Statistische Methoden in den Umweltwissenschaften

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Statistische Methoden in den Umweltwissenschaften"

Transkript

1 Statistische Methoden in den Umweltwissenschaften t-test Varianzanalyse (ANOVA)

2 Übersicht Vergleich von Mittelwerten 2 Gruppen: t-test einfaktorielle ANOVA > 2 Gruppen: einfaktorielle ANOVA

3 Seeigel und Seegräser Mittelmeer: Der Seeigel Paracentrotus lividus beweidet Posidonia oceanica

4 Seeigel und Seegräser Nullhypothese: m 1 m 2 Die Seegrasdichten im Gebiet mit Seeigeln und ohne Seeigel unterscheiden sich nicht. (m 1 = m 2 )

5 Frage: IOW-Statistikseminar: 3. Veranstaltung Prinzipien der Varianzanalyse ANOVA: Beispiel Haben Seeigel einen Einfluss auf die Sprossdichte der Seegräser? Biologischer Hintergrund: Seeigel beweiden Seegräser, könnten aber auch das Wachstum über ihre Exkretionen fördern. Experiment: Manipulation der Seeigeldichte: Präsenz, Absenz

6 Prinzipien der Varianzanalyse ANOVA 25 x 15 cm 25 x 15 cm 1: Ja 2: Nein Experiment: Manipulation der Seeigeldichte (Präsenz/Absenz) Frage: Gibt es einen signifikanten Unterschied in den Mittelwerten dieser beiden Gruppen, wobei der Mittelwert aus je 5 Replikaten ermittelt wurde? Nullhypothese: H 0 : m1 = m2

7 Prinzipien der Varianzanalyse ANOVA 25 x 15 cm 25 x 15 cm 1: Ja 2: Nein Experiment: Manipulation der Seeigeldichte (Präsenz/Absenz) Nullhypothese: H 0 : m1 = m2 Achtung: Nicht nur der absolute Unterschied zwischen den Mittelwerten ist entscheidend, sondern auch die Stärke der Streuung der Messwerte um die Mittelwerte!

8 Streuungsparameter Die Varianz ist ein Maß für die Streuung der Einzelwerte x i um den Mittelwert m Varianz ist das Quadrat der Standardabweichung Varianz ist die mittlere Summe der Abweichungsquadrate ² = n i= 1 s ( xi m)² (n 1) Summe der Abweichungsquadrate ( Quadratsumme, SS, SQ ) Anzahl der Freiheitsgrade df Mittelwert und Varianz sind Kenngrößen der Normalverteilung!!!

9 Normalverteilung Dichtefunktion f(x) = σ 1 2π exp 1 2 x σ μ 2-3σ -2σ -σ μ 1σ 2σ 3σ Eine der wichtigsten Verteilungen ist die Normalverteilung (besser: Verteilungsdichte) mit Mittelwert µ und Varianz σ² Symmetrisch um µ Nur abhängig von µ und σ 68,72% der Werte liegen im Bereich [- σ, σ ]

10 Beispiel: Ergebnisse 25 x 15 cm 25 x 15 cm 1: Ja 2: Nein Experiment: Manipulation der Seeigeldichte (Präsenz/Absenz) Gruppe n Messwerte Ja 5 15 ; 17 ; 18 ; 20 ; 21 Nein 5 31 ; 37 ; 38 ; 40 ; 45

11 Aufteilung der Varianzen Gesamtvarianz = Varianz zwischen den Gruppen + Varianz innerhalb der Gruppen Varianz zwischen den Gruppen = 984 Varianz innerhalb der Gruppen = 16

12 Aufteilung der Varianzen Gruppe Ja Einzelvarianz ja = 6 Einzelvarianz nein = 26 Gesamtvarianz = 1000 Alle Messwerte Gruppe Nein µ Ja =18 µ Gesamt =28 µ nein =38

13 Varianz innerhalb der Gruppen Mittlere Einzelvarianz der Gruppen (= Varianz innerhalb der Gruppen): Zufällige Streuung, die durch unbekannte Faktoren entsteht (wie z.b. genotypische Unterschiede zwischen den Pflanzen) Unerklärte Varianz oder Residualvarianz Gruppe n df Mittelwert Varianz Ja ,2 6 Nein ,2 26 Mittlere Einzelvarianz 16 (6+26) / 2 = 16 Wenn H 0 richtig ist (m 1 = m 2 ), dann ist die Abweichung (Varianz) zwischen den beiden Gruppenmittelwerten rein zufällig (klein), d.h. nicht (viel) größer als die mittlere Einzelvarianz.

14 Varianz zwischen und innerhalb der Gruppen Streuung ist gleich groß oder größer als die Differenz der Mittelwerte H 0 ist richtig (m 1 = m 2 ) Varianz zwischen Gruppe 1 und Gruppe 2 = klein Mittlere Einzelvarianz innerhalb der Gruppen = klein Differenz der Mittelwerte ist groß, die Streuung ist klein: H 0 ist falsch (m 1 m 2 ) Varianz zwischen Gruppe 1 und Gruppe 2 = groß Mittlere Einzelvarianz innerhalb der Gruppen = klein

15 Varianz zwischen und innerhalb der Gruppen H 0 ist richtig (m 1 = m 2 ) Varianz zwischen Gruppe 1 und Gruppe 2 = 37 Mittlere Einzelvarianz innerhalb der Gruppen = 30 H 0 ist falsch (m 1 m 2 ) Varianz zwischen Gruppe 1 und Gruppe 2 = 984 Mittlere Einzelvarianz innerhalb der Gruppen = 16

16 Prüfung von H 0 über die F-Verteilung Grundidee: Vergleich der Varianz zwischen den Gruppen mit der Varianz innerhalb der Gruppen Beispiel 1: theoretische Werte Varianz zwischen den Gruppen = 37 Varianz innerhalb der Gruppen = 30 Beispiel 2: tatsächliche Messwerte Varianz zwischen den Gruppen = 984 Varianz innerhalb der Gruppen = 16 Bildung des Varianzverhältnisses!!!

17 Prüfung von H 0 über die F-Verteilung Grundidee: Vergleich der Varianz zwischen den Gruppen mit der Varianz innerhalb der Gruppen Beispiel 1: theoretische Werte Varianz zwischen den Gruppen = 37 Varianz innerhalb der Gruppen = Verhältnis = = 1,2 = 30 klein Beispiel 2: tatsächliche Messwerte Varianz zwischen den Gruppen = 984 Varianz innerhalb der Gruppen = Verhältnis = = 61,5 = groß 16 Bildung des Varianzverhältnisses!!!

18 Prüfung von H 0 über die F-Verteilung Grundidee: Vergleich der Varianz zwischen den Gruppen mit der Varianz innerhalb der Gruppen Beispiel 1: theoretische Werte Varianz zwischen den Gruppen = 37 Varianz innerhalb der Gruppen = Verhältnis = = 1,2 = 30 klein H 0 annehmen? m 1 = m 2 Beispiel 2: tatsächliche Messwerte Varianz zwischen den Gruppen = 984 Varianz innerhalb der Gruppen = Verhältnis = = 61,5 = groß 16 H 0 ablehnen? m 1 m 2

19 F-Verhältnis Varianzquotient F: F-Verhältnis = Varianz zwischen Gruppe 1 und Gruppe 2 Varianz innerhalb der Gruppen Behandlungseffekt Residualvarianz Je größer F, desto wahrscheinlicher muss H 0 abgelehnt werden

20 F als Testgröße F 1 Wenn beide Stichproben aus derselben Grundgesamtheit stammen Beide Varianzkomponenten schätzen dieselbe Varianz, nämlich die der Grundgesamtheit Um wieviel muss F größer als 1 sein, damit wir H 0 ablehnen können?

21 F-Verteilung Aus der Gesamtpopulation werden alle möglichen Kombinationen von 2 Stichproben (Gruppen) des Umfanges n=5 gezogen Für jeden Satz wird das F-Verhältnis ausgerechnet Gesamtpopulation n alle Messwerte ; 17 ; 18 ; 20 ; 21 ; 31 ; 37 ; 38 ; 40 ; 45

22 F-Verteilung Eine mögliche Kombinbation der Werte = tatsächliche Messwerte F = 61,5 Gruppe n Messwerte Ja 5 15 ; 17 ; 18 ; 20 ; 21 Nein 5 31 ; 37 ; 38 ; 40 ; 45 Eine andere mögliche Kombination der Werte F = 0,237 Gruppe n Messwerte Ja 5 37 ; 17 ; 18 ; 20 ; 40 Nein 5 31 ; 15 ; 38 ; 21 ; 45

23 F-Verteilung Die relative Häufigkeitsverteilung der F-Werte ist die gesuchte Stichprobenverteilung Fisher konnte zeigen, dass die Stichprobenverteilung einer bestimmten theoretischen Verteilung folgt Funktion(F) ist abhängig von der Anzahl der Gruppen (df zwischen den Gruppen) und der Größe des Stichprobenumfanges (df innerhalb der Gruppen) In unserem Beispiel: 2 Gruppen df = 1 Je 5 Replikate df = 2 (n-1) = 8 F (1, 8)

24 F-Verteilung (1, 8) Wahrscheinlichkeitsdichte der F-Verteilung df(seq(0,10,0.1),df1=1,df2=8) Diese Verteilung muss herangezogen werden, um den kritischen F-Wert zu bestimmen F = 6, d.h. die Varianz zwischen den Gruppen ist 6 mal größer als die Varianz innerhalb der Gruppen

25 F-Verteilung (1, 8) Die Auftretwahrscheinlichkeit von F 6 ist allerdings sehr gering. Sie ist repräsentiert von der Fläche unter der Kurve rechts von F = 6 und entspricht 4%. Wahrscheinlichkeiten der F-Verteilung q = 1-pf(6,1,8)= F = 6, d.h. die Varianz zwischen den Gruppen ist 6 mal größer als die Varianz innerhalb der Gruppen

26 Kritische F-Werte Wo liegt der kritische F-Wert? F krit 0,05 = 5,3 Er ist auch abhängig von der Irrtumswahrscheinlichkeit alpha. 5% der Fläche

27 Voraussetzungen der ANOVA Unabhängigkeit der Stichproben Normalverteilung Homogene (ähnliche) Varianzen

28 Prinzipien der Varianzanalyse ANOVA 25 x 15 cm 25 x 15 cm 25 x 15 cm 1: keine 2: mittel 3: hoch Experiment: Manipulation der Seeigeldichte (keine, mittel, hoch) Frage: Gibt es einen signifikanten Unterschied in den Mittelwerten dieser drei Gruppen, wobei der Mittelwert aus je 5 Replikaten ermittelt wurde? Nullhypothese: H 0 : m1 = m2 = m3

29 Beispiel: Ergebnisse 25 x 15 cm 25 x 15 cm 25 x 15 cm 1: keine 2: mittel 3: hoch Experiment: Manipulation der Seeigeldichte (keine, mittel, hoch) Gruppe n Messwerte keine 5 15 ; 17 ; 18 ; 20 ; 21 mittel 5 13 ; 20 ; 22 ; 25 ; 28 hoch 5 31 ; 37 ; 38 ; 40 ; 45

30 Aufteilung der Varianzen Gesamtvarianz = Varianz zwischen den Gruppen + Varianz innerhalb der Gruppen Varianz zwischen den Gruppen = 573 Varianz innerhalb der Gruppen = 21

31 Betrachtung der Varianzen Gruppe keine Einzelvarianz keine =6 Einzelvarianz mittel =33 Einzelvarianz hoch =25 Gesamtvarianz=100 Gruppe mittel Gruppe hoch Alle Messwerte µ 1 =18 µ 2 =22 µ Gesamt =28 µ 3 =38

32 Varianz innerhalb der Gruppen Mittlere Einzelvarianz der Gruppen: Zufällige Streuung, die durch unbekannte Faktoren (wie z.b. genotypische Unterschiede zwischen den Pflanzen) entsteht Unerklärte Varianz oder Residualvarianz Gruppe N df Mittelwert Varianz mittlere Varianz keine ,2 6 mittel , hoch ,2 25 ( ) / 3 = 21

33 Varianz zwischen und innerhalb der Gruppen H 0 ist richtig (m 1 = m 2 ) Varianz zwischen Gruppe 1 und Gruppe 2 = klein Mittlere Einzelvarianz innerhalb der Gruppen = klein H 0 ist falsch (m 1 m 2 ) Varianz zwischen Gruppe 1 und Gruppe 2 = groß Mittlere Einzelvarianz innerhalb der Gruppen = klein

34 Varianz zwischen und innerhalb der Gruppen Kann H 0 abgelehnt werden? Varianz zwischen Gruppe 1 und Gruppe 2 = 573 Mittlere Einzelvarianz innerhalb der Gruppen = / 21 = 27.3

35 F-Verhältnis Varianzquotient F: F-Verhältnis = Varianz zwischen den Gruppen Varianz innerhalb der Gruppen Behandlungseffekt Residualvarianz Je größer F, desto wahrscheinlicher muss H 0 abgelehnt werden

36 F als Testgröße Um wieviel muss F größer als 1 werden, damit wir H 0 ablehnen können? Was ist der kritische F-Wert? Beispiel: wenn F > 3,9 kann H 0 abgelehnt werden (F-Verteilung mit df 1 =2 und df 2 =12) F = 27.3 Die manipulierte Seeigeldichte hat einen signifikanten Effekt auf die Sprossdichte der Seegräser (p < 0,05).

37 50 Ergebnis der ANOVA Sprossdichte der Seegräser Die manipulierte Seeigeldichte hat einen signifikanten Effekt auf die Sprossdichte der Seegräser (p < 0,05). 0 keine mittel hoch Manipulierte Seeigeldichte ABER: Welche Gruppe unterscheidet sich von welcher Gruppe? Multiple Vergleiche von Mittelwerten

38 t-test Sind nur zwei Stichproben miteinander zu vergleichen, führen die einfaktorielle Varianzanalyse und der t-test für unabhängige Stichproben zu identischen Ergebnissen. D.h. der two-sampled t-test ist einen Spezialfall Varianzanalyse für 2 Gruppen. Die Beziehung zwischen der t Statistik und der F Verteilung sieht wie folgt aus: F = t² Die t-statistik ist die Wurzel des F-Ratio aus der ANOVA. Das Quadrat einer t-verteilten Zufallsvariablen ist F-verteilt.

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Post Hoc Tests A priori Tests (Kontraste) Nicht-parametrischer Vergleich von Mittelwerten 50 Ergebnis der ANOVA Sprossdichte der Seegräser 40 30 20 10

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Stetige und diskrete Wahrscheinlichkeitsverteilungen Lageparameter Streuungsparameter Diskrete und stetige Zufallsvariablen Eine Variable (oder Merkmal

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 22 Übersicht Weitere Hypothesentests in der Statistik 1-Stichproben-Mittelwert-Tests 1-Stichproben-Varianz-Tests 2-Stichproben-Tests Kolmogorov-Smirnov-Test

Mehr

Vergleich von Gruppen I

Vergleich von Gruppen I Vergleich von Gruppen I t-test und einfache Varianzanalyse (One Way ANOVA) Werner Brannath VO Biostatistik im WS 2006/2007 Inhalt Der unverbundene t-test mit homogener Varianz Beispiel Modell Teststatistik

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Varianzanalyse Statistik

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

Methodenlehre. Vorlesung 12. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 12. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 12 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie als Wissenschaft

Mehr

Einfache Varianzanalyse für unabhängige Stichproben

Einfache Varianzanalyse für unabhängige Stichproben Einfache Varianzanalyse für unabhängige Stichproben VARIANZANALYSE Die Varianzanalyse ist das dem t-test entsprechende Mittel zum Vergleich mehrerer (k 2) Stichprobenmittelwerte. Sie wird hier mit VA abgekürzt,

Mehr

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre I Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 25.9.13 Psychologie als Wissenschaft

Mehr

Bereiche der Statistik

Bereiche der Statistik Bereiche der Statistik Deskriptive / Exploratorische Statistik Schließende Statistik Schließende Statistik Inferenz-Statistik (analytische, schließende oder konfirmatorische Statistik) baut auf der beschreibenden

Mehr

Statistik II. Weitere Statistische Tests. Statistik II

Statistik II. Weitere Statistische Tests. Statistik II Statistik II Weitere Statistische Tests Statistik II - 19.5.2006 1 Überblick Bisher wurden die Test immer anhand einer Stichprobe durchgeführt Jetzt wollen wir die statistischen Eigenschaften von zwei

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Grundlage: Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Die Testvariable T = X µ 0 S/ n genügt der t-verteilung mit n 1 Freiheitsgraden. Auf der Basis

Mehr

Einfaktorielle Varianzanalyse

Einfaktorielle Varianzanalyse Kapitel 16 Einfaktorielle Varianzanalyse Im Zweistichprobenproblem vergleichen wir zwei Verfahren miteinander. Nun wollen wir mehr als zwei Verfahren betrachten, wobei wir unverbunden vorgehen. Beispiel

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

Inhaltsverzeichnis. Vorwort

Inhaltsverzeichnis. Vorwort V Vorwort XI 1 Zum Gebrauch dieses Buches 1 1.1 Einführung 1 1.2 Der Text in den Kapiteln 1 1.3 Was Sie bei auftretenden Problemen tun sollten 2 1.4 Wichtig zu wissen 3 1.5 Zahlenbeispiele im Text 3 1.6

Mehr

Methodenlehre. Vorlesung 11. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 11. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 11 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 03.12.13 Methodenlehre I Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 25.9.13 Psychologie

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

2. Formulieren von Hypothesen. Nullhypothese: H 0 : µ = 0 Gerät exakt geeicht

2. Formulieren von Hypothesen. Nullhypothese: H 0 : µ = 0 Gerät exakt geeicht 43 Signifikanztests Beispiel zum Gauß-Test Bei einer Serienfertigung eines bestimmten Typs von Messgeräten werden vor der Auslieferung eines jeden Gerätes 10 Kontrollmessungen durchgeführt um festzustellen,

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

SPSS IV Gruppenvergleiche (>2 Gruppen) A priori & post hoc-tests. H0: Die mittlere Anzahl der Seegräser (µ) hängt nicht von der Seeigel menge ab.

SPSS IV Gruppenvergleiche (>2 Gruppen) A priori & post hoc-tests. H0: Die mittlere Anzahl der Seegräser (µ) hängt nicht von der Seeigel menge ab. SPSS IV Gruppenvergleiche (>2 Gruppen) A priori & post hoc-tests A parametrisch -- ANOVA Beispieldatei: Seegräser_ANOVA H0: Die mittlere Anzahl der Seegräser (µ) hängt nicht von der Seeigel menge ab. µ

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

4.1. Nullhypothese, Gegenhypothese und Entscheidung

4.1. Nullhypothese, Gegenhypothese und Entscheidung rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals

Mehr

Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen. Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung

Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen. Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung Typisierung der stetigen theoretischen Verteilungen Bibliografie:

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2

Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2 Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2 Dr. Jan-Peter Brückner jpbrueckner@email.uni-kiel.de R.216 Tel. 880 4717 Statistischer Schluss Voraussetzungen z.b. bzgl. Skalenniveau und

Mehr

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36)

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36) Statistik I Sommersemester 2009 Statistik I I (1/36) Wiederholung Grenzwertsatz Konfidenzintervalle Logik des 0.0 0.1 0.2 0.3 0.4 4 2 0 2 4 Statistik I I (2/36) Zum Nachlesen Agresti/Finlay: Kapitel 6+7

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungen stetiger Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr

Kapitel 5 - Einfaktorielle Experimente mit festen und zufälligen Effekten

Kapitel 5 - Einfaktorielle Experimente mit festen und zufälligen Effekten Kapitel 5 - Einfaktorielle Experimente mit festen und zufälligen Effekten 5.1. Einführung Einfaktorielle Varianzanalyse Überprüft die Auswirkung einer gestuften (s), unabhängigen Variable X, auch Faktor

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik Wiederholung von Grundwissen der Stochastik. Grundbegri e der Stochastik Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

Kapitel 5 - Einfaktorielle Experimente mit festen und zufälligen Effekten

Kapitel 5 - Einfaktorielle Experimente mit festen und zufälligen Effekten Kapitel 5 - Einfaktorielle Experimente mit festen und zufälligen Effekten 5.1. Einführung Einfaktorielle Varianzanalyse Überprüft die Auswirkung einer gestuften (s), unabhängigen Variable X, auch Faktor

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik Die schließende Statistik befasst sich mit dem Rückschluss von einer Stichprobe auf die Grundgesamtheit (Population). Die Stichprobe muss repräsentativ für die Grundgesamtheit sein.

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Stichproben Parameterschätzung Konfidenzintervalle:

Stichproben Parameterschätzung Konfidenzintervalle: Stichproben Parameterschätzung Konfidenzintervalle: Beispiel Wahlprognose: Die Grundgesamtheit hat einen Prozentsatz p der Partei A wählt. Wenn dieser Prozentsatz bekannt ist, dann kann man z.b. ausrechnen,

Mehr

Fallzahlplanung bei unabhängigen Stichproben

Fallzahlplanung bei unabhängigen Stichproben Fallzahlplanung bei unabhängigen Stichproben Seminar Aktuelle biometrische Probleme Benjamin Hofner benjamin.hofner@stat.uni-muenchen.de 12. Januar 2005 Übersicht 1. Einführung und Grundlagen der Fallzahlplanung

Mehr

Probleme bei kleinen Stichprobenumfängen und t-verteilung

Probleme bei kleinen Stichprobenumfängen und t-verteilung Probleme bei kleinen Stichprobenumfängen und t-verteilung Fassen wir zusammen: Wir sind bisher von der Frage ausgegangen, mit welcher Wahrscheinlichkeit der Mittelwert einer empirischen Stichprobe vom

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Mainz, 8. Juni 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests Nach Verteilungsannahmen: verteilungsabhängig: parametrischer [parametric] Test verteilungsunabhängig: nichtparametrischer [non-parametric] Test Bei parametrischen Tests

Mehr

Übungen mit dem Applet Vergleich von zwei Mittelwerten

Übungen mit dem Applet Vergleich von zwei Mittelwerten Vergleich von zwei Mittelwerten 1 Übungen mit dem Applet Vergleich von zwei Mittelwerten 1 Statistischer Hintergrund... 2 1.1 Typische Fragestellungen...2 1.2 Fehler 1. und 2. Art...2 1.3 Kurzbeschreibung

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften 2 3 3 4 6 4 5 0 0 5 6 5 20 5 6 Tabellen (leicht gekürzte Version) Hans Walser: Tabellen ii Inhalt Binomische Verteilung.... Binomische Verteilung (ohne

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften 2 3 3 4 6 4 5 0 0 5 6 5 20 5 6 Tabellen (leicht gekürzte Version) Hans Walser: Tabellen ii Inhalt Binomische Verteilung.... Binomische Verteilung (ohne

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Mehrfaktorielle Varianzanalyse

Mehrfaktorielle Varianzanalyse Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Mehrfaktorielle Varianzanalyse Überblick Einführung Empirische F-Werte zu einer zweifaktoriellen

Mehr

GRUNDPRINZIPIEN statistischen Testens

GRUNDPRINZIPIEN statistischen Testens Fragestellungen beim Testen GRUNDPRINZIPIEN statistischen Testens. Vergleiche Unterscheidet sich die Stichprobenbeobachtung von einer vorher spezifizierten Erwartung ( Hypothese ) mit ausreichender Sicherheit?

Mehr

Statistik für Naturwissenschaftler

Statistik für Naturwissenschaftler Hans Walser Statistik für Naturwissenschaftler 9 t-verteilung Lernumgebung Hans Walser: 9 t-verteilung ii Inhalt 1 99%-Vertrauensintervall... 1 2 95%-Vertrauensintervall... 1 3 Akkus... 2 4 Wer ist der

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.6 und 4.7 besser zu verstehen. Auswertung und Lösung Abgaben: 59 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 4.78 1 Frage

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Modul 141 Statistik. 1. Studienjahr 11. Sitzung Signifikanztests

Modul 141 Statistik. 1. Studienjahr 11. Sitzung Signifikanztests Modul 141 Statistik 1. Studienjahr 11. Sitzung Signifikanztests Inhalt der 11. Sitzung 1. Parametrische Signifikanztests 2. Formulierung der Hypothesen 3. Einseitige oder zweiseitige Fragestellung 4. Signifikanzniveau

Mehr

SPSS III Mittelwerte vergleichen

SPSS III Mittelwerte vergleichen SPSS III Mittelwerte vergleichen A Zwei Gruppen ------------ Zwei-Stichproben t-test Beispieldatei: Seegräser Fragestellung: Unterscheidet sich die Anzahl der Seegräser in Gebieten mit und ohne Seeigelvorkommen

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

Softwaretechnik. Prof. Dr. Rainer Koschke. Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen

Softwaretechnik. Prof. Dr. Rainer Koschke. Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen Softwaretechnik Prof. Dr. Rainer Koschke Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen Wintersemester 2010/11 Überblick I Statistik bei kontrollierten Experimenten

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-06) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

ANOVA und Transformationen. Statistik II

ANOVA und Transformationen. Statistik II und Statistik II Wiederholung Literatur Statistik II und (1/28) Literatur Zum Nachlesen Agresti ch. 12 (nur bis Seite 381) Agresti ch. 13 (nur bis Seite 428) Statistik II und (2/28) Literatur für nächste

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Einführung in die Varianzanalyse mit SPSS

Einführung in die Varianzanalyse mit SPSS Einführung in die Varianzanalyse mit SPSS SPSS-Benutzertreffen am URZ Carina Ortseifen 6. Mai 00 Inhalt. Varianzanalyse. Prozedur ONEWAY. Vergleich von k Gruppen 4. Multiple Vergleiche 5. Modellvoraussetzungen

Mehr

Statistische Messdatenauswertung

Statistische Messdatenauswertung Roland Looser Statistische Messdatenauswertung Praktische Einführung in die Auswertung von Messdaten mit Excel und spezifischer Statistik-Software für naturwissenschaftlich und technisch orientierte Anwender

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung. 5 Hypothesentests.

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung. 5 Hypothesentests. 0 Einführung 1 Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung 5 Hypothesentests 6 Regression Lineare Regressionsmodelle Deskriptive Statistik:

Mehr

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung 1.8 Kolmogorov-Smirnov-Test auf Normalverteilung Der Kolmogorov-Smirnov-Test ist einer der klassischen Tests zum Überprüfen von Verteilungsvoraussetzungen. Der Test vergleicht die Abweichungen der empirischen

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

Inhaltsverzeichnis Einführung und deskriptive Statistik Grundlagen der Inferenzstatistik 1: Zufallsvariablen

Inhaltsverzeichnis Einführung und deskriptive Statistik Grundlagen der Inferenzstatistik 1: Zufallsvariablen Inhaltsverzeichnis 1 Einführung und deskriptive Statistik... 1 1.1 Wichtige mathematische Schreibweisen... 1 1.1.1 Das Summenzeichen... 1 1.1.2 Mengentheoretische Schreibweisen... 3 1.1.3 Variablentransformationen...

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests Kapitel 10 Mittelwert-Tests 10.1 Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests 10.1 Einstichproben- Mittelwert-Tests 10.1.1 Einstichproben- Gauß-Test Dichtefunktion der Standard-Normalverteilung

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Statistik II für Betriebswirte Vorlesung 1

Statistik II für Betriebswirte Vorlesung 1 Statistik II für Betriebswirte Vorlesung 1 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 16. Oktober 2017 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 1 Version:

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Mittelwertvergleiche Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

Aufgabe 1 (8= Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten:

Aufgabe 1 (8= Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten: Aufgabe 1 (8=2+2+2+2 Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten: Die Zufallsvariable X bezeichne die Note. 1443533523253. a) Wie groß ist h(x 5)? Kreuzen

Mehr

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen 2) Bei einer Stichprobe unter n=800 Wahlberechtigten gaben 440 an, dass Sie gegen die Einführung eines generellen Tempolimits von 100km/h auf Österreichs Autobahnen sind. a) Man bestimme ein 95%-Konfidenzintervall

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X

Mehr

Kategoriale und metrische Daten

Kategoriale und metrische Daten Kategoriale und metrische Daten Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/14 Übersicht Abhängig von der Anzahl der Ausprägung der kategorialen Variablen unterscheidet man die folgenden Szenarien:

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

Zentraler Grenzwertsatz/Konfidenzintervalle

Zentraler Grenzwertsatz/Konfidenzintervalle / Statistik I Sommersemester 2009 Statistik I ZGWS/ (1/37) Kann Ahmadinejad die Wahl gewonnen haben? Im wesentlichen Dreiteilung der polit. Elite 2005: 17.3 Millionen Stimmen (Stichwahl), Wahlbeteiligung

Mehr

Allgemeines zu Tests. Statistische Hypothesentests

Allgemeines zu Tests. Statistische Hypothesentests Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 1 Stetige Zufallsvariablen 1.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Beispiel 1: Zweifache Varianzanalyse für unabhängige Stichproben

Beispiel 1: Zweifache Varianzanalyse für unabhängige Stichproben Beispiel 1: Zweifache Varianzanalyse für unabhängige Stichproben Es wurden die Körpergrößen von 3 Versuchspersonen, sowie Alter und Geschlecht erhoben. (Jeweils Größen pro Faktorstufenkombination). (a)

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

Alternative Darstellung des 2-Stcihprobentests für Anteile

Alternative Darstellung des 2-Stcihprobentests für Anteile Alternative Darstellung des -Stcihprobentests für Anteile DCF CF Total n 111 11 3 Response 43 6 69 Resp. Rate 0,387 0,3 0,309 Bei Gültigkeit der Nullhypothese Beobachtete Response No Response Total absolut

Mehr

Prüfungsliteratur: Rudolf & Müller S

Prüfungsliteratur: Rudolf & Müller S 1 Beispiele zur univariaten Varianzanalyse Einfaktorielle Varianzanalyse (Wiederholung!) 3 Allgemeines lineares Modell 4 Zweifaktorielle Varianzanalyse 5 Multivariate Varianzanalyse 6 Varianzanalyse mit

Mehr

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm.

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm. Veranstaltung: Statistik für das Lehramt 16.12.2016 Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm Erwartungswert Varianz Standardabweichung Die Wahrscheinlichkeitsverteilung

Mehr

Einfaktorielle Varianzanalyse

Einfaktorielle Varianzanalyse Professur Psychologie digitaler Lernmedien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Einfaktorielle Varianzanalyse Überblick Einführung Alphafehler-Kumulierung Grundprinzip

Mehr

JosefPuhani. Kleine Formelsammlung zur Statistik. 10. Auflage. averiag i

JosefPuhani. Kleine Formelsammlung zur Statistik. 10. Auflage. averiag i JosefPuhani Kleine Formelsammlung zur Statistik 10. Auflage averiag i Inhalt- Vorwort 7 Beschreibende Statistik 1. Grundlagen 9 2. Mittelwerte 10 Arithmetisches Mittel 10 Zentral wert (Mediän) 10 Häufigster

Mehr

Statistik II Übung 3: Hypothesentests

Statistik II Übung 3: Hypothesentests Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

Statistik II Übung 3: Hypothesentests Aktualisiert am

Statistik II Übung 3: Hypothesentests Aktualisiert am Statistik II Übung 3: Hypothesentests Aktualisiert am 12.04.2017 Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Juni 2014 Waldherr / Christodoulides Einführung in Quantitative Methoden 1/46 Anpassungstests allgemein Gegeben: Häufigkeitsverteilung

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau

Mehr