendung des Simplexalgorithmus muss eine primal oder eine dual zulässige Basislösung vorliegen. Für allgemeine lineare Programme können wir dies direkt

Mehr

Eigenschaften von LPs

Eigenschaften von LPs 2 Lineare Programmierung Eigenschaften von LPs Eigenschaften von LPs Definition 24 Eine Menge K IR n heißt konvex gdw für je zwei Punkte Punkte x (1) K und x (2) K auch jeder Punkt mit 0 λ 1 zu K gehört

Mehr

Simplex-Verfahren. Kapitel 3. Simplex-Verfahren. Peter Becker (H-BRS) Lineare und kombinatorische Optimierung Wintersemester 2017/ / 372

Simplex-Verfahren. Kapitel 3. Simplex-Verfahren. Peter Becker (H-BRS) Lineare und kombinatorische Optimierung Wintersemester 2017/ / 372 Kapitel 3 Simplex-Verfahren Peter Becker (H-BRS) Lineare und kombinatorische Optimierung Wintersemester 2017/18 104 / 372 Inhalt Inhalt 3 Simplex-Verfahren Primaler Simplexalgorithmus Unbeschränktheit

Mehr

Zugeordneter bipartiter Graph

Zugeordneter bipartiter Graph Zugeordneter bipartiter Graph Für ein Transportproblem sei A = {A 1,...,A m } die Menge der Fabriken und B = {B 1,...,B n } sei die Menge der Warenhäuser. Wir ordnen nun einem Transportproblem einen bipartiten

Mehr

Der Simplex-Algorithmus

Der Simplex-Algorithmus 5 Lineare Programmierung Simplex-Algorithmus Der Simplex-Algorithmus Standardverfahren zur Lösung von LPs, von G B Dantzig entwickelt Grundidee: Versuche ausgehend von einer Startecke mit einer Ausgangsbasis

Mehr

3. Schnittebenenverfahren

3. Schnittebenenverfahren 3. Schnittebenenverfahren Themen 3. Schnittebenenverfahren Ganzzahlige lineare Programmierung Schnittebenenverfahren Konstruktion von Schnittebenen Auswahl von Schnittrestriktionen Operations Research

Mehr

Lineare Optimierung: Simplexverfahren Phase Ⅰ

Lineare Optimierung: Simplexverfahren Phase Ⅰ Lineare Optimierung: Simplexverfahren Phase Ⅰ Zur Erinnerung: Die Lineare Optimierungsaufgabe in Standardform lautet z = c T x + c 0 min (.) bei Ax = b, x 0. Revidiertes Simplexverfahren Mit dem Simplexverfahren

Mehr

Aufgabe 5.3 Duale Simplexverfahren

Aufgabe 5.3 Duale Simplexverfahren Aufgabe 5.3 Knut Krause Thomas Siwczyk Stefan Tittel Technische Universität Dortmund Fakultät für Informatik Algorithmen und Datenstrukturen 15. Januar 2009 Gliederung 1 Aufgabenstellung und Motivation

Mehr

4.3.3 Simplexiteration

4.3.3 Simplexiteration 7. Januar 2013 53 4.3.3 Simplexiteration Eine Simplexiteration entspricht dem Übergang von einer Ecke des zulässigen Bereiches in eine benachbarte Ecke Dabei wird genau eine Nichtbasisvariable (die zugehörige

Mehr

Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen. Kapitel IV: Grundlagen der Linearen Optimierung

Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen. Kapitel IV: Grundlagen der Linearen Optimierung Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen Kapitel IV: Grundlagen der Linearen Optimierung Inhaltsverzeichnis Abschnitt 3-5 3 Der Simplexalgorithmus 58 3.1 Grundlagen..............................

Mehr

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 3 Wiederholung! Lineare Programme häufig geeignete Modellierung von Optimierungsproblemen! Verschiedene Darstellungen sind

Mehr

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 5 Dualität Peter Becker (H-BRS) Operations Research I Sommersemester 2014 241 / 298 Inhalt 5 Dualität Dualitätssätze Zweiphasen-Simplexalgorithmus Peter Becker (H-BRS) Operations Research I Sommersemester

Mehr

Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung

Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung Operations Research Rainer Schrader Die Simplexmethode Zentrum für Angewandte Informatik Köln 18 Juni 00 1 / 1 / 1 Gliederung LP-Dualität ein lineares Produktionsmodell der Simplexalgorithmus Phase I Endlichkeit

Mehr

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1 1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme Duales Problem Lemma 1.4. Das zum Transportproblem duale Problem lautet: max unter den Nebenbedingungen m a i u i + i=1

Mehr

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn Optimierung Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus 1 Resource Allocation Beispiel aus Vorlesung 6 Primales LP: Duales LP: max 3 4 2 2 4 2 8 3 6 0, 0, 0 min 4 8 6 2 3 3 4 2 2 0, 0,

Mehr

Schranken für zulässige Lösungen

Schranken für zulässige Lösungen Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung

Mehr

Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005

Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005 Schnittebenenverfahren von Gomory Stefan Allescher 30. Juni 2005 Inhaltsverzeichnis 1. Grundprinzip 2. Das Verfahren von Gomory 2.1. Vorgehen 2.2. Beweis der Endlichkeit 2.3. Algorithmische Durchführung

Mehr

Die duale Simplexmethode

Die duale Simplexmethode Kapitel 0 Die duale Simplexmethode Bei der dualen Simplexmethode ist eine Startlösung oftmals leichter angebbar als bei der Simplexmethode für das ursprüngliche lineare Programm, da man keine Nichtnegativitätsanforderungen

Mehr

CARL HANSER VERLAG. Peter Stingl. Operations Research Linearoptimierung

CARL HANSER VERLAG. Peter Stingl. Operations Research Linearoptimierung ARL HANSER VERLAG Peter Stingl Operations Research Linearoptimierung -446-228-6 wwwhanserde 2 Lineare Optimierungsprobleme x 2 6 P P sentartete Ecke ( 4) x +x 2 5 PPPPPPPPPPPPPPP X x + x 2 7 2x +x 2 8

Mehr

Übung 3, Simplex-Algorithmus

Übung 3, Simplex-Algorithmus Übung 3, 21.6.2011 Simplex-Algorithmus Aufgabe 3.1 Lösen Sie das folgende Optimierungsproblem (von Aufgabe 2.3) graphisch. Substituieren Sie dazu z = 5 y um ein 2-dimensionales Problem zu erhalten. Rechnung

Mehr

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 96 H. Meyerhenke: Kombinatorische Optimierung Dualität bei linearen Programmen Def.: Es sei (L): c T x max

Mehr

Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel:

Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel: Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel: Eine Firma produziert die Produkte P 1, P 2,..., P q aus den Rohstoffen R 1, R 2,..., R m. Dabei stehen b j Einheiten

Mehr

Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b

Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b Wiederholung Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b x 0. x R n heißt Basislösung, wenn Ax = b und rang(a J ) = J, wobei J = {j x (j) 0}; Basislösung

Mehr

6 Korrektheit des Simplexalgorithmus

6 Korrektheit des Simplexalgorithmus 6 Korrektheit des Simplexalgorithmus Folgerung: Es sei L: Ax = b, c T x max LP und A B nicht-degenerierte PZB von L und es gebe c r := c r c B A B A r > 0 a) Falls a r := A B a r 0, dann L unbeschränkt

Mehr

Optimierung. Vorlesung 04

Optimierung. Vorlesung 04 Optimierung Vorlesung 04 Übungsbetrieb Mangels Teilnehmer keine Dienstagsübung mehr. Prüfung laut Paul: Di, 10. Feb. 2015 00:01-23:59 2 Was bisher geschah LP: Maximiere c T x unter Ax = b, x 0. Basis:

Mehr

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe Lösungen zu den Übungsaufgaben im Kapitel 1 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier 1. Lösen Sie die folgende lineare Optimierungsaufgabe

Mehr

VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 53 Wiederholung! Basis-Startlösung berechnet! Künstliche Variablen! Erkennung von unlösbaren Problemen! Eliminierung

Mehr

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme Optimierungsprobleme Häufig in Alltagssituationen anzutreffen (z.b. Kauf eines Gerätes) Optimierungsprobleme (OPs) sind Probleme, die i.a. viele zulässige Lösungen besitzen Jeder Lösung ist ein bestimmter

Mehr

Lineare Optimierung Teil 2

Lineare Optimierung Teil 2 Lineare Optimierung Teil 2 Primale Degeneration Duale Degeneration = Mehrdeutigkeit Normalform kanonische Form Duale Simplexmethode HTW-Berlin FB3 Prof. Dr.F. Hartl 1 Primale Degeneration/1 Besitzt eine

Mehr

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Kapitel 1 Unimodularität Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Inhalt 1 Unimodularität Total unimodulare Matrizen Inzidenzmatrix Optimierungsprobleme auf Graphen Peter

Mehr

Operations Research. Linearoptimierung. Bearbeitet von Peter Stingl

Operations Research. Linearoptimierung. Bearbeitet von Peter Stingl Operations Research Linearoptimierung earbeitet von Peter Stingl Auflage 22 uch 76 S Hardcover ISN 978 446 228 8 Format ( x L): 4,5 x 2 cm Gewicht: 26 g Wirtschaft > etriebswirtschaft: Theorie & Allgemeines

Mehr

10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G

10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G 48 0 Operations Research In der Standardform eines Maximierungsproblem: Max ( w) mit ( w) + u. d. N. z + x l + n ( a gj + j= g G e E n d j x j = z 0 j= n a l j x j = b l für alle l L j= x g n + a gj x

Mehr

Produktionsplanung und Lineare Optimierung im Rahmen des Projekts Mathematik und Ökonomie 12./13. November 2003 in Düsseldorf.

Produktionsplanung und Lineare Optimierung im Rahmen des Projekts Mathematik und Ökonomie 12./13. November 2003 in Düsseldorf. Übungsaufgaben Aufgabe 1a Medikamentenmischung Ein Pharmaziehersteller möchte ein neues Medikament auf den Markt bringen. Das Medikament kann aus vier verschiedenen Komponenten (K1 K4) zusammengestellt

Mehr

Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber

Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Sitzplatznr.: Wiederholungsklausur zur Vorlesung Operations Research im Wintersemester

Mehr

Lineares Optimieren. W. Kippels 12. April Inhaltsverzeichnis. 1 Einleitung 2. 2 Die Beispielaufgabe 2. 3 Einführung von Schlupfvariablen 2

Lineares Optimieren. W. Kippels 12. April Inhaltsverzeichnis. 1 Einleitung 2. 2 Die Beispielaufgabe 2. 3 Einführung von Schlupfvariablen 2 Lineares Optimieren W. Kippels 1. April 015 Inhaltsverzeichnis 1 Einleitung Die Beispielaufgabe Einführung von Schlupfvariablen 4 Die Simplex-Methode 5 Das Basis-Austauschverfahren 4 6 Fortsetzung der

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Lineare Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Lineares Programm (LP) in Standardform

Mehr

Lineare Programmierung

Lineare Programmierung asis Definition 3.38 Gegeben sei ein LP in der Normalform mit m als Rang der Matrix 2 R m n. x 2 R n mit x = b heißt asislösung gdw. n m Komponenten x i gleich Null und die zu den restlichen Variablen

Mehr

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck Lemma 15 KLP 1 ist genau dann lösbar, wenn das dazugehörige LP KLP 2 eine Lösung mit dem Wert Z = 0 besitzt. Ist Z = 0 für x 0, x 0, dann ist x eine zulässige Lösung von KLP 1. Beweis von Lemma 15: Nach

Mehr

Lineare und kombinatorische Optimierung

Lineare und kombinatorische Optimierung Lineare und kombinatorische Optimierung Theorie, Algorithmen und Anwendungen Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Wintersemester 2017/18 Peter Becker (H-BRS) Lineare

Mehr

Kap. 4.2: Simplex- Algorithmus

Kap. 4.2: Simplex- Algorithmus Kap. 4.: Simplex- Algorithmus Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Literatur für diese VO V. Chvatal: Linear Programming D. ertsimas:

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 18. VO A&D WS 08/09 18.12.2008 1 Literatur

Mehr

Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 2008 Teil 2, Lineare Optimierung, Aufgabe 2 Baden-Württemberg

Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 2008 Teil 2, Lineare Optimierung, Aufgabe 2 Baden-Württemberg Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 8 Teil, Lineare Optimierung, Aufgabe Baden-Württemberg.. Ein Fertigungsbetrieb für Frottierartikel stellt unter anderem Handtücher und Badetücher her.

Mehr

III. Transportaufgaben 1. Problemstellung 2. Analyse 3. Bestimmung der Startecke 4. Eckenaustausch 5. Umladeprobleme 6. Zuordnungsprobleme

III. Transportaufgaben 1. Problemstellung 2. Analyse 3. Bestimmung der Startecke 4. Eckenaustausch 5. Umladeprobleme 6. Zuordnungsprobleme III. Transportaufgaben 1. Problemstellung 2. Analyse 3. Bestimmung der Startecke 4. Eckenaustausch 5. Umladeprobleme 6. Zuordnungsprobleme H. Weber, FHW, OR SS07, Teil 6, Seite 1 1. Problemstellung Wir

Mehr

Lineare Optimierungsmodelle

Lineare Optimierungsmodelle Lineare Optimierungsmodelle Simplex-Methode Vortragender: Michael Schneider Agenda Motivation Operations Research Aufbau linearer Optimierungsmodelle Simplex-Methode Ausblick 2 Problemstellung Futtermischung

Mehr

Branch-and-Bound und Varianten. Kapitel 3. Branch-and-Bound und Varianten. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 98 / 159

Branch-and-Bound und Varianten. Kapitel 3. Branch-and-Bound und Varianten. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 98 / 159 Kapitel 3 und Varianten Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 98 / 159 Inhalt Inhalt 3 und Varianten Anwendungsbeispiele Branch-and-Cut Peter Becker (H-BRS) Operations Research

Mehr

Simplex-Umformung für Dummies

Simplex-Umformung für Dummies Simplex-Umformung für Dummies Enthält die Zielfunktion einen negativen Koeffizienten? NEIN Optimale Lösung bereits gefunden JA Finde die Optimale Lösung mit dem Simplex-Verfahren! Wähle die Spalte mit

Mehr

4 Lineare Optimierung

4 Lineare Optimierung 4 Lineare Optimierung In diesem Kapitel werden wir uns mit effizienten Verfahren im Bereich der linearen Optimierung beschäftigen. 4.1 Einführung Als Einführung betrachten wir das Beispiel einer Erdölraffinerie.

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

1 Der Simplex Algorithmus I

1 Der Simplex Algorithmus I 1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier

Mehr

1 Lineare Optimierung, Simplex-Verfahren

1 Lineare Optimierung, Simplex-Verfahren 1 Lineare Optimierung, Simplex-Verfahren 1.1 Einführung Beispiel: In einer Fabrik werden n Produkte A 1, A 2,..., A n hergestellt. Dazu werden m Rohstoffe B 1, B 2,..., B m (inklusive Arbeitskräfte und

Mehr

Ecken des Zuordnungsproblems

Ecken des Zuordnungsproblems Total unimodulare Matrizen Ecken des Zuordnungsproblems Definition.6 Ein Zuordnungsproblem mit den Vorzeichenbedingungen 0 apple x ij apple für i, j =,...,n statt x ij 2{0, } heißt relaxiertes Zuordnungproblem.

Mehr

Lineare Programmierung (2)

Lineare Programmierung (2) Inhalt Rückblick Motivation - linearen Programmierung Flussprobleme Multiple Warenflüsse Fortsetzung Simplex Algorithmus Initialisierung Fundamentalsatz der linearen Programmierung schwache Dualität Dualität

Mehr

8. Lineare Optimierung

8. Lineare Optimierung 8. Lineare Optimierung 1 Einführung (1) Praktische Probleme sind oft Probleme mit Nebenbedingungen, z.b.: Ein Produktionsprozess hängt von Lieferterminen ab Die Menge der verstaubaren Güter ist durch die

Mehr

Lineare Programmierung Teil I

Lineare Programmierung Teil I Seminar über Algorithmen Prof. Dr. Helmut Alt Lineare Programmierung Teil I Lena Schlipf, Benjamin Jankovic Lena Schlipf, Benjamin Jankovic Seminar über Algorithmen SS05 1 Struktur des Vortrags 1. Was

Mehr

3.2.5 Dualität der linearen Optimierung I

3.2.5 Dualität der linearen Optimierung I 3..5 Dualität der linearen Optimierung I Jedem linearen Programm in Standardform kann ein sogenanntes duales Programm zugeordnet werden. Es entsteht dadurch, daß man von einem Minimierungsproblem zu einem

Mehr

Dualitätssätze der linearen Optimierung

Dualitätssätze der linearen Optimierung Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =

Mehr

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Dr. Nico Düvelmeyer Freitag, 24. Juni 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Dualität Motivation Duales LP Dualitätssätze

Mehr

Angewandte Mathematik für die Informatik

Angewandte Mathematik für die Informatik Angewandte Mathematik für die Informatik PD Dr. Louchka Popova-Zeugmann PD Dr. Wolfgang Kössler 17. Mai 2017 1 Lineare Optimierung Allgemeine LOA Ganzzahlige Optimierung Differentialgleichungen Differentialgleichungen

Mehr

Optimale Steuerung 1 Prozessoptimierung 1

Optimale Steuerung 1 Prozessoptimierung 1 Optimale Steuerung 1 Prozessoptimierung 1 Kapitel 2: Lineare Optimierung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Lineare Algebra (Mathematische Grundlagen) 2 Beispiel: Produktionsplanung

Mehr

Probeklausur Optimierung

Probeklausur Optimierung Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Dr. Nico Düvelmeyer Hamburg, 4. Juli 2011 Probeklausur Optimierung Bitte selber ausfüllen: Name: (darf anonymisiert werden)

Mehr

3. Grundlagen der Linearen Programmierung

3. Grundlagen der Linearen Programmierung 3. Grundlagen der linearen Programmierung Inhalt 3. Grundlagen der Linearen Programmierung Lineares Programm Grafische Lösung linearer Programme Normalform Geometrie linearer Programme Basislösungen Operations

Mehr

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung Rainer Hufnagel / Laura Wahrig 2006 Diese Woche LO - Rechnerische Lösung - Simplex- Algorithmus LO - Auswertung des

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2010/11 1 / 1 Teil IV Konvexe und ganzzahlige Optimierung Vorlesung 11 IV Konvexe und ganzzahlige Optimierung 2 / 34 Inhaltsübersicht 29Lineare Optimierung

Mehr

Cramersche Regel. Satz 2.26

Cramersche Regel. Satz 2.26 ramersche Regel Satz 6 Es sei A R n n eine quadratische Matrix mit det(a) 6= Für das LGS Ax = b sei A j := (a,,a j, b, a j+,,a n ), also die Matrix, die entsteht, wenn in A die j-te Spalte durch den Vektor

Mehr

Einführung in die Lineare Programmierung

Einführung in die Lineare Programmierung Einführung in die Lineare Programmierung Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 RWTH Aachen 28. Mai 2008 Elementares Beispiel Die kanonische Form Die algebraische Gleichungsform Gegeben seien

Mehr

Grundlagen der Optimierung. Übung 6

Grundlagen der Optimierung. Übung 6 Technische Universität Chemnitz Chemnitz, 2. November 24 Prof. Dr. R. Herzog, J. Blechschmidt, A. Schäfer Abgabe am 28. November 24 Grundlagen der Optimierung Übung 6 Aufgabe 2: Verschiedene Verfahren

Mehr

Methoden der linearen Optimierung

Methoden der linearen Optimierung Methoden der linearen Optimierung Mike Hüftle 31. Juli 2006 Inhaltsverzeichnis 1 Einleitung 2 1.1.................................... 2 2 Lineare Optimierung 3 2.1 Lineares Modell............................

Mehr

Kap. 4: Lineare Programmierung

Kap. 4: Lineare Programmierung Kap. 4: Lineare Programmierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO A&D WS 08/09 27.11./2.12.2008 Petra Mutzel Alg. & Dat.

Mehr

Klausurkolloquium. Musterlösung Produktionscontrolling: Lineare Programmierung

Klausurkolloquium. Musterlösung Produktionscontrolling: Lineare Programmierung Klausurkolloquium Musterlösung Produktionscontrolling: Lineare Programmierung Fallstudie Die GOGO GmbH ist ein mittelständisches gewinnorientiertes Unternehmen. Das taktische Produktionsprogramm einer

Mehr

4. Dualität Dualität 4.1 Dualität von LPs und der Dualitätssatz. Die duale Form eines LP in allgemeiner Form. Herleitung der dualen Form

4. Dualität Dualität 4.1 Dualität von LPs und der Dualitätssatz. Die duale Form eines LP in allgemeiner Form. Herleitung der dualen Form 2... 22 4.2 Die Bedingungen vom komplementären Schlupf... 23 4.3 Das Kürzeste-Wege-Problem und zugehörige duale Problem... 24 4.4 Das Farkas Lemma... 25 4.5 Duale Information im Tableau... 26 4.6 Der duale

Mehr

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Kapitel 11 Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Wir betrachten folgendes Optimierungsproblem z = c T x min! Ax = b (11.1) (11.2) x j ganz für j = 1,..., n 1 n, (11.3)

Mehr

Inhaltsverzeichnis. 4 Praxisbeispiel 7

Inhaltsverzeichnis. 4 Praxisbeispiel 7 Inhaltsverzeichnis Geschichte und Entwicklung. Grundidee................................2 George B. Dantzig...........................3 Diäten-Problem von G.J. Stigler.................. 2.4 John von Neumann

Mehr

Lösungen zu Aufgabenblatt 6

Lösungen zu Aufgabenblatt 6 Fachbereich Informatik Prof. Dr. Peter Becker Vorlesung Graphentheorie Operations Research Wintersemester 2004/05 3. Januar 2005 Lösungen zu Aufgabenblatt 6 Aufgabe 1 (Modellierung von LPs) Formulieren

Mehr

Zuordnungsproblem. Beispiele. Mathematisches Modell. Lösungsmethoden. auch Ernennungs-, Zuweisungs-, Assignmentproblem

Zuordnungsproblem. Beispiele. Mathematisches Modell. Lösungsmethoden. auch Ernennungs-, Zuweisungs-, Assignmentproblem Zuordnungsproblem auch Ernennungs-, Zuweisungs-, Assignmentproblem Beispiele Mathematisches Modell Lösungsmethoden HTW-Berlin FB3 Prof. Dr. F. Hartl 1 2 Anwendungen Zuordnung von - 1 ME von A i nach B

Mehr

Optimierung. Prof. Dr. H. Maurer WWU Münster, Wintersemester 2009/2010 Vorlesungsmitschrift von Christian Schulte zu Berge. 22.

Optimierung. Prof. Dr. H. Maurer WWU Münster, Wintersemester 2009/2010 Vorlesungsmitschrift von Christian Schulte zu Berge. 22. Optimierung Prof. Dr. H. Maurer WWU Münster, Wintersemester 009/00 Vorlesungsmitschrift von Christian Schulte zu Berge. Januar 00 Inhaltsverzeichnis 0 Einführung 0. Typen von Optimierungsproblemen................................

Mehr

Aufgabe 3.1: LP-Problem mit allen Bedingungstypen

Aufgabe 3.1: LP-Problem mit allen Bedingungstypen Johann Wolfgang Goethe-Universität Frankfurt am Main Lehrst.f.BWL, insb. Quant. Methoden Prof. Dr. Dietrich Ohse Interpretation, zulässige Lösung, Dualität 18. Mai 2004 Aufgabe 3.1: LP-Problem mit allen

Mehr

Kapitel 2: Lineare Optimierung

Kapitel 2: Lineare Optimierung Kapitel 2: Lineare Optimierung Aufgabe 2.1: Lösen Sie zeichnerisch die folgenden LP-Modelle: a) Max. F(x,y) = 4x + 3y b) Max. F(x,y) = x + y c) Max. F(x,y) = x y x + 3y 9 5x + y 1 2x y x + 2y 2 x + 2y

Mehr

Optimierungsverfahren in der Transportlogistik

Optimierungsverfahren in der Transportlogistik Optimierungsverfahren in der Transportlogistik Jakob Puchinger 1 1 Dynamic Transportation Systems, arsenal research Jakob Puchinger (arsenal research) Optimierungsverfahren in der Transportlogistik 1 /

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

6. Softwarewerkzeuge für die Lineare Programmierung

6. Softwarewerkzeuge für die Lineare Programmierung 6. Softwarewerkzeuge für die Lineare Programmierung Inhalt 6. Softwarewerkzeuge für die Lineare Programmierung GNU Linear Programming Kit Operations Research I Hochschule Bonn-Rhein-Sieg, SS 2013 314 GNU

Mehr

z = c T x : Ax = b, x 0 }, - die Darstellung der Nichtbasisvektoren durch die Basis ist

z = c T x : Ax = b, x 0 }, - die Darstellung der Nichtbasisvektoren durch die Basis ist Kapitel 5 Die Simplexmethode Es werden folgende Bezeichnungen verwendet: - das untersuchte Problem ist min x R n { z = c T x : Ax = b, x 0 }, - die erste zulässige Basislösung sei x = x 1, x 2,, x m, 0,,

Mehr

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,...

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,... Cramersche Regel Satz 2.4. Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei A j := (a,...,a j,b,a j+,...,a n ) also die Matrix, die entsteht, wenn in A die j-spalte durch den

Mehr

Teil 5: Lineare Programmierung. (Blum, Kapitel 8)

Teil 5: Lineare Programmierung. (Blum, Kapitel 8) Teil 5: Lineare Programmierung (Blum, Kapitel 8) Was sind Optimierungsprobleme? Eingabe: Menge F von zulässigen Lösungen. Zielfunktion z:f R. Aufgabe: Finde x F, so dass x F : z(x) z(x ). (für Minimierungsprobleme)

Mehr

1. Entscheidung bei Unsicherheit

1. Entscheidung bei Unsicherheit Prof. Dr. Ma C. Wewel Lösungen zu den Übungsaufgaben Management Science Seite. Entscheidung bei Unsicherheit A. B. C. 6 km 6 km 6 km D. a) Nutzenmatri (Kundenanteile von K in %) u(k A,M A ), 6 +, 6 +,

Mehr

H. Meyerhenke: Kombinatorische Optimierung. Paralleles Rechnen, Institut für Theoretische Informatik, Fakultät für Informatik

H. Meyerhenke: Kombinatorische Optimierung. Paralleles Rechnen, Institut für Theoretische Informatik, Fakultät für Informatik VORLESUNG 13 Smoothed Analysis des Simplex-Algorithmus Nach Heiko Röglin, Universität Bonn, Vorlesungsskript Introduction to Smoothed Analysis vom 9. Januar 2012 78 Wiederholung Simplex-Algorithmus! Korrektheit:!

Mehr

Mathematische Methoden der Algorithmik

Mathematische Methoden der Algorithmik Mathematische Methoden der Algorithmik Dozent: Prof. Dr. Sándor P. Fekete Assistent: Nils Schweer Digitalisierung: Winfried Hellmann Wintersemester 2008/2009 Inhaltsverzeichnis 2 1 Einführung Problem 1.1

Mehr

Übung QM 1 EINFÜHRUNG 1. 1 Einführung. ohne Übungsaufgaben

Übung QM 1 EINFÜHRUNG 1. 1 Einführung. ohne Übungsaufgaben Übung QM 1 EINFÜHRUNG 1 1 Einführung ohne Übungsaufgaben Übung QM 2 LINEARE OPTIMIERUNG 2 2 Lineare Optimierung Aufgabe 2.1 LP-Modellierung und Begriffe Wild West GmbH produziert Cowboyhüte. Momentan werden

Mehr

Standard-/kanonische Form Simplex Dualität Kompl./Sensitivität Spaltengen. Schnittebenen Welchen? Inhalt

Standard-/kanonische Form Simplex Dualität Kompl./Sensitivität Spaltengen. Schnittebenen Welchen? Inhalt Inhalt Lineare Optimierung Standardform und kanonische Form Der Simplex-Algorithmus Dualität Komplementarität und Sensitivitätsanalyse Spaltengenerierung Schnittebenenverfahren Welchen Simplex wann? 54:

Mehr

λ i x i λ i 0, x i X, nur endlich viele λ i 0}.

λ i x i λ i 0, x i X, nur endlich viele λ i 0}. jobname LinOpt Sommer Aufgabe a) Sei X R n. Dann ist b) Cone X = { x i X λ i x i λ i, x i X, nur endlich viele λ i }. x Cone S = Lin S x Lin S = Cone S. Also gibt es nicht-negative Koeffizienten µ i von

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 7 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 200 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Klausurrepetitorium ABWL

Klausurrepetitorium ABWL Klausurrepetitorium ABWL Planungs- und Südwestfälische Industrie- und Handelskammer 9. August 5 Dr. Friedhelm Kulmann, Sandra Rudolph 9.8.5 Gliederung. Nichtlineare Optimierungsprobleme.. Quadratisches

Mehr

Lineare Programmierung. Beispiel: Wahlkampf. Beispiel: Wahlkampf. Mathematische Schreibweise. Lineares Programm. Datenstrukturen & Algorithmen

Lineare Programmierung. Beispiel: Wahlkampf. Beispiel: Wahlkampf. Mathematische Schreibweise. Lineares Programm. Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Einführung Standard- und Schlupfformen Simplex Algorithmus Matthias Zwicker Universität Bern Frühling 2009 2 Beispiel: Wahlkampf Ziel: mit möglichst wenig Werbung eine gewisse

Mehr

Teil I. Lineare Optimierung

Teil I. Lineare Optimierung Teil I Lineare Optimierung 5 Kapitel 1 Grundlagen Definition 1.1 Lineares Optimierungsproblem, lineares Programm. Eine Aufgabenstellung wird lineares Optimierungsproblem oder lineares Programm genannt,

Mehr

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik 1142KWL09 Aufgabe 1. Zeigen Sie, dass für alle n 2 gilt: n paarweise verschiedene Geraden im R 2 schneiden sich untereinander

Mehr

Hauptsatz und Optimalitätskriterium der Simplexmethode

Hauptsatz und Optimalitätskriterium der Simplexmethode Kapitel 4 Hauptsatz und Optimalitätskriterium der Simplexmethode In diesem Abschnitt wird das wichtigste Verfahren zur Lösung linearer Optimierungsprobleme eingeführt die Simplexmethode Es existiere für

Mehr

Operations Research. Ganzzahlige lineare Programme. ganzzahlige lineare Programme. Ganzzahlige lineare Programme. Rainer Schrader. 25.

Operations Research. Ganzzahlige lineare Programme. ganzzahlige lineare Programme. Ganzzahlige lineare Programme. Rainer Schrader. 25. Operations Research Rainer Schrader Ganzzahlige lineare Programme Zentrum für Angewandte Informatik Köln 25. Juni 2007 1 / 49 2 / 49 Ganzzahlige lineare Programme Gliederung ganzzahlige lineare Programme

Mehr

Optimierung. Nürnberg, Oktober 2015

Optimierung. Nürnberg, Oktober 2015 1 Optimierung Nürnberg, Oktober 2015 Prof. Dr. Yvonne Stry Technische Hochschule Nürnberg Fakultät Angewandte Mathematik, Physik und Allgemeinwissenschaften Keßlerplatz 12 90461 Nürnberg Germany 1 Beispiel

Mehr