Schwerpunkt homogener ebenen Flächen: Teil 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Schwerpunkt homogener ebenen Flächen: Teil 1"

Transkript

1 Fragment, Celle Schwerpunkt homogener ebenen Flächen: Teil E Ma Lubov Vassilevskaya

2 Schwerpunkt einer homogenen ebenen Fläche Die Koordinaten des Schwerpunktes lassen sich mit Hilfe der folgenden Doppelintegrale berechnen: S = d, ys = y d ist der Flächeninhalt in kartesischen Koordinaten: S = b f =a y = g dy d, ys = b f y dy d = a y = g Ma Lubov Vassilevskaya

3 Schwerpunkt einer homogenen ebenen Fläche Schwerpunkt in Polarkoordinaten: S = ys = f f r cos dr d = r = f r sin dr d = r = f Ma Lubov Vassilevskaya

4 Schwerpunkt einer homogenen ebenen Fläche: ufgaben Berechnen Sie den Schwerpunkt einer Fläche, die von den Funktionen begrenzt wird ufgabe : a ) = y, = b ) = y, = ufgabe : y =, ufgabe : y= ufgabe : y= y=,, y = cos y = cos ufgabe : f =, g =, [0, 6] ufgabe 6: f =, g =, Ma Lubov Vassilevskaya

5 Schwerpunkt einer homogenen ebenen Fläche: Lösung a S S bb. L : Die Fläche zwischen der Parabel = y² und der Geraden = : =, = y, = a S =,, S =, FE Ma Lubov Vassilevskaya

6 Schwerpunkt einer homogenen ebenen Fläche: Lösung a S S S bb. L : Die Fläche der ufgabe mit dem eingezeichneten Schwerpunkt S S = d = =0 dy y = ufgrund der Symmetrie ist y s = 0 b d = d = 0 S =, 0 Ma Lubov Vassilevskaya

7 Schwerpunkt einer homogenen ebenen Fläche: Lösung b bb. L : Graphische Darstellung der gesuchten Fläche zwischen der Funktion = f (y) und der Geraden = = y, c = Ma Lubov Vassilevskaya

8 Schwerpunkt einer homogenen ebenen Fläche: Lösung b Möglichkeit : = dy d = =0 y = =0 y =0 = 8 [ ] dy d = d = =0 0 = 8 (FE) Möglichkeit : = S = = 6 d dy d = y = = y d = 8 dy d = y =0 = y = [ d = 8 y y y8 dy = 6 [ y dy = 0 ] = 0 8 (FE) dy y = y9 y 9 ] = y = d = (LE) 9 Ma Lubov Vassilevskaya

9 Schwerpunkt einer homogenen ebenen Fläche: Lösung b bb. L : Die Fläche der ufgabe mit dem eingezeichneten Schwerpunkt S ufgrund der Symmetrie ist y s = 0 e S =, 0 9 Ma Lubov Vassilevskaya

10 Schwerpunkt einer homogenen ebenen Fläche: Lösung b bb. L : Die Schwerpunkte der ufgabe, a) grau gezeichnet, b) blau gezeichnet f y = y, f S =, 0, f y = y, S =, 0 9 Ma Lubov Vassilevskaya

11 Schwerpunkt einer homogenen ebenen Fläche: Lösung S S bb. L : Die zwischen der Parabel y = ² und der Geraden y = + eingeschlossene Fläche : y =, y =, = a S =, 0, S =, 9 FE Ma Lubov Vassilevskaya

12 Schwerpunkt einer homogenen ebenen Fläche: Lösung c S = S = ys = dy d, = y = = y = = d d y = ys = dy = y dy d, = y = d = y dy = = 9 9 d = S = 0.,. der Flächenschwerpunkt b Ma Lubov Vassilevskaya

13 Schwerpunkt einer homogenen ebenen Fläche: Lösung S bb. L : Die Fläche zwischen der Parabel y = ² und der Geraden y = + mit dem eingezeichneten Schwerpunkt S c Ma Lubov Vassilevskaya

14 Schwerpunkt einer homogenen ebenen Fläche: Lösung S S bb. L : Die zwischen den Funktionen y = f () und y = g () eingeschlossene Fläche f =, S, 0, a g = cos S, 0 Ma Lubov Vassilevskaya

15 Schwerpunkt einer homogenen ebenen Fläche: Lösung = / = y = cos / d dy = cos d = FE us Symmetriegründen ist die Koordinate des Schwerpunktes gleich Null S = ys = / d = y = cos / / = d dy = cos 0 6 y dy = y = cos / = 0 6 [ d = 0 6 cos ] d =.9 S = 0,.9 der Flächenschwerpunkt b Ma Lubov Vassilevskaya

16 Schwerpunkt einer homogenen ebenen Fläche: Lösung S bb. L : Die Fläche zwischen den Funktionen y = f () und y = g () mit dem eingezeichneten Schwerpunkt S c Ma Lubov Vassilevskaya

17 Schwerpunkt einer homogenen ebenen Fläche: Lösung S S bb. L : Die zwischen den Funktionen y = f () und y = g () eingeschlossene Fläche f =, S, 0, a g = cos S, 0 Ma Lubov Vassilevskaya

18 Schwerpunkt einer homogenen ebenen Fläche: Lösung = = y = cos d dy = cos d = FE us Symmetriegründen ist die Koordinate des Schwerpunktes gleich Null S = 0 ys = = d y = cos y dy = 6 = [ 6 cos ] d = =.7 S = 0,.7 der Flächenschwerpunkt b Ma Lubov Vassilevskaya

19 Schwerpunkt einer homogenen ebenen Fläche: Lösung S bb. L : Die Fläche zwischen den Funktionen y = f () und y = g () mit dem eingezeichneten Schwerpunkt S c Ma Lubov Vassilevskaya

20 Lösungen und : Zusammenfassung bb. L : Die Flächen zwischen den Funktionen y = f () und y = g () und den Funktionen y = f () und y = h () mit den eingezeichneten Schwerpunkten f = d, g = cos, h = cos Ma Lubov Vassilevskaya

21 Schwerpunkt einer homogenen ebenen Fläche: Lösung bb. L : Graphische Darstellung der Fläche zwischen der Funktion y = f () und der Geraden y =, = [0, 6] = 6 =0 a y = 6 dy d = 0 d = FE Ma Lubov Vassilevskaya

22 Schwerpunkt einer homogenen ebenen Fläche: Lösung = FE s = ys = 6 d =0 y = 6 = 0 d y= S = b dy = y dy = d = LE 8 [ ] d = 6 LE 0 7 6, =.7,. 8 0 Ma Lubov Vassilevskaya

23 Schwerpunkt einer homogenen ebenen Fläche: Lösung S bb. L : Graphische Darstellung der Fläche mit dem Schwerpunkt S S =.7,. c Ma Lubov Vassilevskaya

24 Schwerpunkt einer homogenen ebenen Fläche: Lösung 6 bb. L6 : Graphische Darstellung der Fläche zwischen den Funktionen y = f () und y = g () = f = y = g 6a dy d = = y = dy d = =0 y = dy d = FE Ma Lubov Vassilevskaya

25 Schwerpunkt einer homogenen ebenen Fläche: Lösung 6 = S = ys = = = y = y = FE dy d = y dy d = = y = = d d dy = 0 y dy =.0 y = S = 0,.0 der Flächenschwerpunkt 6b Ma Lubov Vassilevskaya

Schwerpunkt homogener ebener Flächen: Teil 2

Schwerpunkt homogener ebener Flächen: Teil 2 Celle, Stadtkirche St. Marien, Fragment Schwerpunkt homogener ebener Flächen: Teil 3 E Ma Lubov Vassilevskaya Flächeninhalt 3 E Ma Lubov Vassilevskaya Schwerpunkt einer homogenen ebenen Fläche: Aufgaben

Mehr

Funktionen mehrerer Variablen: Integralrechnung. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Funktionen mehrerer Variablen: Integralrechnung. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Funktionen mehrerer Variablen: Integralrechnung ufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya Inhaltsverzeichnis ii Doppelintegrale. Doppelintegrale.. Doppelintegrale mit konstanten Integrationsgrenzen

Mehr

Vektorprodukt. 1-E1 Ma 1 Lubov Vassilevskaya

Vektorprodukt. 1-E1 Ma 1 Lubov Vassilevskaya Vektorprodukt 1-E1 Ma 1 Lubov Vassilevskaya Vektorprodukt Unter dem Vektorprodukt zweier Vektoren a und b versteht man den im Raum durch die folgenden Bedingungen charakterisierten Vektor: c = a b 1. c

Mehr

Substitution bei bestimmten Integralen. 1-E1 Ma 1 Lubov Vassilevskaya

Substitution bei bestimmten Integralen. 1-E1 Ma 1 Lubov Vassilevskaya Substitution bei bestimmten Integralen -E Ma Lubov Vassilevskaya -E Ma Lubov Vassilevskaya Substitution bei bestimmten Integralen: Lernziele Was wir wissen: Wann berechnet man Integrale mit Hilfe einer

Mehr

Funktionen von mehreren Variablen Definition, Definitions- und Wertebereich

Funktionen von mehreren Variablen Definition, Definitions- und Wertebereich Funktionen von mehreren Variablen Definition, Definitions- und Wertebereich 4-E1 Ma 2 Lubov Vassilevskaya Die Grundfragen Was möchten wir über Funktionen von mehreren Variablen wissen: Wie definiert man

Mehr

Ilja Repin Die Wolgatreidler (1873) Das Skalarprodukt. 1-E Ma 1 Lubov Vassilevskaya

Ilja Repin Die Wolgatreidler (1873) Das Skalarprodukt. 1-E Ma 1 Lubov Vassilevskaya Ilja Repin Die Wolgatreidler (1873) Das Skalarprodukt 1-E Ma 1 Lubov Vassilevskaya Treideln http://www.rheinschifffahrtsgeschichte.de/mainzer%20pano%20dateien/tierer%20treideln.jpg Treideln heißt eine

Mehr

Homogene lineare Differentialgleichung 1. Ordnung

Homogene lineare Differentialgleichung 1. Ordnung Homogene lineare Differentialgleichung. Ordnung Sanddünen und Integralkurven E Ma Lubov Vassilevskaa E Ma Lubov Vassilevskaa E3 Ma Lubov Vassilevskaa Lineare DGL. Ordnung Definition: Eine Differenzialgleichung.

Mehr

Integrationsregeln, Integration durch Substitution. 1-E1 Ma 1 Lubov Vassilevskaya

Integrationsregeln, Integration durch Substitution. 1-E1 Ma 1 Lubov Vassilevskaya Integrationsregeln, Integration durch Substitution 1-E1 Ma 1 Lubov Vassilevskaya 1-E2 Ma 1 Lubov Vassilevskaya 1-E3 Ma 1 Lubov Vassilevskaya Integrationsregeln Faktorregel: b a b C f x dx = C a f x dx

Mehr

Integralrechnung für Funktionen mehrerer Variabler

Integralrechnung für Funktionen mehrerer Variabler Inhaltsverzeichnis 9 Integralrechnung für Funktionen mehrerer ariabler 36 9. Integration über ebene Bereiche in kartesischen Koordinaten.............. 36 9. Integration über ebene Bereiche in Polarkoordinaten..................

Mehr

Linien- oder Kurvenintegrale: Aufgaben

Linien- oder Kurvenintegrale: Aufgaben Linien- oder Kurvenintegrale: Aufgaben 4-E Das ebene Linienintegral Im Fall eines ebenen Linienintegrals liegt der Integrationsweg C häufig in Form einer expliziten Funktionsgleichung y = f (x) vor. Das

Mehr

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15 5. Es sei Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 5 f(x, y) : x y, : x, y, x + y, y x. erechnen Sie f(x, y) d. Wir lösen diese Aufgabe auf zweierlei Art. Zuerst betrachten wir das Gebiet

Mehr

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya Lineare Abhängigkeit und Unabhängigkeit -E Ma Lubov Vassilevskaya Eindimensionaler Raum Abb. -: Zwei nicht gleiche Vektoren auf der gleichen Gerade Jeden Vektor, der auf einer Geraden liegt, kann man durch

Mehr

Serie 6. x 2 + y 2, 0 z 4.

Serie 6. x 2 + y 2, 0 z 4. Analysis D-BAUG Dr. Cornelia Busch FS 6 Serie 6. Wir betrachten drei verschiedene Flaschen in der Form eines Paraboloids P, eines Hyperboloids H und eines Kegels K. Diese sind wie folgt gegeben: P = {

Mehr

Implizite Differentiation

Implizite Differentiation Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =

Mehr

Kartesisches Produkt. 1-E1 M-1, Lubov Vassilevskaya

Kartesisches Produkt. 1-E1 M-1, Lubov Vassilevskaya Kartesisches Produkt 1-E1 M-1, Lubov Vassilevskaya Neue Art, Mengen miteinander zu verknüpfen Abb.: Mengen und ihre Verknüpfungen Es gibt verschiedene Arten, aus zwei Mengen eine neue zu bilden, z.b. Durchschnitt,

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 8

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 8 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 212/1 Vorlesung 8 Integration über ebene Bereiche Wir betrachten einen regulären Bereich in der x-y Ebene, der einfach zusammenhängend ist.

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Gerade, ungerade oder weder noch? Algebraische und graphische Beweise

Gerade, ungerade oder weder noch? Algebraische und graphische Beweise Gerade, ungerade oder weder noch? Algebraische und graphische Beweise 8-I Symmetrie einer Funktion: Aufgabe 8 Prüfen Sie, ob die Funktionen gerade, ungerade oder keines von beiden sind: a ) f (x ) = cos

Mehr

INHALT. Mengenlehre. Komplexe Zahlen. Intergalrechnung. Doppelintegrale. Partielle Differentiation. Differentialgleichung 1.

INHALT. Mengenlehre. Komplexe Zahlen. Intergalrechnung. Doppelintegrale. Partielle Differentiation. Differentialgleichung 1. INHALT Mengenlehre Komplexe Zahlen Intergalrechnung Doppelintegrale Partielle Differentiation Differentialgleichung 1. Ordnung Mathe-Party StudiumPlus 1 Sommersemester 017 Mathe-Party StudiumPlus Sommersemester

Mehr

Flächen zwischen zwei Kurven

Flächen zwischen zwei Kurven Flächen zwischen zwei Kurven 1 E Flächen zwischen zwei cc Kurven: Beispiel 1 Abb. B1: Die Fläche zwischen zwei Kurven f (x) und g (x) im Intervall [a, b], f (x) ist die obere Kurve und g (x) ist die untere

Mehr

Jörg Gayler, Lubov Vassilevskaya

Jörg Gayler, Lubov Vassilevskaya Integralrechnung: Aufgaben Jörg Gayler, Lubov Vassilevskaya ii Contents 1. Unbestimmtes Integral: Aufgaben............................. 1 1.1. Grund- oder Stammintegrale (Tabelle 1.....................

Mehr

14.3 Berechnung gekrümmter Flächen

14.3 Berechnung gekrümmter Flächen 4.3 Berechnung gekrümmter Flächen Gekrümmte Flächen werden berechnet, indem sie als Graph einer Funktion zweier Veränderlicher aufgefasst werden. Fläche des Graphen einer Funktion zweier Veränderlicher

Mehr

Lineare Gleichungssysteme. 1-E Ma 1 Lubov Vassilevskaya

Lineare Gleichungssysteme. 1-E Ma 1 Lubov Vassilevskaya Lineare Gleichungssysteme 1-E Ma 1 Lubov Vassilevskaya Systeme linearer Funktionen und Gleichungen y = a 1 a 2... a n lineare Funktion Funktion ersten Grades,,..., unabhängige Variablen y abhängige Variable

Mehr

Prüfungsteil 1, Aufgabe 3. Analysis. Nordrhein-Westfalen 2012 GK. Aufgabe a (1) Aufgabe a (2) Abitur Mathematik: Musterlösung

Prüfungsteil 1, Aufgabe 3. Analysis. Nordrhein-Westfalen 2012 GK. Aufgabe a (1) Aufgabe a (2) Abitur Mathematik: Musterlösung Abitur Mathematik: Prüfungsteil 1, Aufgabe 3 Nordrhein-Westfalen 2012 GK Aufgabe a (1) 1. SCHRITT: BEDINGUNG FÜR PUNKTSYMMETRIE ZUM URSPRUNG PRÜFEN Der Graph der Funktion : ist genau dann punktsymmetrisch

Mehr

Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya

Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge: Inhalt Drei Verhaltensmuster von Folgen. Beispiele 1 ) = 1 n, = n n +1, 2 ) = ( 1)n n +1 n und ihre graphischen Darstellungen.,

Mehr

9 Integralrechnung für Funktionen mehrerer Variabler Integration über ebene Bereiche in kartesischen Koordinaten

9 Integralrechnung für Funktionen mehrerer Variabler Integration über ebene Bereiche in kartesischen Koordinaten Inhaltsverzeichnis 6 Integralrechnung 6. Einführung.............................................. 6. Unbestimmte Integrale........................................ 6.. Unbestimmte Integrale der rundfunktionen.......................

Mehr

I 1. Ermittle von den folgenden Funktionen jeweils Stammfunktionen: (d) 4cosxdx (e) 3e x dx (f) ( e x + x 2) dx

I 1. Ermittle von den folgenden Funktionen jeweils Stammfunktionen: (d) 4cosxdx (e) 3e x dx (f) ( e x + x 2) dx Integralrechnung: I. Ermittle von den folgenden Funktionen jeweils Stammfunktionen: (a) y =,5 (b) y = + (c) y = 5 (d) y = 3 (e) y = (f) y = (g) y = 3 (h) y = (i) y = 3 4 4 (j) y = 6 + 3 (k) y = 3 + 4 (l)

Mehr

Skalarfelder. 1-1 Ma 2 Lubov Vassilevskaya

Skalarfelder. 1-1 Ma 2 Lubov Vassilevskaya Skalarfelder 1-1 Ma 2 Lubov Vassilevskaya Einführendes Beispiel r P + q F (P) + Q Abb. 1-1: Kraftwirkung auf eine positive Ladung Wir betrachten das elektrische Feld in der Umgebung einer positiven Punktladung

Mehr

Passerellen Prüfungen 2009 Mathematik

Passerellen Prüfungen 2009 Mathematik Passerellen Prüfungen 2009 Mathematik 1. Analysis: Polynom und Potenzfunktionen Gegeben sind die beiden Funktionen 21 und 32. a) Bestimmen Sie die Null, Extremal und Wendepunkte der beiden Funktionen.

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

K2 - Klausur Nr. 3. Generalprobe mit allen Themen. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

K2 - Klausur Nr. 3. Generalprobe mit allen Themen. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. K2 - Klausur Nr. 3 Generalprobe mit allen Themen Pflichtteil keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche Darstellung,

Mehr

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus.

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. bschlussprüfung 2014 Prüfungsdauer: 150 Minuten Diese Lösung wurde erstellt von ornelia Sanzenbacher. Sie ist keine offizielle Lösung des ayerischen Staatsministeriums für Unterricht und Kultus. ufgaben

Mehr

Abiturprüfung Mathematik 13 Technik A II - Lösung mit CAS

Abiturprüfung Mathematik 13 Technik A II - Lösung mit CAS GS.6.6 - m6_3t-a_lsg_cas_gs.pdf Abiturprüfung 6 - Mathematik 3 Technik A II - Lösung mit CAS Teilaufgabe Gegeben ist die Funktion f mit ( x ) mit der Definitionsmenge D ( x ) ( x 3) f IR \ { ; 3 }. Teilaufgabe.

Mehr

5.1 Gruppe paralleler Kräfte 5.2 Körperschwerpunkt 5.3 Flächenschwerpunkt. 5. Schwerpunkt. Prof. Dr. Wandinger 1. Statik TM 1.5-1

5.1 Gruppe paralleler Kräfte 5.2 Körperschwerpunkt 5.3 Flächenschwerpunkt. 5. Schwerpunkt. Prof. Dr. Wandinger 1. Statik TM 1.5-1 5.1 Gruppe paralleler Kräfte 5.2 Körperschwerpunkt 5.3 Flächenschwerpunkt 5. Schwerpunkt Prof. Dr. Wandinger 1. Statik TM 1.5-1 5.1 Gruppe paralleler Kräfte G 1 G 2 G R G i G n P x x 1 S x S Gesucht: Angriffspunkt,

Mehr

2. Flächenträgheitsmomente

2. Flächenträgheitsmomente . Flächenträgheitsmomente.1 Definitionen. Zusammengesette Querschnitte.3 Hauptachsen Prof. Dr. Wandinger 3. Balken TM 3.-1 .1 Definitionen Flächenträgheitsmomente: Die ur Berechnung der Spannungen eingeführten

Mehr

2. Flächenträgheitsmomente

2. Flächenträgheitsmomente . Flächenträgheitsmomente.1 Definitionen. Zusammengesette Querschnitte.3 Hauptachsen Prof. Dr. Wandinger 3. Balken TM 3.-1 .1 Definitionen Flächenträgheitsmomente: Die ur Berechnung der Spannungen eingeführten

Mehr

Serie 5 Musterlösung

Serie 5 Musterlösung Serie 5 Musterlösung Lineare Algebra www.adams-science.org Klasse: 1Ea, 1Eb, 1Sb Datum: HS 17 1. Winkelfrequenz, Periodendauer 5IYBKE Berechnen Sie die fehlenden Grössen. (a) T = 4π (b) ω = (c) T = π/

Mehr

Mathematik-1, Wintersemester Vorlesungsplan, Übungen, Hausaufgaben

Mathematik-1, Wintersemester Vorlesungsplan, Übungen, Hausaufgaben Mathematik-1, Wintersemester 2014-15 Vorlesungsplan, Übungen, Hausaufgaben Vorlesungen: Lubov Vassilevskaya Übungen: Dr. Wilhelm Mons, Lubov Vassilevskaya http://www.math-grain.de/ Inhaltsverzeichnis 1.

Mehr

Berechnen Sie für die folgenden Funktionen die Fourier-Reihe in komplexer Darstellung.

Berechnen Sie für die folgenden Funktionen die Fourier-Reihe in komplexer Darstellung. 0. Übung zur Höheren Mathematik 3 Abgabe: KW 41 Aufgabe 3-0a: Berechnen Sie für die folgenden Funktionen die Fourier-Reihe in kompleer Darstellung. c) Aufgabe 3-0b: Berechnen Sie die Fourier-ransformierte

Mehr

12. Mehrfachintegrale

12. Mehrfachintegrale - 1-1. Mehrfachintegrale Flächen- und Volumenelemente Naive Gemüter sind geneigt, den Flächeninhalt dx dy (kartesische Koordinaten) in den neuen Koordinaten durch du dv anzugeben. Das ist i.a. falsch!

Mehr

Kontinuierliche Fourier Transformation

Kontinuierliche Fourier Transformation Koninuierliche Fourier ransformaion f () is eine nichperiodische Funkion. Um die Frequenzen in einem beliebigen Zeisignal zu besimmen, inerpreieren wir die Funkion f () als periodische Funkion mi Periode.

Mehr

Aufgaben e-funktion. Gegeben sind die Funktionen f k (x) = x+k e x. a) Leite g(x) = 1 x k e x. ab.

Aufgaben e-funktion. Gegeben sind die Funktionen f k (x) = x+k e x. a) Leite g(x) = 1 x k e x. ab. Aufgaben e-funktion 7 6 5 4 3-3 - - 3 u 4 - Gegeben sind die Funktionen f k () = +k e. a) Leite g() = k e ab. b) Die Graphen von f und f 3, die -Achse und die Gerade = u (u > 0) begrenzen die Fläche A(u).

Mehr

Vektoren: Grundbegriffe. 6-E Ma 1 Lubov Vassilevskaya

Vektoren: Grundbegriffe. 6-E Ma 1 Lubov Vassilevskaya Vektoren: Grundbegriffe 6-E Ma 1 Lubov Vassilevskaya Parallele Vektoren Abb. 6-1: Vektoren a, b, c und d liegen auf drei zueinander parallelen Linien l, l' und l'' und haben gleiche Richtung Linien l,

Mehr

Determinanten 3. Ordnung. 1-E Ma 1 Lubov Vassilevskaya

Determinanten 3. Ordnung. 1-E Ma 1 Lubov Vassilevskaya Determinanten 3. Ordnung 1-E Ma 1 Lubov Vassilevskaya ) ( Determinanten 3. Ordnung a 11 x 1 + a 12 x 2 + a 13 x 3 c 1 a 21 x 1 + a 22 x 2 + a 23 x 3 c 2 a 31 x 1 + a 32 x 2 + a 33 x 3 c 3 ( a11 a12 a13

Mehr

Linien- oder Kurvenintegrale

Linien- oder Kurvenintegrale Linien- oder Kurvenintegrale 1-E Einführendes Beispiel Abb. 1-1: Zum Begriff der Arbeit einer konstanten Kraft Wir führen den Begriff eines Linien- oder Kurvenintegrals am Beispiel der physikalischen Arbeit

Mehr

12 Integralrechnung, Schwerpunkt

12 Integralrechnung, Schwerpunkt Dr. Dirk Windelberg Leibniz Universität Hannover Mathematik für Ingenieure Mathematik http://www.windelberg.de/agq Integralrechnung, Schwerpunkt Schwerpunkt Es sei ϱ die Dichte innerhalb der zu untersuchenden

Mehr

R 1. 3 x 1+9. y 1 (x) = x 2, y 2(x) = x 3, y 3(x) = p x

R 1. 3 x 1+9. y 1 (x) = x 2, y 2(x) = x 3, y 3(x) = p x Studiengang: ME/MB Semester: SS 9 Analysis II Serie: Thema: bestimmtes Integral. Aufgabe: Berechnen Sie den Wert der folgenden bestimmten Integrale: d) g) j) R (x e x )dx, b) R sinx cos7xdx, e) R e R p

Mehr

Lösungen zur Prüfung 2009: Pflichtbereich

Lösungen zur Prüfung 2009: Pflichtbereich 009 Pflichtbereich Lösungen zur Prüfung 009: Pflichtbereich ufgabe P1: erechnung des lächeninhalts G : ür den lächeninhalt des Dreiecks G gilt (siehe igur 1): G = Man muss also zuerst die Länge G und die

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9.

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9. 9. Mehrdimensionale Analysis 1/42 9. Mehrdimensionale Analysis Differentialrechnung für skalare Felder 2/42 Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare

Mehr

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-

Mehr

Tag der Mathematik 2014

Tag der Mathematik 2014 ufgabe G1 mit ufgabe G1 Im Dreieck sei P auf. Für Q auf und R auf sei PQ bzw. RQ. Wie muss x := P gewählt werden, damit die Fläche (x) des Parallelograms PQR maximal wird? R (x) x P Q Da die Dreiecke und

Mehr

Kroemer

Kroemer Kroemer - 02011-1- Normalparabel 13 y 2.0 2.1 3.0 3.1 4.0 4.1 5.1 5.2 6.1 6.2 12 11 10 9 8 7 6 5 4 3 2 1 0-7 -6-5 -4-3 -2-1 0 1 2 3 4 5 6 7 8 9-1 -2 Aufgabe: a) Zeichne eine Normalparabel p: y= x² - erstelle

Mehr

Serie 5. Figure 1: 1.a)

Serie 5. Figure 1: 1.a) Analsis D-BAUG Dr. Cornelia Busch FS 16 Serie 5 1. Bei den folgenden Integralen ist die Reihenfolge der Integrationen umzukehren: Die innere Variable soll zur äusseren werden und umgekehrt. Wie lautet

Mehr

Ministerium für Schule und Weiterbildung NRW M GK HT 3 Seite 1 von 5. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs

Ministerium für Schule und Weiterbildung NRW M GK HT 3 Seite 1 von 5. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs Seite 1 von 5 Unterlagen für die Lehrkraft Abiturprüfung 27 Mathematik, Grundkurs 1. Aufgabenart 1 Analysis 2. Aufgabenstellung siehe Prüfungsaufgabe. Materialgrundlage 4. Bezüge zu den Vorgaben 27 1.

Mehr

= / 40. Abschlussprüfung Fachoberschule 2012 (Mathematik) Aufgabenvorschlag B. Gegeben ist die Funktion f mit der Funktionsgleichung

= / 40. Abschlussprüfung Fachoberschule 2012 (Mathematik) Aufgabenvorschlag B. Gegeben ist die Funktion f mit der Funktionsgleichung Abschlussprüfung Fachoberschule () Aufgabenvorschlag B / 4 Gegeben ist die Funktion f mit der Funktionsgleichung 4 f ( x) x x x = + +. Dazu ist ein Rechteck gegeben, dessen Seiten parallel zu den Koordinatenachsen

Mehr

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analysis... Wahlteil Analysis... Wahlteil Analysis 3... 5 Wahlteil Analytische Geometrie... Wahlteil Analytische Geometrie... Lösungen: 00 Pflichtteil Lösungen zur Prüfung 00: Pflichtteil

Mehr

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.

Mehr

a) Im Berührungspunkt müssen die y-werte und die Steigungen übereinstimmen:

a) Im Berührungspunkt müssen die y-werte und die Steigungen übereinstimmen: . ANALYSIS Gegeben ist die kubische Parabel f: y = x 3 6x + 8x + a) Die Gerade g: y = k x + berührt die Parabel an der Stelle x = x 0 > 0. Bestimmen Sie den Parameter k. b) Berechnen Sie den Inhalt der

Mehr

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus.

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. bschlussprüfung 204 athematik II usterlösung Prüfungsdauer: 50 inuten iese Lösung wurde erstellt von ornelia Sanzenbacher. Sie ist keine offizielle Lösung des ayerischen Staatsministeriums für Unterricht

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Vektoren, Skalarprodukt, Ortslinien

Vektoren, Skalarprodukt, Ortslinien .0 Gegeben sind die Punkte A(0/-4), C(0/4), sowie die Pfeile mit α [ 90 ; 90 ]. 4cosα AB = 4sinα+ 4. Zeichne die drei Punkte B, B und B 3 mit α { 30;0;30 } in ein KOS.. Zeige: 4cosα CB =. 4sinα 4.3 Zeige,

Mehr

Musterlösung. für die Klausur MA2_06.1 vom 10. Februar Labor für Mathematik und Statistik. Prof. Norbert Heldermann.

Musterlösung. für die Klausur MA2_06.1 vom 10. Februar Labor für Mathematik und Statistik. Prof. Norbert Heldermann. Fachbereich Produktion und Wirtschaft Musterlösung für die Klausur MA_06. vom 0. Februar 006 Labor für Mathematik und Statistik Prof. Norbert Heldermann Richard Münder Bei dem vorliegenden Dokument handelt

Mehr

Beispiele für eine vollständige Kurvendiskussion

Beispiele für eine vollständige Kurvendiskussion Seite von Ganzrationale Funktionen Nur mit Ausklammern Beispiel. Diskutiere die Funktion f 8. Es handelt sich um eine ganzrationale Funktion dritten Grades.. Definitionsmenge: D.. Verhalten gegen : Da

Mehr

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4 anu donat.adams@fhnw.ch www.adams-science.com Serie 9, Musterlösung Klasse: Ub Semester: Datum: 3. Mai 17 1. Die komplee Zahlenebene Stelle die Zahlen als Punkte in der kompleen Zahlenebene dar. Berechne

Mehr

Technische Berufsmaturitätsprüfung Baselland 2009 Mathematik Teil 2 (Mit Hilfsmitteln) Lösungen

Technische Berufsmaturitätsprüfung Baselland 2009 Mathematik Teil 2 (Mit Hilfsmitteln) Lösungen Technische Berufsmaturitätsprüfung Baselland 009 Mathematik Teil (Mit Hilfsmitteln) Aufgabe Es sei ein Rechteck mit Umfang in einem Halbkreis einbeschrieben. [ Punkte] Berechnen Sie die Seitenlängen des

Mehr

Übung zu Mechanik 1 Seite 19

Übung zu Mechanik 1 Seite 19 Übung zu Mechanik 1 Seite 19 Aufgabe 33 Bestimmen Sie die Lage des Flächenschwerpunktes für den dargestellten Plattenbalkenquerschnitt! (Einheit: cm) Aufgabe 34 Betimmen Sie die Lage des Flächenschwerpunktes

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Matthias Mahr, Juni 4, Fachhochschule Friourg

Mehr

Abschlussprüfung Fachoberschule 2015 Herbst Mathematik

Abschlussprüfung Fachoberschule 2015 Herbst Mathematik bschlussprüfung Fachoberschule 5 Herbst ufgabenvorschlag B Funktionsuntersuchung / Gegeben ist die Funktion f mit der Funktionsgleichung Der Graph der Funktion ist G f. f 5 5 ; IR.. Untersuchen Sie das

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 0/07 Mathematik D. Mai 07 09:00 Uhr Unterlagen für die Lehrkraft . ufgabe: Differentialrechnung

Mehr

Menge der irrationalen Zahlen C = {z z = a + bi; a, b R, i 2 = 1} Menge der komplexen Zahlen R C Somit ergibt sich: N N Z Q R C

Menge der irrationalen Zahlen C = {z z = a + bi; a, b R, i 2 = 1} Menge der komplexen Zahlen R C Somit ergibt sich: N N Z Q R C 1 Komplexe Zahlen 1.1 Übersicht N = {1, 2, 3,... } Menge der natürlichen Zahlen ohne 0 N = {0, 1, 2, 3,... } Menge der natürlichen Zahlen mit 0 N N Z = {..., 2, 1, 0, 1, 2,... } Menge der ganzen Zahlen

Mehr

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik 007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (8 Punkte) Das Schaubild einer Polynomfunktion. Grades geht durch den Punkt S(0/) und hat den 3 Wendepunkt

Mehr

QUADRATISCHE FUNKTIONEN (Funktionen des 2 e Grades)

QUADRATISCHE FUNKTIONEN (Funktionen des 2 e Grades) QUADRATISCHE FUNKTIONEN (Funktionen des 2 e Grades) I. Einführung: Allgemeine Funktionsgleichung: y = ax 2 + px + q Aufgabe 2 1 (Westermann EK, S.14) II. Terminologie: a.) Abhängige Variable (erklärte

Mehr

2λx cos(y) + (4 2λ)y sin(y) e x harmonisch in R 2 ist. Dazu berechnen wir. = e x (2λ(x 2) cos(y) + (4 2λ)y sin(y))

2λx cos(y) + (4 2λ)y sin(y) e x harmonisch in R 2 ist. Dazu berechnen wir. = e x (2λ(x 2) cos(y) + (4 2λ)y sin(y)) Mathematik für Ingenieure IV, Kurs-Nr. 094 SS 008 Lösungsvorschläge zu den Aufgaben für die Studientage am 30./3.08.008 Kurseinheit 6: Die Potentialgleichung Aufgabe : Wir untersuchen, für welche λ R die

Mehr

Übung 1 - Musterlösung

Übung 1 - Musterlösung Experimentalphysik für Lehramtskandidaten und Meteorologen 8. April 00 Übungsgruppenleiter: Heiko Dumlich Übung - Musterlösung Aufgabe Wir beginnen die Aufgabe mit der Auflistung der benötigten Formeln

Mehr

Höhere Mathematik Vorlesung 4

Höhere Mathematik Vorlesung 4 Höhere Mathematik Vorlesung 4 März 217 ii In der Mathematik versteht man die inge nicht. Man gewöhnt sich nur an sie. John von Neumann 4 as oppelintegral Flächen, Volumen, Integrale Ob f für a x b definiert

Mehr

Doppelintegrale. rd dr. Folie 1

Doppelintegrale. rd dr. Folie 1 Doppelintegrale G fda f, dd R R G 1 f ( rcos, rsin) rd dr Folie 1 Doppelintegrale einführendes Beispiel Als Vorwissen sollten Sie die Grundlagen ur Integration mitbringen (s..b. L. Papula, Mathematik für

Mehr

Quadratische Funktionen in Anwendung und Erweiterung des Potenzbegriffs

Quadratische Funktionen in Anwendung und Erweiterung des Potenzbegriffs und Erweiterung des Potenzbegriffs Schnittpunkte von Graphen 1. Die Funktionsterme werden gleichgesetzt zur rechnerischen Bestimmung der Koordinaten gemeinsamer Punkte.. Von der entstehenden Gleichung

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

Analysis II für M, LaG/M, Ph 12. Übungsblatt

Analysis II für M, LaG/M, Ph 12. Übungsblatt Analysis II für M, La/M, Ph. Übungsblatt Fachbereich Mathematik WS / Prof. Dr. Christian Herrmann 8.. Vassilis regoriades Horst Heck ruppenübung Aufgabe. erechnen Sie das ebietsintegral sin (x y) d, wobei

Mehr

Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 4/5 r. Hanna Peywand Kiani 6..5 Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Bereichsintegrale, Transformationssatz,

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 0/0 Mathematik A. Mai 0 09:00 Uhr Unterlagen für die Lehrkraft . Aufgabe: Differentialrechnung

Mehr

Pflichtteilaufgaben zur Integralrechnung

Pflichtteilaufgaben zur Integralrechnung Testklausur K Integralrechnung# Pflichtteilaufgaben zur Integralrechnung Aufgabe : Gib jeweils eine Stammfunktion an: a) f () = ² + f () = Aufgabe : Ermittle eine Stammfunktion für a) f() = n Für welche

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 0/0 Mathematik B 8. Mai 0 09:00 Uhr Unterlagen für die Lehrkraft . Aufgabe: Differentialrechnung

Mehr

9 Üben X Flächeninhalt 1

9 Üben X Flächeninhalt 1 9 Üben X Flächeninhalt 1 Berechne mit den angegebenen Maßen den Flächeninhalt des Grundstücks. = 22m A H B F C D G E = 15m = 25m = 9m = 14m = 18m = 16m Klasse Art Schwierigkeit math. Thema Nr. 9 Lösung

Mehr

Grenzwerte von Folgen. 1-E Ma 1 Lubov Vassilevskaya

Grenzwerte von Folgen. 1-E Ma 1 Lubov Vassilevskaya Grezwerte vo Folge -E Ma Lubov Vassilevskaya Berechug vo Grezwerte: Aufgabe Die Berechug vo Grezwerte ka oft ziemlich umstädlich sei. Die etwickelte Regel vereifache oft solche Berechuge. Diese Regel beruhe

Mehr

8 Blockbild und Hohenlinien

8 Blockbild und Hohenlinien Mathematik fur Ingenieure Institut fur Algebra, Zahlentheorie und Diskrete Mathematik Dr. Dirk Windelberg Universitat Hannover Stand: 18. August 008 http://www.iazd.uni-hannover.de/windelberg/teach/ing

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe 1.0 Gegeben ist die Funktion f: y = 1 ( ) 1 x + in G= x. 1.1 Tabellarisiere f für x = [ -1; 7 ] mit x = 1 sowie für x =,5 und x =,5. 1. Zeichne den Graphen von f. Für die Zeichnung: 1 LE = 1 cm - 1 x 8-1

Mehr

Trennung der Variablen, Aufgaben, Teil 1

Trennung der Variablen, Aufgaben, Teil 1 Trennung der Variablen, Aufgaben, Teil -E -E Trennung der Variablen Die Differenzialgleichung. Ordnung mit getrennten Variablen hat die Gestalt f ( y) dy = g (x) dx Satz: Sei f (y) im Intervall I und g

Mehr

Musteraufgaben Fachoberschule 2017 Mathematik

Musteraufgaben Fachoberschule 2017 Mathematik Musteraufgaben Fachoberschule 07 Funktionsuntersuchung /8 Gegeben ist die Funktion f mit der Funktionsgleichung f(x) = 0,05x 0,75x +,x +,8 und dem Definitionsbereich x [0;0]. Der Graph G f der Funktion

Mehr

Weitere Ableitungsregeln. Kapitel 4

Weitere Ableitungsregeln. Kapitel 4 Weitere Ableitungsregeln Kapitel . Die Kettenregel L f() = u(v()) g() = v(u()) a) + + b) cos [( + ) ] (cos + ) c) sin ( ) [sin ()] d) e) ( = _ ) _ ( f) cos [π( + )] cos (π) + g) ( ) = h) ( + ) + = + +

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

Solutions I Publication:

Solutions I Publication: WS 215/16 Solutions I Publication: 28.1.15 1 Vektor I 4 2 Ein Objekt A befindet sich bei a = 5. Das zweite Objekt B befindet sich bei b = 4. 2 3 (a) Die Entfernung von Objekt A zum Ursprung ist die Länge

Mehr

Analysis III für Studierende der Ingenieurwissenschaften

Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 3/4 Dr. K. Rothe Analysis III für Studierende der Ingenieurwissenschaften Anleitung zu Blatt 7 Anleitungsaufgaben 5-8 zu Analysis III, WS3/4, Dr. K.

Mehr

Ableitung der Umkehrfunktion

Ableitung der Umkehrfunktion Ableitung der Umkehrfunktion Ist eine Funktion y = f (x) stetig differenzierbar mit f (x) 0, so ist f in einer Umgebung von x invertierbar, und für die Umkehrfunktion f 1 gilt (f 1 ) (y) = f (x) 1, bzw.

Mehr

Ebene Bereiche und Bereichsintegrale

Ebene Bereiche und Bereichsintegrale Ebene ereiche und ereichsintegrale Gegeben sei ein ebener ereich, das heißt ein beschränktes Teilgebiet desr, das durch eine oder mehrere Kurven begrenzt wird. Des Weiteren sei eine reellwertige Funktion

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3 Übungen zur Ingenieur-Mathematik III WS / Blatt 9.. Aufgabe 5: Berechnen Sie das Integral K ( x y N dl über den Rand des Kreises K {(x, y x + y } einmal direkt mit Hilfe einer geeigneten Parametrisierung

Mehr

Konvergenz und Divergenz einer unendlichen Reihe. 5-E Ma 2 Lubov Vassilevskaya

Konvergenz und Divergenz einer unendlichen Reihe. 5-E Ma 2 Lubov Vassilevskaya Konvergenz und Divergenz einer unendlichen Reihe 5-E Ma 2 Lubov Vassilevskaya Folgen und Reihen: Beispiele Unter dem Bildungsgesetz einer unendlichen Reihe n i= versteht man einen funktionalen Zusammenhang

Mehr