Musterlösung zur Klausur Differentialgeometrie für die Fachrichtung Geodäsie

Größe: px
Ab Seite anzeigen:

Download "Musterlösung zur Klausur Differentialgeometrie für die Fachrichtung Geodäsie"

Transkript

1 Karlsruher Institut für Technologie KIT) 4. März 20 Institut für Algebra und Geometrie PD Dr. Gabriele Link Musterlösung zur Klausur Differentialgeometrie für die Fachrichtung Geodäsie Aufgabe. Kurventheorie. Gegeben sei die Kurve mit der Parametrisierung ) x : R R 3, t t t3 3, t2, t + t Punkte) a) Überprüfen Sie, ob die Kurve x regulär ist, und ob x nach Bogenlänge parametrisiert ist. b) Berechnen Sie die Krümmung und Torsion von x. c) Zeigen Sie, dass alle Tangentialvektoren von x mit der x 3 -Richtung 0, 0, ) konstanten Winkel α einschließen. Berechnen Sie α. a) Da x t) = t 2, 2t, + t 2 ) o für alle t R wegen + t 2, ist x regulär. Weiter haben wir x t) 2 = t 2 ) 2 + 2t) t 2 ) 2 = 2t 2 + t 4 + 4t t 2 + t 4 = 2 + 4t 2 + 2t 4 = 2 + t 2 ) 2 2, also ist x nicht nach Bogenlänge parametrisiert. b) Wir berechnen weiter Damit folgt x t) = 2t, 2, 2t) = 2 t,, t), x t) = 2, 0, 2) = 2, 0, ), x x = 22t 2 t 2, t t 3 t + t 3, t 2 + 2t 2 = 2t 2, 2t, t 2 + ) x x = 2 t 2 ) 2 + 2t) 2 + t 2 + ) 2 c) Mit e 3 = 0, 0, ) haben wir = 2 t 4 2t t 2 + t 4 + 2t 2 + = 2 2t 4 + 4t = 2 2t 2 + ) κt) = x x x 3 = t 2 ) t 2 ) = 3 + t 2 ) 2, τt) = x x, x x x 2 = 4 t2 + + t 2 + ) 4 2t 2 + ) 2 = + t 2 ) 2 = κt). cos α = x t), e 3 x t) e 3 = + t2 2 + t 2 ) =, 2 d.h. α hängt nicht vom Parameter t ab. Wegen cos ) π 4 = 2 folgt weiter α = π 4 =45 ).

2 Aufgabe 2. Kegelfläche. Wir betrachten die Fläche mit der Parametrisierung 6 Punkte) x : 0, ) [0, 2π) R 3, u, u 2 ) xu, u 2 ) = u, u cos u 2, u + sin u 2 )). a) Untersuchen Sie, ob x regulär parametrisiert ist und berechnen Sie die ersten und zweiten Fundamentalgrößen von x. b) Zeigen Sie, dass x nur parabolische Punkte besitzt. c) Geben Sie alle Asymptotenlinien von x an. d) Zeigen Sie, dass die u -Parameterlinien Krümmungslinien sind. a) Wir berechnen zunächst x u u, u 2 ) =, cos u 2, + sin u 2 ), x u 2u, u 2 ) = 0, u sin u 2, u cos u 2 ), x u x u 2 = u + u sin u 2, u cos u 2, u sin u 2 ) = u + sin u 2, cos u 2, sin u 2 ). x ist regulär, da x u x u 2 o für u 0 gilt. Die ersten Fundamentalgrößen sind g = x u, x u = + cos u 2 ) sin u 2 ) 2 = sin u 2 = sin u 2, g 2 = x u, x u 2 = u cos u 2 = g 2, g 22 = x u 2, x u 2 = u ) 2, g = g g 22 g 2 2 = 3u ) 2 + 2u ) 2 sin u 2 u ) 2 cos u 2 ) 2 = u ) sin u 2 + cos u 2 ) 2) = u ) sin u 2 + sin u 2 ) 2). Insbesondere folgt n = g x u x u 2 = sin u 2 + sin u 2 ) 2 + sin u2, cos u 2, sin u 2 ). Weiter haben wir also x u u u, u 2 ) = 0, 0, 0), x u u 2u, u 2 ) = 0, sin u 2, cos u 2 ), x u 2 u 2u, u 2 ) = 0, u cos u 2, u sin u 2 ), b = x u u, n = 0, b 2 = x u u 2, n = 0 = b 2, b 22 = x u 2 u2, n = u ) 2 = g b = b b 22 b 2 2 = 0. u sin u 2 + sin u 2 ) 2,

3 b) Die Gaußkrümmung ist gegeben durch K = b g = 0, also besitzt die Fläche nur parabolische Punkte oder Flachpunkte. Für die mittlere Krümmung haben wir weiter H = ) b g 22 2b 2 g 2 + b 22 g = 2g 2g b 22g 0 für u 0, d.h. die Fläche kann nur parabolische Punkte haben. c) Da b = 0 ist, sind nach einem Satz der Vorlesung die u -Parameterlinien Asymptotenlinien. Da x nur parabolische Punkte hat, gibt es in jedem Punkt der Fläche genau eine Asymptotenrichtung, also gibt es außer den u -Parameterlinien keine weiteren Asymptotenlinien. d) Die Differentialgleichung DK) für Krümmungslinien vereinfacht sich in unserem Fall zu der Gleichung 0 = b 2 g b g 2 ) ) 2 + b22 g b g 22 ) 2 + b 22 g 2 b 2 g 22 ) 2) 2 = b 22 g 2 + b 22 g 2 2 ) 2 = b22 g + b 22 g 2 2 ) 2. Für die u -Parameterlinien ist u 2 t) = const, also 2 = 0. Damit folgt insbesondere b 22 g + b 22 g 2 2 ) 2 = 0, d.h. die u -Parameterlinien sind Krümmungslinien.

4 Aufgabe 3. Wendelfläche. Gegeben sei die Fläche mit der Parametrisierung 6 Punkte) x : R 2 R 3, u, u 2 ) xu, u 2 ) = sinhu 2 ) cos u, sinhu 2 ) sin u, u ). a) Berechnen Sie die Gaußkrümmung von x. b) Untersuchen Sie, ob es unter den Parameterlinien Asymptotenlinien gibt. c) Bestimmen Sie die Krümmungslinien der Fläche x. d) Zeigen Sie, dass die durch x : R 2 R 3, v, v 2 ) xv, v 2 ) = v 2 cos v, v 2 sin v, v ) gegebene Fläche eine Umparametrisierung von x ist. a) Wir berechnen zunächst x u u, u 2 ) = sinh u 2 sin u, sinh u 2 cos u, ), x u 2u, u 2 ) = cosh u 2 cos u, cosh u 2 sin u, 0), x u x u 2 = cosh u 2 sin u, cosh u 2 cos u, sinh u 2 cosh u 2 ) x ist regulär, da x u x u 2 o gilt. Die ersten Fundamentalgrößen sind Insbesondere folgt Weiter haben wir also = cosh u 2 sin u, cos u, sinh u 2 ). g = x u, x u = sinh u 2 ) 2 + = cosh u 2 ) 2, g 2 = x u, x u 2 = 0 = g 2, g 22 = x u 2, x u 2 = cosh u 2 ) 2, g = g g 22 g 2 2 = cosh u 2 ) 4. n = g x u x u 2 = cosh u 2 sin u, cos u, sinh u 2 ). x u u u, u 2 ) = sinh u 2 cos u, sinh u 2 sin u, 0), x u u 2u, u 2 ) = cosh u 2 sin u, cosh u 2 cos u, 0), x u 2 u 2u, u 2 ) = sinh u 2 cos u, sinh u 2 sin u,, 0), b = x u u, n = 0, b 2 = x u u 2, n = cosh u 2 cosh u2 = = b 2, b 22 = x u 2 u2, n = 0, b = b b 22 b 2 2 =.

5 Die Gaußkrümmung ist gegeben durch K = b g = cosh u 2 ) 4. b) Wegen b = b 22 = 0 sind alle Parameterlinien Asymptotenlinien. c) Die Differentialgleichung DK) für Krümmungslinien vereinfacht sich in unserem Fall zu der Gleichung 0 = b 2 g b g 2 ) ) 2 + b22 g b g 22 ) 2 + b 22 g 2 b 2 g 22 ) 2) 2 = b 2 g ) 2 b2 g 22 2 ) 2 = cosh u 2 ) 2 ) 2 cosh u 2 ) 2 2) 2. Wegen cosh u 2 > 0 ist dies äquivalent zu 2 ) 2 = ) 2 2 = ± u 2 = ±u + C mit C R. Die Krümmungslinien sind also gegeben durch c + : R R 3, t x t, t + C) = sinht + C) cos t, sinht + C) sin t, t), C R, c : R R 3, t x t, t + C) = sinh t + C) cos t, sinh t + C) sin t, t), C R. d) Wir betrachten die Abbildung v u, u 2 ) = u v 2 u, u 2 ) = sinh u 2. ) Dann gilt v, v 2 ) u, u 2 ) = det v u v u v 2 v 2 u 2 u 2 ) = 0 0 cosh u 2 = cosh u2 > 0. Weiter ist x v u, u 2 ), v 2 u, u 2 ) ) = sinh u 2 cos u, sinh u 2 sin u, u ) = xu, u 2 ), d.h. ) ist eine Parametertransformation, und x eine Umparametrisierung von x.

6 Aufgabe 4. Geodätische. Gegeben sei die Fläche mit der Parametrisierung 6 Punkte) x : R 2 R 3, u, u 2 ) xu, u 2 ) = sinu 2 u ), cosu 2 u ), u + u 2 ). a) Berechnen Sie alle Christoffelsymbole von x und geben Sie das System von Differentialgleichungen für Geodätische an. b) Bestimmen Sie alle Geodätische durch den Punkt x0, 0) = 0,, 0). c) Bestimmen Sie den Flächeninhalt des Teilstücks xv ) mit V := {u, u 2 ) R 2 : π 2 u π 2, π 2 u2 π 2 }. a) Wir berechnen zunächst x u u, u 2 ) = cosu 2 u ), sinu 2 u ), ), x u 2u, u 2 ) = cosu 2 u ), sinu 2 u ), ), g = x u, x u = + = 2, g 2 = x u, x u 2 = cos 2 u 2 u ) sin 2 u 2 u ) + = 0 = g 2, g 22 = x u 2, x u 2 = + = 2, g = g g 22 g 2 2 = 4. Damit folgt g ij,k = 0 und somit Γ k ij = 0 für alle i, j, k =, 2. Das System von Differentialgleichungen für Geodätische lautet also ü = 0, ü 2 = 0. b) Jede Geodätische ist daher von der Form ct) = xu t), u 2 t)) mit u i t) = a i t + d i, i =, 2. Verwendet man die Anfangsbedingungen u 0) = u 2 0) = 0, so folgt d = d 2 = 0, also ist jede Geodätische c mit c0) = x0, 0) gegeben durch ct) = xa t, a 2 t) = sina 2 a )t), cosa 2 a )t), a 2 + a )t). c) Für den Flächeninhalt des Teilstücks xv ) gilt OxV )) = gu, u 2 ) du du 2 = 2 du du 2 π/2 π/2 = 2 π/2 π/2 } {{ } =π du du 2 = 2π π/2 π/2 π/2 du 2 = 2 π 2.

7

Klausur zur Geometrie für Bachelor und Lehramt

Klausur zur Geometrie für Bachelor und Lehramt Klausur zur Geometrie für Bachelor und Lehramt Aufgabe ( Punkt) Lösung Aufgabe Kurzfragen (jeweils Punkte) (a) Skizzieren Sie qualitativ eine ebene Kurve c : R R mit Krümmung κ(t) = t (b) Ist die ebene

Mehr

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 11. Differentialgeometrie Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

Grundbegriffe aus der Vorlesung Elementare Differentialgeometrie

Grundbegriffe aus der Vorlesung Elementare Differentialgeometrie Grundbegriffe aus der Vorlesung Elementare Differentialgeometrie July 5, 2012 1 Kurventheorie Eine parametrisierte Kurve ist eine unendlich oft differenzierbare (= glatte) Abbildung c : I R n, wobei I

Mehr

Übungen zur Vorlesung Differentialgeometrie I

Übungen zur Vorlesung Differentialgeometrie I Sommersemester 2005 Blatt 12 1) Liouvillesche Flächen sind per definitionem solche, deren erste Fundamentalform sich in der Form E = G = U + V, F = 0, schreiben lassen, wobei U = U (u) bzw. V = V (v) in

Mehr

Klausur zur Geometrie

Klausur zur Geometrie PD Dr. A. Kollross Dr. J. Becker-Bender Klausur zur Geometrie Universität Stuttgart SoSe 213 2. Juli 213 Lösungen Aufgabe 1 Sei eine ebene Kurve c: (, ) R 2 durch ( ) 3 t c(t) = 2 t 3/2 definiert. a) Begründen

Mehr

Differentialgeometrie von Kurven und Flächen

Differentialgeometrie von Kurven und Flächen Differentialgeometrie von Kurven und Flächen Inhaltsverzeichnis:. Hilfsmittel Fritzsche 2. Parametrisierte Kurven Ballnus, 29.0. 3. Ebene Krümmung Ballnus, 05.. 4. Raumkurven Stergiou, 2.. 5. Globale Eigenschaften

Mehr

Vorlesung 12 Differentialgeometrie: Grundlagen 49. Definition 4.25 Die Zweite Fundamentalform ordnet jedem Punkt die Bilinearform

Vorlesung 12 Differentialgeometrie: Grundlagen 49. Definition 4.25 Die Zweite Fundamentalform ordnet jedem Punkt die Bilinearform Vorlesung 2 Differentialgeometrie: Grundlagen 49 Wir werden jetzt κ(v) durch Untersuchung von d p N bestimmen. Dazu beobachten wir zunächst, das aus dn(v) N folgt, dass es zu jedem v T p U ein w T p U

Mehr

6.4 Oberflächenintegrale 1. und 2. Art

6.4 Oberflächenintegrale 1. und 2. Art 6.4 Oberflächenintegrale. und. Art 6.4. Integration über Flächen im Raum Es gibt verschiedene Möglichkeiten der arstellung von Flächen im Raum:. explizite arstellung als Graph z = f(x, y), was aber eigentlich

Mehr

Flächen und ihre Krümmungen

Flächen und ihre Krümmungen Flächen und ihre Krümmungen Teilnehmer: Levi Borodenko Anna Heinrich Jochen Jacobs Robert Jendersie Tanja Lappe Manuel Radatz Maximilian Rogge Käthe-Kollwitz-Oberschule, Berlin Käthe-Kollwitz-Oberschule,

Mehr

Kapitel 7. Christoffelsymbole und Geodätische. 7.1 Christoffelsymbole

Kapitel 7. Christoffelsymbole und Geodätische. 7.1 Christoffelsymbole Kapitel 7 Christoffelsymbole und Geodätische 7.1 Christoffelsymbole Für viele Anwendungen in der elementaren Differentialgeometrie, darunter auch für Geodätische, spielen die zweiten Ableitungen X ij :=

Mehr

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const.

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const. 13 Flächenintegrale 64 13 Flächenintegrale Im letzten Abschnitt haben wir Integrale über Kurven betrachtet. Wir wollen uns nun mit Integralen über Flächen beschäftigen. Wir haben bisher zwei verschiedene

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Kurventheorie. 1.1 Parameterdarstellung. 1.2 Reguläre Kurven

Kurventheorie. 1.1 Parameterdarstellung. 1.2 Reguläre Kurven Diese kleine Formelsammlung ist ein Hilfsmittel für die studienbegleitende Prüfung am 30. August 2012. Sie ist kein Ersatz für eine Vorlesungsmitschrift. Die Formelsammlung wird einseitig im Format DIN

Mehr

Vorlesung zur Geometrie

Vorlesung zur Geometrie PD Dr A Kollross Dr J Becker-Bender Vorlesung zur Geometrie Universität Stuttgart SoSe 3 Auswahl an Hausaufgaben mit Lösungshinweisen Version, 9 Juli 3, :45 Aufgabe (Aufgabe 3 von Blatt In der xy-ebene

Mehr

Die zweite Fundamentalform und Krümmungen

Die zweite Fundamentalform und Krümmungen Kapitel 6 Die zweite Fundamentalform und Krümmungen 6.1 Die zweite Fundamentalform Im Abschnitt 5.2 wurde das Normalenvektorfeld N einer regulär parametrisierten Fläche X : U R 2 R 3 definiert. Durch die

Mehr

B. Springborn Differentialgeometrie I Inhaltsübersicht (Stand ) Sommer Einleitung 1. 2 Kurven 1. 3 Länge und Energie 2

B. Springborn Differentialgeometrie I Inhaltsübersicht (Stand ) Sommer Einleitung 1. 2 Kurven 1. 3 Länge und Energie 2 Inhaltsverzeichnis 1 Einleitung 1 2 Kurven 1 3 Länge und Energie 2 4 Krümmung einer Kurve 3 5 Ebene Kurven, orientierte Krümmung 4 6 Tangentenumlaufzahl 5 7 Raumkurven 6 8 Parametrisierte Flächenstücke

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

Musterlösungen Aufgabenblatt 1

Musterlösungen Aufgabenblatt 1 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Phsiker Musterlösungen Aufgabenblatt Montag 6. Februar 9 Aufgabe (Vivianische Kurve) x = (sin t cos t, sin t, cos t), t π, ist wegen x + + z = eine

Mehr

Angewandte Geometrie

Angewandte Geometrie Technische Universität München SS 215 Zentrum Mathematik Blatt 4 Prof. Dr. J. Hartl Angewandte Geometrie 1. Ein Kind läuft einen geradlinigen Weg entlang und zieht an einer Schnur ein (seitlich des Weges

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Serie 9: Der Satz von Green und Parametrisierungen von Flächen im Raum

Serie 9: Der Satz von Green und Parametrisierungen von Flächen im Raum : Der Satz von Green und Parametrisierungen von Flächen im Raum Bemerkung: Die Aufgaben der sind der Fokus der Übungsstunden vom 6./8. April.. Überprüfung des Satzes von Green Der Satz von Green besagt

Mehr

Mathematik II: Übungsblatt 01: Lösungen

Mathematik II: Übungsblatt 01: Lösungen N.Mahnke Mathematik II: Übungsblatt 01: Lösungen Verständnisfragen: 1. Was versteht man unter einer parametrisierten ebenen Kurve? Eine parametrisierte ebene Kurve ist eine auf dem offenen Intervall ]t

Mehr

1. und 2. Fundamentalform

1. und 2. Fundamentalform 1. und 2. Fundamentalform regulärer Flächen Proseminar Differentialgeometrie Von Daniel Schliebner Herausgabe: 05. Dezember 2007 Daniel Schliebner 1. und 2. Fundamentalform regulärer Flächen Seite 1 6.1

Mehr

Elementare Differentialgeometrie auf Kurven und Flächen Prof. Dr. Christian Hainzl

Elementare Differentialgeometrie auf Kurven und Flächen Prof. Dr. Christian Hainzl Eberhard Karls Universität Tübingen Mathematisch-Naturwissenschaftliche Fakultät Elementare Differentialgeometrie auf Kurven und Flächen Prof. Dr. Christian Hainzl Wintersemester 213/214 Vorwort Dieses

Mehr

6.2 Geometrische Eigenschaften von Kurven. Eine Eigenschaft (eine Größe) einer Kurve heißt geometrisch, wenn sie unabhängig ist von der PD und vom KS.

6.2 Geometrische Eigenschaften von Kurven. Eine Eigenschaft (eine Größe) einer Kurve heißt geometrisch, wenn sie unabhängig ist von der PD und vom KS. 6.2 Geometrische Eigenschaften von Kurven Eine Eigenschaft (eine Größe) einer Kurve heißt geometrisch, wenn sie unabhängig ist von der PD und vom KS. Um zu zeigen, dass eine Eigenschaft geometrisch ist,

Mehr

Institut für Analysis SS 2015 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets

Institut für Analysis SS 2015 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets Institut für Analysis SS 25 PD Dr. Peer Christian Kunstmann 7.9.25 Dipl.-Math. Leonid Chaichenets Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zur Bachelor-Modulprüfung Aufgabe :

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

Computational Geometry, MU Leoben

Computational Geometry, MU Leoben Computational Geometry, MU Leoben www.unileoben.ac.at Computational Geometry Lehrveranstaltung: Darstellende Geometrie I, Übungen SS 2011 http://institute.unileoben.ac.at/anggeom/dg1 Übungsleiterin: S.

Mehr

Topologie metrischer Räume

Topologie metrischer Räume Technische Universität München Christoph Niehoff Ferienkurs Analysis für Physiker Vorlesung Montag SS 11 In diesem Teil des Ferienkurses beschäftigen wir uns mit drei Themengebieten. Zuerst wird die Topologie

Mehr

Mantelflächen schiefer Körper

Mantelflächen schiefer Körper Mantelflächen schiefer Körper CAS-Maple-Tagung Karlsruher Institut für Technologie (KIT) 28. Februar 2012 StR Martin Renner Markgrafengymnasium, Gymnasiumstr. 1 3, 76227 Karlsruhe Inhalt Praxis Arbeit

Mehr

Riemannsche Geometrie

Riemannsche Geometrie HUMBOLDT-UNIVERSITÄT ZU BERLIN INSTITUT FÜR MATHEMATIK GEOMETRISCHE ANALYSIS UND SPEKTRALTHEORIE Riemannsche Geometrie Creative Commons Namensnennung-Nicht-kommerziell-Weitergabe unter gleichen Bedingungen

Mehr

Kapitel 5. Flächen im dreidimensionalen Raum. 5.1 Die Darstellung parametrisierter Flächen mit MAPLE

Kapitel 5. Flächen im dreidimensionalen Raum. 5.1 Die Darstellung parametrisierter Flächen mit MAPLE Kapitel 5 Flächen im dreidimensionalen Raum 5.1 Die Darstellung parametrisierter Flächen mit MAPLE In diesem Abschnitt wollen wir uns mit dem Studium parametrisierter Flächen im dreidimensionalen Raum

Mehr

Differentialgeometrie

Differentialgeometrie Alfred Gray Differentialgeometrie Klassische Theorie in moderner Darstellung Aus dem Amerikanischen übersetzt und bearbeitet von Hubert Gollek Mit 277 Abbildungen Spektrum Akademischer Verlag Heidelberg

Mehr

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016 Mathematik II FS 6. März 6 Lösung zu Serie Bemerkung: Die Aufgaben der Serie sind der Fokus der Übungsstunden vom./3. März.. a y = x und es wird die ganze Parabel einmal durchlaufen, denn x nimmt alle

Mehr

Nach Bogenlänge parametrisierte Kurven

Nach Bogenlänge parametrisierte Kurven Nach Bogenlänge parametrisierte Kurven Eine orientierte Kurve ist eine Äquivalenzklasse von regulären parametrisierten Kurven bzgl. der orientierungserhaltenden Umparametrisierung als Äquivalenzrelation.

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 3 Institut für Analysis.6.3 Prof. Dr. Tobias Lamm Dr. Patrick reuning Aufgabe Höhere Mathematik II für die Fachrichtung Physik 9. Übungsblatt Ein Heißluftballon

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Block I: Integration und Taylorentwicklung in 1D

Block I: Integration und Taylorentwicklung in 1D Wiederholungsübungen zur Ingenieur-Mathematik III WS 5/6 Blatt 3..6 Block I: Integration und Taylorentwicklung in D Aufgabe : Berechnen Sie die Integrale: a) π sin x cos x dx b) ( x) +x dx c) x e x dx

Mehr

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional Christina Schindler Karolina Stoiber Ferienkurs Analysis für Physiker SS 13 A 1 Variationsrechnung 1.1 Lagrange. Art Wir führen die Überlegungen von gestern fort und wollen nun die Lagrangegleichungen.

Mehr

Eine Kennzeichnung der Kugel.

Eine Kennzeichnung der Kugel. Eine Kennzeichnung der Kugel. Von W. SCHERRER (Bern). (Als Manuskript eingegangen am 27. Dezember 1939.) Einleitung. Die ausgezeichnete Stellung der Kugel als Aichfläche der Euklidischen Metrik findet

Mehr

Differentialgeometrie für Vermessungswesen

Differentialgeometrie für Vermessungswesen Differentialgeometrie für Vermessungswesen Julia Plehnert Fachbereich Mathematik Geometrie und Approximation Inhaltsverzeichnis 1 Kurven 1 1.1 Analytische Geometrie - Eine Wiederholung.............................

Mehr

Differentialgeometrie I Kurven und Flächen

Differentialgeometrie I Kurven und Flächen Differentialgeometrie I Kurven und Flächen Prof. Dr. Ulrich Pinkall Technische Universität Berlin Institut für Mathematik 3. Juni 28 Inhaltsverzeichnis 1 Kurven 3 2 Länge von Kurven 5 3 Krümmung ebener

Mehr

x(t) t x(t) = y(t) x(t) = v H t y(t) = h + v V t g 2 t2, x/v H

x(t) t x(t) = y(t) x(t) = v H t y(t) = h + v V t g 2 t2, x/v H Ebene Kurven Definition: Eine parametrisierte ebene Kurve ist eine stetige Abbildung x(t) t x(t) = y(t) eines Intervalls [a, b] nach R. Dabei heißt t [a, b] der Kurvenparameter. Beide Komponentenabbildungen

Mehr

Lösungen zu Übungsblatt 1

Lösungen zu Übungsblatt 1 Vorlesung Geometrie für Lehramt Gymnasium, Wintersemester 4/5 Lösungen zu Übungsblatt Aufgabe. ( Punkte Beweisen Sie: Jeder reguläre Weg besitzt eine orientierungsumkehrende Parametrisierung nach der Bogenlänge.

Mehr

Analysis II für Studierende der Ingenieurwissenschaften

Analysis II für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 017 Dr. K. Rothe Analysis II für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt 1 Aufgabe 1: Aus einem kreisförmigen

Mehr

Vorlesung Klassische Differentialgeometrie

Vorlesung Klassische Differentialgeometrie Vorlesung Klassische Differentialgeometrie Ich werde mindestens die ersten Vorlesungen mit Beamer halten; die Folien sind auf meiner Homepage verfügbar. Die Vorlesung wird im Modus 4+2 angeboten. Lehramt-Studierende

Mehr

MATHEMATIK III für Bauingenieure (Fernstudium und Wiederholer)

MATHEMATIK III für Bauingenieure (Fernstudium und Wiederholer) TU DRESDEN Dresden, 16. Februar 4 Fachrichtung Mathematik / Institut für Analysis Doz.Dr.rer.nat.habil. N. Koksch Prüfungs-Klausur MATHEMATIK III für Bauingenieure (Fernstudium und Wiederholer) Name: Matrikel-Nr.:

Mehr

Differentialgeometrie

Differentialgeometrie Manuskript zur Vorlesung Differentialgeometrie gehalten an der U n i v e r s i t ä t R o s t o c k von Prof. Dr. Dieter Neßelmann Rostock, April 2006 Fassung vom 0. April 2006 Inhaltsverzeichnis Grundlagen

Mehr

Das isoperimetrische Problem

Das isoperimetrische Problem Das isoperimetrische Problem Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 18. Oktober 3 Das isoperimetrische Problem, auch bekannt als das Problem der Dido, ist es, unter allen geschlossenen ebenen

Mehr

Parametrisierung und Integralsätze

Parametrisierung und Integralsätze Parametrisierung und Integralsätze 2. März 2 Integration in der Ebene. Defintion: eien w,..., w n stückweise reguläre, einfach geschlossene Kurven in R 2, seien W,..., W n die von diesen Wegen umschlossene

Mehr

Übungen zu Höhere Analysis und elementare Differentialgeometrie, WS 2015

Übungen zu Höhere Analysis und elementare Differentialgeometrie, WS 2015 Übungen zu Höhere Analysis und elementare ifferentialgeometrie, WS 215 Ulisse Stefanelli 27. Januar 216 1 Wiederholung 1. Berechnen Sie die folgenden unbestimmten Integrale dx (arctan x) 3 (log x) 2 (2

Mehr

Wiederholungsklausur zur Analysis II

Wiederholungsklausur zur Analysis II Wiederholungsklausur zur Analysis II Prof. Dr. C. Löh/M. Blank 11. April 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

Differentialgeometrie

Differentialgeometrie Differentialgeometrie Daniel Grieser Skript zur Vorlesung im Wintersemester 2008/2009 1 Überarbeitet 2013 Einleitung Dies ist das Skript zur Vorlesung Differentialgeometrie, die ich im erstmalig Wintersemester

Mehr

Blatt 03.2: Vektorprodukt, Raumkurven, Linienintegrale

Blatt 03.2: Vektorprodukt, Raumkurven, Linienintegrale Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 25/6 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Dennis Schimmel, Frauke Schwarz, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5r/

Mehr

Die Kettenlinie. Zwischen 2 Masten sei ein Kabel der Länge l gespannt, wobei natürlich für die Größe des Abstandes der Masten gilt: AB < l

Die Kettenlinie. Zwischen 2 Masten sei ein Kabel der Länge l gespannt, wobei natürlich für die Größe des Abstandes der Masten gilt: AB < l Zwischen Masten sei ein Kabel der Länge l gespannt, wobei natürlich für die Größe des Abstandes der Masten gilt: AB < l Fragen: (1) Wie weit hängt das Kabel durch? ( d =?) () Wie groß ist die Seilspannung

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Fachbereich Mathematik Prof. Dr. H.-D. Alber Dr. N. Kraynyukova Dipl.-Ing. A. Böttcher WS / 3. Januar 3. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Gruppenübung Aufgabe

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 8: Satz von Green und Oberflächenintegrale Bemerkungen: Die Aufgaben der Serie 8 bilden den Fokus der Übungsgruppen vom./3. April.. Den Satz

Mehr

Konvexe Kurven und das isoperimetrische Problem

Konvexe Kurven und das isoperimetrische Problem Vorlesung 3 Konvexe Kurven und das isoperimetrische Problem 3.1 Einführung Der Kreis läßt sich rch folgende Minimumeigenschaft charakterisieren: Unter allen ebenen Figuren gleichen Flächeninhalts hat die

Mehr

Mathematik 2 SS 2016

Mathematik 2 SS 2016 Mathematik 2 SS 2016 2. Übungsblatt Gruppe 1 18. Man zeige, dass die Gleichung f(x, y) = y 5 e y (2x 2 + 3) sin y + x 2 y 2 x cos x = 0 in einer Umgebung des Punktes P (0, 0) nach y aufgelöst werden kann,

Mehr

Differentialgeometrie I (Kurventheorie) SS 2013

Differentialgeometrie I (Kurventheorie) SS 2013 Differentialgeometrie I (Kurventheorie) SS 2013 Lektion 1 18. April 2013 c Daria Apushkinskaya 2013 () Kurventheorie: Lektion 1 18. April 2013 1 / 23 Organisatorisches Allgemeines Dozentin: Dr. Darya Apushkinskaya

Mehr

Geometrie. Vorbereitung für die mündliche Examensprüfung. von Frank Reinhold im Frühjahr 2012 geprüft von Prof. Bernd Ammann. Inhaltsverzeichnis

Geometrie. Vorbereitung für die mündliche Examensprüfung. von Frank Reinhold im Frühjahr 2012 geprüft von Prof. Bernd Ammann. Inhaltsverzeichnis Vorbereitung für die mündliche Examensprüfung Geometrie von Frank Reinhold im Frühjahr 2012 geprüft von Prof. Bernd Ammann Inhaltsverzeichnis Bezeichnungen 2 1 Euklidische Geometrie 2 1.1 Der axiomatische

Mehr

Klausur 12/I Thema: Integralrechnung Teil A (hilfsmittelfrei) 1. Eine Stammfunktion von f x =3 x 1 heißt:

Klausur 12/I Thema: Integralrechnung Teil A (hilfsmittelfrei) 1. Eine Stammfunktion von f x =3 x 1 heißt: mg.odt 5..9 Klausur /I A Thema: Integralrechnung Teil A (hilfsmittelfrei). Eine Stammfunktion von f = heißt: ln ln. Die erste Ableitung der Funktion f = lautet: 8 d beträgt: '. Die Funktion f = ³ 8 ist

Mehr

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Themen des Tutoriums am 03.06.2015: Wiederholung: Ein glattes Flächenstück ist eine Menge M R 3, die eine reguläre Parametrisierung

Mehr

5 Kurven und Flächen in der Ebene und im Raum

5 Kurven und Flächen in der Ebene und im Raum 0 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE 5 Kurven und Flächen in der Ebene und im Raum 5.1 Parameterdarstellung für Kurven Für Kurven oder Flächen gibt es unterschiedliche Definitionsgleichungen:

Mehr

Jacobifelder und konjugierte Punkte

Jacobifelder und konjugierte Punkte Jacobifelder und konjugierte Punkte Vortrag Seminar ierentialgeometrie TU ortmund eingereicht bei Prof. r. L. Schwachhöfer vorgelegt von Melanie Voss Sommersemester 211 Vortrag 7, am 17.5.211 1 Einleitung/Wiederholung

Mehr

Übungen zum Ferienkurs Analysis II 2014

Übungen zum Ferienkurs Analysis II 2014 Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben

Mehr

Analysis III für Studierende der Ingenieurwissenschaften

Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 3/4 Dr. K. Rothe Analysis III für Studierende der Ingenieurwissenschaften Anleitung zu Blatt 7 Anleitungsaufgaben 5-8 zu Analysis III, WS3/4, Dr. K.

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt = r cos t. mit 0 t 2π und interpretieren Sie das Ergebnis geometrisch.

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt = r cos t. mit 0 t 2π und interpretieren Sie das Ergebnis geometrisch. Übungen zur Ingenieur-Mahemaik III WS 9/ Bla 3 7.. Aufgabe 59: Berechnen Sie die Bogenlänge der Schraubenlinie r γ() := r h mi π und inerpreieren Sie das Ergebnis geomerisch. Lösung: Der Tangenialvekor

Mehr

mit der Anfangsbedingung u(x, 0) = cos(x), x R. (i) Laut besitzt die Lösung folgende Darstellung

mit der Anfangsbedingung u(x, 0) = cos(x), x R. (i) Laut besitzt die Lösung folgende Darstellung Mathematik für Ingenieure IV, Kurs-Nr. 094 SS 008 Lösungsvorschläge zu den Aufgaben für die Studientage am 0./.08.008 Kurseinheit 5: Die Wärmeleitungsgleichung Aufgabe : Gegeben ist das Anfangswertproblem

Mehr

Differentialgleichung ausgehend von einem praktischen Beispiel aufstellen und lösen sowie die gefundene Lösung anwenden

Differentialgleichung ausgehend von einem praktischen Beispiel aufstellen und lösen sowie die gefundene Lösung anwenden bernhard.nietrost@htl-steyr.ac.at Seite 1 von 17 Kettenlinie Mathematische / Fachliche Inhalte in Stichworten: Differentialgleichungen (1. und 2. Ordnung, direkt integrierbar, Substitution, Trennen der

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Michael Wolf Daniel Stilck França Stefan Huber Zentralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physiker (Analysis 3) MA94 Z4.. Parametrisierungsinvarianz des Oberflächenintegrals

Mehr

Elementare Krümmungskonzepte in Mathematik und Physik

Elementare Krümmungskonzepte in Mathematik und Physik Eberhard Karls Universität Tübingen Mathematisch-Naturwissenschaftliche Fakultät Lehrstuhl für mathematische Physik Elementare Krümmungskonzepte in Mathematik und Physik Christian Hainzl Nadine Bellon

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

VORLESUNG DIFFERENTIALGEOMETRIE SS 07

VORLESUNG DIFFERENTIALGEOMETRIE SS 07 VORLESUNG DIFFERENTIALGEOMETRIE SS 07 MATTHIAS BERGNER Inhaltsverzeichnis Literatur Einführung iii iv Teil 1. Kurven 1 1. Kurven und ihre Bogenlänge 1 1.1. Parametrisierungen 1 1.2. Die Bogenlänge 2 2.

Mehr

SoSe16 Arbeitsheft Blatt 7. Tutorium. Inhalt von berandeten Fla chen

SoSe16 Arbeitsheft Blatt 7. Tutorium. Inhalt von berandeten Fla chen Mathematik fu r Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. P. Pawlaschyk www.math.uni-wuppertal.de/ herbort SoSe16 Arbeitsheft Blatt 7 Tutorium Inhalt

Mehr

Inhaltsverzeichnis Differentialgeometrie 2 Kurventheorie Jürgen Roth Differentialgeometrie 2.1

Inhaltsverzeichnis Differentialgeometrie 2 Kurventheorie Jürgen Roth Differentialgeometrie 2.1 Differentialgeometrie 2.1 Inhaltsverzeichnis Differentialgeometrie 1 Euklidische Geometrie 2 Kurventheorie 3 Klassische Flächentheorie 4 Innere Geometrie von Flächen 5 Geometrie und Topologie Differentialgeometrie

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Grundlagenwissen: Ableitungen, Flächen unter Kurven, Nullstellen, Etremwerte, Wendepunkte.. Bestimmen Sie die Stammfunktion F() der folgenden Funktionen. Die Konstante C darf weggelassen werden. a) f()

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analysis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 7 4.5.7 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

Kurven und Flächen eine Einführung

Kurven und Flächen eine Einführung INSTITUTE OF GEOMETRY Kurven und Flächen eine Einführung Anton Gfrerrer Institut für Geometrie, TU Graz e-mail: gfrerrer@geometrie.tu-graz.ac.at . Inhaltsverzeichnis 1 Kurven 1 1.1 Beschreibung einer Kurve

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

2.3 Gekrümmte Oberflächen

2.3 Gekrümmte Oberflächen 2.3 Gekrümmte Oberflächen Jede Fläche im R 3 besitzt eine zweidimensionale Parameterdarstellung, so dass die Punkte der Fläche durch r(u, u 2 ) = x(u, u 2 )ê x + y(u, u 2 )ê y + z(u, u 2 )ê z beschrieben

Mehr

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf Karolina Stoiber Aileen Wolf Ferienkurs Analysis 2 für Physiker SS 26 A Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar

Mehr

Basisprüfung, Gruppe A Analysis I/II

Basisprüfung, Gruppe A Analysis I/II Offene Aufgaben. Jeder der folgenden sieben offenen Aufgaben ist eine einzelne thematisch verwandte Single Choice-Aufgabe vorangestellt. Beantworten Sie die Single Choice Aufgabe auf dem Antwortzettel.

Mehr

Definition 2.40 (Lebesque-Integrierbarkeit). Eine Funktion f : S R mit f S V = 0 heißt (Lebesque-)integrierbar, falls die Funktion U R

Definition 2.40 (Lebesque-Integrierbarkeit). Eine Funktion f : S R mit f S V = 0 heißt (Lebesque-)integrierbar, falls die Funktion U R 2.7. Fl cheninhalten und Integration auf Flächen. ei eine reguläre Fläche und (U, F, V) eine lokale Parametrisierung von. Zunächst betracteh wir nur Funktionen f : R, die außerhalb des Koordinatenbereiches

Mehr

Scheinklausur Höhere Mathematik 2 Musterlösung , Version 1. Matrikel- Nummer: Aufgabe Summe

Scheinklausur Höhere Mathematik 2 Musterlösung , Version 1. Matrikel- Nummer: Aufgabe Summe Scheinklausur Höhere Mathematik Musterlösung 0. 0. 0, Version Name, Vorname: Nummer: Matrikel- Studiengang: Aufgabe 5 6 7 8 9 0 Summe Punkte / / / / / /5 / / / / / Bitte beachten Sie die folgenden Hinweise:

Mehr

Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen

Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen Karlsruher Institut für Technologie (KIT) Institut für Analysis Priv.-Doz. Dr. Gerd Herzog Dipl.-Math. Carlos Hauser SoSe 7 7.7.7 Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen.

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 23 (5.8.23). Gegeben seien die Matrizen A = 2 3 3 und B = 5 2 5 (a) Bestimmen Sie die Eigenwerte von A und B sowie die

Mehr

Drehachse und Drehwinkel

Drehachse und Drehwinkel Drehachse und Drehwinkel Jede Drehung Q im R 3 besitzt eine Drehachse, d.h. lässt einen Einheitsvektor u invariant, und entspricht einer ebenen Drehung um einen Winkel ϕ in der zu u orthogonalen Ebene.

Mehr

Mathematik IT 3 (Analysis)

Mathematik IT 3 (Analysis) Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Mathematik IT (Analysis) für die Studiengänge Informatik, IMT und ebusiness im Wintersemester 0/04 Geben Sie

Mehr

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x =

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x = 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 014 Mathematik 1 + Übung 1 Gleichungen mit Wurzeln Bestimmen Sie alle Lösungen der folgenden Gleichungen. Beachten Sie dabei, dass

Mehr

Übungen zur Einführung in die algebraischen Geometrie

Übungen zur Einführung in die algebraischen Geometrie Hochschule Rhein-Main WS 01/13 Stg. Angewandte Mathematik Algebraische Geometrie Erich Selder, FH Frankfurt am Main Übungsblatt 8, Lösungshinweise Übungen zur Einführung in die algebraischen Geometrie

Mehr

I 1. Ermittle von den folgenden Funktionen jeweils Stammfunktionen: (d) 4cosxdx (e) 3e x dx (f) ( e x + x 2) dx

I 1. Ermittle von den folgenden Funktionen jeweils Stammfunktionen: (d) 4cosxdx (e) 3e x dx (f) ( e x + x 2) dx Integralrechnung: I. Ermittle von den folgenden Funktionen jeweils Stammfunktionen: (a) y =,5 (b) y = + (c) y = 5 (d) y = 3 (e) y = (f) y = (g) y = 3 (h) y = (i) y = 3 4 4 (j) y = 6 + 3 (k) y = 3 + 4 (l)

Mehr

Institut für Analysis WS 2014/15 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets

Institut für Analysis WS 2014/15 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets Institut für Analsis WS 0/5 PD Dr. Peer Christian Kunstmann 05..0 Dipl.-Math. Leonid Chaichenets Höhere Mathematik III für die Fachrichtung Phsik Lösungsvorschläge zum. Übungsblatt Aufgabe 6: a Es handelt

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 1. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 1. Übungsblatt Prof Dr M Gerdts Dr A Dreves J Michael Wintertrimester 216 Mathematische Methoden in den Ingenieurwissenschaften 1 Übungsblatt Aufgabe 1 : (Schwimmer Ein Schwimmer möchte einen Fluss der Breite b > überqueren,

Mehr

1 Kurven und Kurvenintegrale

1 Kurven und Kurvenintegrale Fabian Kohler Karolina Stoiber Ferienkurs Analysis für Physiker SS 14 A 1 Kurven und Kurvenintegrale 1.1 Einschub: Koordinatentransformation Gegeben sei eine Funktion f : R n R. Dann ist die totale Ableitung

Mehr

Jörg Gayler, Lubov Vassilevskaya

Jörg Gayler, Lubov Vassilevskaya Integralrechnung: Aufgaben Jörg Gayler, Lubov Vassilevskaya ii Contents 1. Unbestimmtes Integral: Aufgaben............................. 1 1.1. Grund- oder Stammintegrale (Tabelle 1.....................

Mehr

Bonusmaterial Kurven und Flächen von Krümmung, Torsion und Längenmessung

Bonusmaterial Kurven und Flächen von Krümmung, Torsion und Längenmessung Bonusmaterial Kurven und Flächen von Krümmung, Torsion und Längenmessung 26 Was sind Jordan-Kurven? Was ist eine Traktrix? Wie verallgemeinert man Kurven und Flächen? 261 Jordan-Kurven Wir vertiefen nun

Mehr

4. Geodätische Linien

4. Geodätische Linien Gegeben ist eine Riemann sche Mannigfaltigkeit (M,, ) mit Levi-Civita-Zusammenhang D. Das Ziel ist es, ein Analogon für Geraden zu finden. Mögliche Charakterisierung von Geraden in der Euklidischen Geometrie

Mehr