3 Lineare Algebra Vektorräume

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "3 Lineare Algebra Vektorräume"

Transkript

1 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v + w) = λ v + λ w (λ + µ) v = λ v + µ v (λ µ) v = λ (µ v) ii) für die Eins 1 K gilt 1 v = v (32) Eine Teilmenge W V von einem Vektorraum V heißt (linearer) Unterraum von V, falls W bzgl + und selbst ein Vektorraum ist (33) Sei V ein Vektorraum W V ist genau dann ein Unterraum, wenn a) 0 W b) v,w W : v + w W c) w W λ K: λ w W C Wieners: Mathematik 1 für Studierende der Fachrichtung Informationswirtschaft 11

2 3 Lineare Algebra Vektorräume m (34) Sei V ein Vektorraum und sei v 1,,v m V Dann heißt u = λ j v j mit λ j K eine Linearkombination von v 1,,v m Alle Linearkombinationen von v 1,v m bilden den Spann span{v 1,,v m } = { m λ j v j λ j K } span{v 1,,v m } V ist ein linearer Teilraum (35) Eine Menge {v 1,,v m } V heißt linear unabhängig, falls gilt: m λ j v j = 0 für λ j K = λ 1 = λ 2 = = λ m = 0 j=0 B = {v 1,,v N } heißt Basis von V, wenn v 1,,v N linear unabhängig und span{v 1,,v N } = V (36) Ist B = {v 1,,v N } eine Basis von V, so lässt sich jeder Vektor u V als Linearkombination N u = λ j v j mit eindeutigen Skalaren λ j K darstellen (Basisdarstellung) N (37) Sei B = {v 1,,v N } eine Basis von V, und sei w = λ j v j mit λ k 0 Dann ist auch {v 1,,v k 1, w, v k+1,,v N } eine Basis von V (k {1,,N}) C Wieners: Mathematik 1 für Studierende der Fachrichtung Informationswirtschaft 12

3 3 Lineare Algebra Vektorräume (38) Sei B = {v 1,,v N } eine Basis von einem Vektorraum V, und sei m > N Dann ist {w 1,,w m } V linear abhängig (39) Wenn ein Vektorraum V eine endliche Basis hat, dann ist jede Basis von V endlich, je zwei Basen haben die gleiche Anzahl von Elementen dimv (310) Jeder Vektorraum besitzt eine Basis (311) Seien V, W Vektorräume über K a) Eine Abbildung T : V W heißt linear, wenn w V : T (v + w) = T (v) + T (w) v λ K: T (λv) = λt (v) b) Eine Abbildung T : V W heißt Isomorphismus, wenn sie linear und bijektiv ist c) V und W heißen isomorph, wenn ein Isomorphismus T : V W existiert (312) Zwei endlich dimensionale K Vektorräume sind genau dann isomorph, wenn sie die gleiche Dimension haben C Wieners: Mathematik 1 für Studierende der Fachrichtung Informationswirtschaft 13

4 3 Lineare Algebra Lineare Gleichungssysteme (314) Gesucht sind N Unbekannte x 1,,x N, die M lineare Gleichungen erfüllen: a 11 x 1 + a 12 x a 1N x N = b 1 a 21 x 1 + a 22 x a 2N x N = b 2 a M1 x 1 + a M2 x a MN x N = b M Dabei seien a nm für 1 m M und 1 n N und b m für 1 m M gegeben a 11 a 1N a) K M N = a M1 a MN a mn K m = 1,,M n = 1,,N Vektorraum der M N Matrizen b) Zu A K M N und x K N N definiere b = Ax mit b m = a mn x n, dh n=1 a 11 a 1N x 1 N n=1 A x = a 1nx n = KM a M1 a MN x N N n=1 a Mnx n Die Abbildung T A : K n K m, x Ax ist linear: T A (λx + µy) = λt A (x) + µt A (y) C Wieners: Mathematik 1 für Studierende der Fachrichtung Informationswirtschaft 14

5 3 Lineare Algebra Lineare Gleichungssysteme ( (315) Zu A K P M,B K M N definiere C = A B K P N M durch (c pn ) = a pm b mn )p=1,,p m=1 n=1,,n (316) Zu T A : R M R P, y Ay und T B : R N R M, x Bx gilt T A T B = T AB : R N R P, x ABx (317) K N N ist ein nicht-kommutativer Ring mit neutrales Element bezüglich der Multiplikation 1 0 I n = diag(1,,1) = 0 1 (318) Zu A K M N definiere A T K N M durch Vertauschen von Zeilen- und Spaltenindex: T a 11 a 1N a 11 a M1 = A T heißt die transponierte Matrix a M1 a MN a 1N a MN (319) A K N N heißt symmetrisch, wenn A T = A, und orthogonal, wenn AA T = I N = A T A ) (320) Zu A = (a mn m=1,,m C M N definiere A = (a jk ) konjugierte Matrix n=1,,n A H = A T adjungierte Matrix A C N N heißt hermitisch, wenn A H = A, und unitär, wenn AA H = I n = A H A C Wieners: Mathematik 1 für Studierende der Fachrichtung Informationswirtschaft 15

6 3 Lineare Algebra Lineare Gleichungssysteme (321) Sei A K M N a) Die Lösungen x h K N von Ax = 0 bilden einen linearen Teilraum des K N Er heißt Kern (Nullraum) von A Ist {x 1,,x k } eine Basis von Kern(A), so ist die allgemeine Lösung k der homogenen Gleichung x h = α j x j mit α j K b) Ist x s eine spezielle Lösung von Ax = b, dann lautet die allgemeine Lösung des inhomogenen Systems x = x s + x h = x s + k α j x j (322) Sei A K M N eine Matrix mit den Spalten a (1),,a (N), dh A = (a (1),,a (N) ) Dann definiere das Bild(A) := span{a (1),,a (N) } K M und Rang(A) = dimbild(a) (323) Das lineare Gleichungssystem Ax = b ist genau dann lösbar, wenn b Bild(A) (324) Das lineare Gleichungssystem Ax = b ist genau dann lösbar, wenn Rang(A) = Rang(A b) (325) Sei N > M Dann hat das homogene System Ax = 0 immer eine nicht-triviale Lösung (326) Sei A K N N Dann ist Ax = b genau dann eindeutig lösbar, wenn Rang(A) = N gilt (327) Es gilt dimbild(a) + dimkern(a) = N C Wieners: Mathematik 1 für Studierende der Fachrichtung Informationswirtschaft 16

7 3 Lineare Algebra Gauß-Elimination Setze A (1) = A und b (1) = b Für k = 1,,r 1 vertausche Zeilen bzw Spalten, so dass a (k) kk 0 Subtrahiere das a(k) ik /a(k) kk -fache der k-ten Zeile von der m-ten Zeile a (k+1) mj = a (k) mj a(k) mk a (k) kk a (k) kj, b m (k+1) = b (k) m bis im Schritt r gilt: a 11 a 12 a 1N b 1 a (2) 22 a (2) 2N b (2) 2 ( A (r) b (r)) = a rr (r) a rn (r) b r (r) 0 b (r) r+1 0 b (r) M a(k) mk a (k) b (k) k, m = k + 1,,M, j = k,,n kk A (r) x = b (r) besitzt genau dann eine Lösung, wenn b (r) r+1 = = b(r) ( ) M = 0 gilt Zu x r+1,,x N berechne rückwärts x k = b (k) k N j=k+1 a(k) kj x k /a (k) kk für k = r,r 1,,1 Anschließend müssen bei Spaltenvertauschungen die Komponenten x n umnummeriert werden C Wieners: Mathematik 1 für Studierende der Fachrichtung Informationswirtschaft 17

8 3 Lineare Algebra Gauß-Elimination (328) Eine quadratische Matrix A K N N heißt regulär (nicht singulär), wenn Rang(A) = N gilt Sonst heißt sie singulär (329) Für eine quadratische Matrix A K N N ist äquivalent: a) Die Zeilenvektoren sind linear unabhängig b) Die Spaltenvektoren sind linear unabhängig c) A ist regulär d) Rang A = N e) Ax = b ist für jede rechte Seite lösbar f) Ax = b ist für jede rechte Seite eindeutig lösbar g) Die homogene Gleichung Ax = 0 hat nur triviale Lösungen (330) Sei A K N N Wenn ein inverses Element X K N N bzgl existiert mit XA = AX = I N, dann heißt X = A 1 inverse Matrix zu A (331) Zu A R N N existiert genau dann eine inverse Matrix A 1, wenn A regulär ist Zu einer Permulation σ S N ist dier Permutationsmatrix P = P σ mit P σ x = (x σ(k) ) k = 1,,N regulär mit P 1 = P T C Wieners: Mathematik 1 für Studierende der Fachrichtung Informationswirtschaft 18

9 3 Lineare Algebra LR-Zerlegung mit Spaltenpivotsuche Karlsruhe Institute of Technology Sei A K N N eine reguläre Matrix Starte mit dem Permutationsvektor σ = (1,,N) für k = 1,,N 1 wähle n k mit a nk a jk für k j N falls a nk = 0 Abbruch (A singulär) Vertausche Zeilen n und k : für j = 1,,N z = a nj, a nj = a kj, a kj = z s = σ(n), σ(n) = σ(k), σ(k) = s für n = k + 1,,N a nk := a nk a kk für j = k + 1,,N a nj := a nj a nk a kj Setze l nj = a nj für n > j, r nj = a nj für n j und die Permutationsmatrix P = P σ (332) Der Gauß-Algorithmus mit Spaltenpivotsuche liefert für jede reguläre Matrix A eine Permutationsmatrix P, eine normierte untere Dreiecksmatrix L und eine reguläre obere Dreiecksmatrix R mit PA = LR Dann berechnet sich Ax = b aus Ly = Pb, Rx = y C Wieners: Mathematik 1 für Studierende der Fachrichtung Informationswirtschaft 19

10 3 Lineare Algebra Determinanten σ(a) σ(b) Für eine Permutation σ S N heißt sgn(σ) = { 1, 1} die Signum-Funktion a b a<b Es gilt sgn(σ µ) = sgn(σ)sgn(µ) (333) Zu A K N N definiere die Determinante det(a) = a 11 a 1N = sgn (σ) a 1,σ(1) a N,σ(N) σ S a N1 a n NN (334) Die Determinante ist in jeder Zeile linear: a T 1 a T k + λãt k = det a T 1 a T ḳ a T N a T 1 ã T ḳ a T N det + λ det a T N (335) Vertauschen von zwei Zeilen ändert nur das Vorzeichen: det a T 1 a T j a T ḳ a T N = det C Wieners: Mathematik 1 für Studierende der Fachrichtung Informationswirtschaft 20 a T 1 a T ḳ a T j a T N

11 3 Lineare Algebra Determinanten (336) det(a) = det(a T ) (337) Für A K N N ist äquivalent: a) det(a) 0 b) die Zeilen von A sind linear unabhängig c) die Spalten von A sind linear unabhängig d) A ist regulär (338) Es gilt det(ab) = det(a) det(b) (339) Zu A K N N definiere A kn K N 1 N 1 durch Streichen der Zeile k und Spalte n N Dann gilt: det(a) = ( 1) k+n N a kn det(a kn ) = ( 1) k+n a kn det(a kn ) k=1 n=1 ( ) Sei Cof(A) = ( 1) k+n det(a kn ) k,n=1,,n KN N Wenn A regulär ist, gilt A 1 = 1 det(a) Cof(A)T (340) Sei A = (a (1) a (N) ) K N N regulär und b K N Dann gilt für die Lösung x K N von Ax = b: x k = det(a(1) b a (N) ) det(a (1) a (k) a (N) ) (Cramersche Regel) C Wieners: Mathematik 1 für Studierende der Fachrichtung Informationswirtschaft 21

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen 12 Lineare Algebra - Übersicht Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen Unterräume Sei X ein Vektorraum über Ã. Eine Teilmenge M X heißt Unterraum von X, wenn

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Kapitel 4 Determinante Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Was ist eine Determinante? Wir wollen messen, ob n Vektoren im R n linear abhängig sind bzw. wie weit sie davon entfernt

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

A w w f f B w f w f A B w f w w A B A B A B. z = a 2 + b 2 =: r. c+id = ac+bd. 2 c 2 +d 2. z 2. z n = z. z = r cos(x) + ir sin(x) = reix

A w w f f B w f w f A B w f w w A B A B A B. z = a 2 + b 2 =: r. c+id = ac+bd. 2 c 2 +d 2. z 2. z n = z. z = r cos(x) + ir sin(x) = reix Formelsammlung Aussagenlogik Für beliebige Aussagen A, B gilt: Konjunktion Disjunktion Implikation Äquivalenz A B w f f f A B w w w f A B w f w w A B w f f w Mengenlehre Für beliebige Mengen A, B gilt:

Mehr

A w w f f B w f w f A B w f w w A B A B A B. z = a 2 + b 2 =: r. c+id = ac+bd. 2 c 2 +d 2. z 2. z n = z. z = r cos(x) + ir sin(x) = reix

A w w f f B w f w f A B w f w w A B A B A B. z = a 2 + b 2 =: r. c+id = ac+bd. 2 c 2 +d 2. z 2. z n = z. z = r cos(x) + ir sin(x) = reix Formelsammlung Aussagenlogik Für beliebige Aussagen A, B gilt: Konjunktion Disjunktion Implikation Äquivalenz A B w f f f A B w w w f A B w f w w A B w f f w Mengenlehre Für beliebige Mengen A, B gilt:

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

35 Matrixschreibweise für lineare Abbildungen

35 Matrixschreibweise für lineare Abbildungen 35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

Theoretische Fragen zu ausgewählten Themen in Lineare Algebra

Theoretische Fragen zu ausgewählten Themen in Lineare Algebra Theoretische Fragen zu ausgewählten Themen in Lineare Algebra { Oren Halvani, Jonathan Weinberger } TU Darmstadt 25. Juni 2009 Inhaltsverzeichnis 1 Determinanten................................................

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

In diesem Kapitel betrachten wir direkte Verfahren zur Lösung von linearen Gleichungssystemen.

In diesem Kapitel betrachten wir direkte Verfahren zur Lösung von linearen Gleichungssystemen. Kapitel 4 Lineare Gleichungssysteme 4 Problemstellung und Einführung In diesem Kapitel betrachten wir direkte Verfahren zur Lösung von linearen Gleichungssystemen Lineares Gleichungssystem: Gesucht ist

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

6 Lineare Gleichungssysteme

6 Lineare Gleichungssysteme 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α

Mehr

Lineare Gleichungssysteme - Grundlagen

Lineare Gleichungssysteme - Grundlagen Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen 1 Zum Aufwärmen 1.1 Notationen In diesem Teil der Vorlesung bezeichnen wir Körper mit K, Matrizen mit Buchstaben A,B,..., Vektoren mit u,v,w,... und Skalare mit λ,µ,... Die Menge der m n Matrizen bezeichnen

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

4 Lineare Abbildungen Basisdarstellungen

4 Lineare Abbildungen Basisdarstellungen 4 Lineare Abbildungen Basisdarstellungen (4.1) Seien V,W endlich dimensionale K-Vektorräume, und sei T : V W linear. Sei {v 1,...,v } Basis von V und {w 1,...,w M } Basis von W. Sei T (v j ) = M a kj w

Mehr

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren 2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;

Mehr

2 Direkte Lösungsverfahren für lineare Gleichungen

2 Direkte Lösungsverfahren für lineare Gleichungen 2 Direkte Lösungsverfahren für lineare Gleichungen (2.1) Sei L R N N eine normierte untere Dreiecksmatrix und b R N. Dann ist L invertierbar und das Lineare Gleichungssystem (LGS) Ly = b ist mit O(N 2

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Lineare Algebra. 12. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 12. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 12. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching December 14, 2017 1 Erinnerung: Determinanten, Orthogonale/unitäre Matrizen Sei A R 2 2, dann kann die Inverse

Mehr

Berechnung der Determinante

Berechnung der Determinante Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Mathematik für Betriebswirte I (Lineare Algebra) 1. Klausur Wintersemester 2013/

Mathematik für Betriebswirte I (Lineare Algebra) 1. Klausur Wintersemester 2013/ Mathematik für Betriebswirte I (Lineare Algebra). Klausur Wintersemester 20/204 06.02.204 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:... Vorname:... Matrikelnummer: Studienfach:... Name des

Mehr

3 Matrizen und Lineare Gleichungssysteme

3 Matrizen und Lineare Gleichungssysteme 3 Matrizen und LGS Pink: Lineare Algebra HS 2014 Seite 38 3 Matrizen und Lineare Gleichungssysteme 3.1 Definitionen Sei K ein Körper, und seien m,n,l natürliche Zahlen. Definition: Eine Matrix mit m Zeilen

Mehr

Aufgaben zur linearen Algebra und analytischen Geometrie I

Aufgaben zur linearen Algebra und analytischen Geometrie I Aufgaben zur linearen Algebra und analytischen Geometrie I Es werden folgende Themen behandelt:. Formale und logische Grundlagen 2. Algebraische Grundlagen 3. Vektorräume und LGS 4. Homomorphismen und

Mehr

Definition Sei R ein kommutativer Ring mit multiplikativ neutralem Element 1. Eine Abbildung D : R (n,n) R heißt n-linear, wenn gilt

Definition Sei R ein kommutativer Ring mit multiplikativ neutralem Element 1. Eine Abbildung D : R (n,n) R heißt n-linear, wenn gilt Kapitel 5 Determinanten 51 Definition und Existenz Definition 511 Sei R ein kommutativer Ring mit multiplikativ neutralem Element 1 Eine Abbildung D : R (n,n) R heißt n-linear, wenn gilt [D1] D ist linear

Mehr

Serie 8: Fakultativer Online-Test

Serie 8: Fakultativer Online-Test Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 5. April 2018 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine Vektorräume (Teschl/Teschl 9 Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen: Eine

Mehr

Rechenaufwand der LR- und LDL T - Zerlegung

Rechenaufwand der LR- und LDL T - Zerlegung 6. Großübung Rechenaufwand der LR- und LDL T - Zerlegung Rückwärtseinsetzen Der Algorithmus kann der Folie 3.0 entnommen werden. Dieser kann in die folgenden Rechenoperationen aufgesplittet werden: Für

Mehr

II. Lineare Gleichungssysteme. 10 Matrizen und Vektoren. 52 II. Lineare Gleichungssysteme

II. Lineare Gleichungssysteme. 10 Matrizen und Vektoren. 52 II. Lineare Gleichungssysteme 52 II Lineare Gleichungssysteme II Lineare Gleichungssysteme 10 Matrizen und Vektoren 52 11 Der Gaußsche Algorithmus 58 12 Basen, Dimension und Rang 62 13 Reguläre Matrizen 66 14 Determinanten 69 15 Skalarprodukte

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen 4.1 Lineare Abbildungen Definition 4.1. Es seien V, W K-Vektorräume. Eine Abbildung f : V W heißt linear oder Homomorphismus, wenn für alle u, v V und λ K gilt Beispiel 4.2. L1 f(u + v) = f(u) + f(v),

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,...

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,... Cramersche Regel Satz 2.4. Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei A j := (a,...,a j,b,a j+,...,a n ) also die Matrix, die entsteht, wenn in A die j-spalte durch den

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Matrizen und Determinanten, Aufgaben

Matrizen und Determinanten, Aufgaben Matrizen und Determinanten, Aufgaben Inhaltsverzeichnis 1 Multiplikation von Matrizen 1 11 Lösungen 3 2 Determinanten 6 21 Lösungen 7 3 Inverse Matrix 8 31 Lösungen 9 4 Matrizengleichungen 11 41 Lösungen

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

Lineare Algebra. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 6, 017 1 Erinnerung: Lineare Gleichungssysteme LGS Der allgemeine Fall hat m lineare Gleichungen, n

Mehr

Lineare Algebra. Teil III. Inhaltsangabe

Lineare Algebra. Teil III. Inhaltsangabe Teil III Lineare Algebra Inhaltsangabe 3 Lineare Algebra 22 3.1 Einführung.......................... 22 3.2 Matrizen und Vektoren.................... 23 3.3 Spezielle Matrizen...................... 24

Mehr

2 Direkte Lösungsverfahren für lineare Gleichungen

2 Direkte Lösungsverfahren für lineare Gleichungen (2.1) Sei x = (x n ) n=1,...,n R N, A = (a m,n ) m=1,...,m, n=1,...,n R M,N. a) Sei 1 m n N. Dann ist x[m : n] = (x k ) k=m,...,n R 1+n m Teilvektor von x. b) Seien 1 m 1 m 2 M, 1 n 1 n 2 N. Dann ist A[m

Mehr

Klausurvorbereitungsblatt Lineare Algebra

Klausurvorbereitungsblatt Lineare Algebra Klausurvorbereitungsblatt Lineare Algebra Sommersemester 25 Aufgabe 2 2 Sei A 3 3 8 2 4 3 R4 5. 5 2 a) Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems Ax b) Ist Ax b mit b lösbar? (Begründen

Mehr

Spezielle Matrixformen

Spezielle Matrixformen Definition B57 (Transposition) Eine einfache aber wichtige Operation auf Matrizen ist die Transposition, die aus einer (m n) Matrix A eine (n m) Matrix B = A T macht Hierbei gilt β i j = α j i, so daß

Mehr

Lineare Algebra 2013 Lösungen für Test und Zusatzfragen

Lineare Algebra 2013 Lösungen für Test und Zusatzfragen Lineare Algebra 3 Lösungen für Test und Zusatzfragen Test Multiple Choice. Seien Für die Lösung x x x x 3 A, b des Systems Ax b gilt x 3 5 x 3 x 3 3 x 3 / Mit elementaren Zeilenoperationen erhalten wir

Mehr

Kapitel III. Matrizen und lineare Gleichungssysteme. Inhalt: 10. Matrizen 11. Lineare Gleichungssysteme 12. Der Gauß-Algorithmus

Kapitel III. Matrizen und lineare Gleichungssysteme. Inhalt: 10. Matrizen 11. Lineare Gleichungssysteme 12. Der Gauß-Algorithmus Kapitel III Matrizen und lineare Gleichungssysteme Inhalt: 10 Matrizen 11 Lineare Gleichungssysteme 12 Der Gauß-Algorithmus Wichtige Methoden beim Umgang mit Vektorräumen basieren auf der Matrizenrechnung

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 5/.. Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

13 Partielle Ableitung und Richtungsableitung

13 Partielle Ableitung und Richtungsableitung 3 PARTIELLE ABLEITUNG UND RICHTUNGSABLEITUNG 74 3 Partielle Ableitung und Richtungsableitung 3 Definition und Notiz Sei B R n offen, f : B R m, v R n, so heißt für γ x,v (t) = x + tv d dt f(x + tv) f(x)

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Dipl.-Math. Marie Hielscher Mathematik für Betriebswirte I Wintersemester 2014/2015

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Dipl.-Math. Marie Hielscher Mathematik für Betriebswirte I Wintersemester 2014/2015 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Die Determinante einer Matrix

Die Determinante einer Matrix Chr.Nelius, Lineare Algebra II (SS 2005) 6 Die Determinante einer Matrix Wir betrachten im folgenden Determinantenformen auf dem Vektorraum V = K n. Eine solche Form ist eine Abbildung von n Spaltenvektoren

Mehr

Copyright, Page 1 of 5 Die Determinante

Copyright, Page 1 of 5 Die Determinante wwwmathematik-netzde Copyright, Page 1 of 5 Die Determinante Determinanten sind ein äußerst wichtiges Instrument zur Untersuchung von Matrizen und linearen Abbildungen Außerhalb der linearen Algebra ist

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Mathematik I für Biologen, Geowissenschaftler und Geoökologen 5. Dezember 2007 Definition : Tomographie (Fortsetzung) : Tomographie Definition: Ein lineares Gleichungssystem (LGS) ist ein System von n

Mehr

Lösungsskizze zur Hauptklausur Lineare Algebra I

Lösungsskizze zur Hauptklausur Lineare Algebra I Lösungsskizze zur Hauptklausur Lineare Algebra I Aufgabe Seien V und W zwei K-Vektorräume für einen Körper K. a) Wann heißt eine Abbildung f : V W linear? b) Wann heißt eine Abbildung f : V W injektiv?

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften Modul 212 Determinanten Hans Walser: Modul 212, Determinanten ii Modul 212 für die Lehrveranstaltung Mathematik 2 für Naturwissenschaften Sommer 2003 Probeausgabe

Mehr

Lineare Algebra Weihnachtszettel

Lineare Algebra Weihnachtszettel Lineare Algebra Weihnachtszettel 4..008 Die Aufgaben auf diesem Zettel sind zum Üben während der Weihnachtspause gedacht, sie dienen der freiwilligen Selbstkontrolle. Die Aufgaben müssen nicht bearbeitet

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11 D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Serie 11 1. Wir betrachten das überbestimmte Gleichungssystem Ax = y mit 1 1 1 1 A := 1 1 0 1 0 1, y := 2 3 0 0 1 4 Berechnen Sie die

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

Übungen zu Lineare Algebra und Geometrie 1

Übungen zu Lineare Algebra und Geometrie 1 Übungen zu Lineare Algebra und Geometrie 1 Andreas Čap Sommersemester 2015 Wiederholung grundlegender Begriffe (1 Bestimme Kern und Bild der linearen Abbildung f : R 3 R 3, die gegeben ist durch f(x, y,

Mehr

5.7 Lineare Abhängigkeit, Basis und Dimension

5.7 Lineare Abhängigkeit, Basis und Dimension 8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n

Mehr

4 Determinanten. 4.1 Eigenschaften der Determinante. ME Lineare Algebra HT

4 Determinanten. 4.1 Eigenschaften der Determinante. ME Lineare Algebra HT ME Lineare Algebra HT 2008 86 4 Determinanten 4. Eigenschaften der Determinante Anstatt die Determinante als eine Funktion IC n n IC durch eine explizite Formel zu definieren, bringen wir zunächst eine

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra 2014/15 Seite 59 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y1 = a11x1+ a12x2 + a13x3 y2 = a21x1+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit ME Lineare Algebra HT 2008 99 5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit 5.1 Ein Beispiel zur Motivation Als einfachstes Beispiel eines dynamischen Systems untersuchen wir folgendes Differentialgleichungssystem

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

3 Systeme linearer Gleichungen

3 Systeme linearer Gleichungen 3 Systeme linearer Gleichungen Wir wenden uns nun dem Problem der Lösung linearer Gleichungssysteme zu. Beispiel 3.1: Wir betrachten etwa das folgende System linearer Gleichungen: y + 2z = 1 (1) x 2y +

Mehr

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler Prof. Norbert Hungerbühler Serie 5 ETH Zürich - D-MAVT Lineare Algebra II. a) Die Abbildung V n R n, v [v] B, die jedem Vektor seinen Koordinatenvektor bezüglich einer Basis B zuordnet, ist linear. Sei

Mehr

β 1 x :=., und b :=. K n β m

β 1 x :=., und b :=. K n β m 44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Lineare Gleichungssysteme Das System a x + a x +... + a n x n = b a x + a x +... + a n x n = b. +. +... +. =. a m x + a m x +... + a mn x n = b m heißt lineares Gleichungssystem

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2008/09 4 Einführung Vektoren und Translationen

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

Mathematik I. Vorlesung 12. Lineare Abbildungen

Mathematik I. Vorlesung 12. Lineare Abbildungen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 12 Lineare Abbildungen Definition 12.1. Es sei K ein Körper und es seien V und W K-Vektorräume. Eine Abbildung heißt lineare Abbildung,

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra HS 2014 Seite 56 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr