Wintersemester 2004/ Januar Aus der Vorlesung sind Datenstrukturen zur Repräsentation von Wäldern disjunkter Mengen bekannt.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Wintersemester 2004/ Januar Aus der Vorlesung sind Datenstrukturen zur Repräsentation von Wäldern disjunkter Mengen bekannt."

Transkript

1 Lehrstuhl für Praktische Informatik III Norman May B6, 29, Raum C Mannheim Telefon: (0621) Matthias Brantner B6, 29, Raum C Mannheim Telefon: (0621) Algorithmen und Datenstrukturen 11. svorschlag Wintersemester 2004/ Januar 2005 Aufgabe 1 8 Punkte Aus der Vorlesung sind Datenstrukturen zur Repräsentation von Wäldern disjunkter Mengen bekannt. Aufgabe 1 a) Implementieren Sie die Datenstruktur mit Union-by-Rank und Pfadkomprimierung als Optimierungsheuristiken unter Verwendung der Schnittstelle aus der Vorlesung. Benutze Knotenrepräsentation von Blatt 9. public class DisjointSet extends TreeNode { / create a node in the set / protected DisjointSet(Comparable x) { super(x, null, null, null); rank = 0; / the rank of this tree node in the set / protected int rank; / return the rank / final int getrank() { return rank; / set the rank / final void setrank(int r) { rank = r; TreeNode#toString / public String tostring() { return super.tostring() + ( + rank + ) ; 1

2 / create a singleton set containing x as representative / public static DisjointSet makeset(comparable x) { return new DisjointSet(x); / union two sets / public static DisjointSet union(disjointset x, DisjointSet y) { return link(findset(x ), findset(y)); / link two set nodes using their ranks / public static DisjointSet link( DisjointSet x, DisjointSet y) { if (x.getrank() > y.getrank()) { y.setparent(x); return x; else { x.setparent(y); if (x.getrank() == y.getrank()) { y.setrank(y.getrank() + 1); return y; / find the representative of a set node; do path compression / public static DisjointSet findset(disjointset x) { if (x!= x.getparent()) { x.setparent(disjointset. findset(( DisjointSet ) x.getparent ())); return (DisjointSet)x.getParent(); / testing... / public static void main(string[] args) { DisjointSet s1 = DisjointSet. makeset(new Integer(1)); DisjointSet s2 = DisjointSet. makeset(new Integer(2)); DisjointSet s3 = DisjointSet. makeset(new Integer(3)); DisjointSet s4 = DisjointSet. union(disjointset. union(s1, s2 ), s3); System.out.println( DisjointSet. findset(s4 )); Aufgabe 1 b) 3 Punkte Geben Sie eine Sequenz von MAKE-SET, UNION und FIND-SET Operationen an. Die Länge der Sequenz soll m und die Anzahl der MAKE-SET Operationen soll n = m/3 sein. Die benötigte Laufzeit der Sequenz soll, unter der Annahme daß nur Union-by-Rank als Optimierungsheuristik verwendet wird, Ω(m lg n) betragen. 2

3 1. Sequenz: (a) n MAKE-SET-Operationen zum Erzeugen von n einelementigen Mengen: (0.) {x 1, {x 2,..., {x n (b) n 1 UNION-Operationen zur Bildung eines Baums mit der Höhe lg n. Dabei werden Bäume mit gleicher Höhe verscholzen und x i bzw. x j in den Aufrufen von UNION sind die Repräsentanten der beiden Mengen in Union(x i, x j ): Union(x 1, x 2 ) Union(x 3, x 4 ). Union(x n 1, x n ) Union(x 2, x 4 ) Union(x 6, x 8 ). Union(x n 2, x n ). Union(x n/2, x n ) (1 Punkt) (c) n + 1 FIND-SET-Operationen auf dem tiefsten Element im Baum. (0.) 2. Aufwand der Sequenz: (1 Punkt) 2n 1 + (n + 1) lg n = Ω(m lg n) Aufgabe 2 Die Incidenz-Matrix eines gerichteten Graphen G = (V, E) ist eine V E -Matrix B = (b ij ) so daß: 1 wenn Kante j in Knoten beginnt b ij = 1 wenn Kante j in Knoten i endet 0 sonst Erläutern Sie die Einträge im Ergebnis des Matrix-Produkts B B T, wobei B T für die transponierte Matrix von B steht. 3

4 Die Diagonale im Matrix-Produkt stellt den Grad von allen Knoten des Graphen dar. Wenn P = B B T, dann steht an Stelle P ii die Anzahl der ein- und ausgehenden Kanten von Knoten i. Formal gilt: Dann gilt: E P ij = B ie Bej T e=1 1. Wenn i = j, dann ist B ie B T ej = 1, wenn Kante e in Knoten i beginnt oder endet, sonst Wenn i j, dann ist B ie B T ej = 1, wenn e = (i, j) oder e = (j, i), sonst 0. Daher gilt: P ij = { deg(i) = in-degree + out-degree wenn i = j ( Anzahl der Kanten, die Knoten i und j verbinden) wenn i j Aufgabe 3 4 Punkte Beschreiben Sie die Funktionsweise der Tiefensuche anhand des folgenden Graphen. q r s t u v w x y z Gehen Sie dabei davon aus, daß in den Zeilen 5-7 der DFS-Prozedur die Knoten entsprechend der alphabetischen Reihenfolge besucht werden und daß die Adjazenslisten alphabetisch sortiert sind. Geben Sie die Entdeckungszeit sowie die Endzeit für jeden Knoten an, sowie die Klassifizierung der Kanten. Die Beschriftungen von Knoten und Kanten entsprechen denen im Buch. 4

5 (1,16) q (2,7) s (8,15) t B (17,20) C r B (3,6) v F (9,12) x (18,19) u B (13,14) y C (4,5) w (10,11) z Punkteverteilung: je 2 Punkte für korrekte Beschriftung der Knoten bzw. der Kanten. Aufgabe 4 Ein ungerichteter Graph G = (V, E) ist bipartit, wenn V sich in zwei disjunkte Teilmengen V und V zerlegen läßt, so daß gilt: (u, v) E (u V v V ) (v V u V ) Geben Sie einen Algorithmus an, der überprüft, ob ein ungerichteter Graph bipartit ist. Idee: Zur Überprüfung werden während einer Breitensuche alle besuchten Kanten klassifiziert. Falls eine Kante mit zwei Knoten der gleichen Klasse auftaucht, ist der Graph nicht bipartit. Zur Speicherung der Klassifizierung wird das Array Class verwendet. BIPARTIT(G) do color[v] white do if Color[v] = white then Color[v] gray Enqueue(Q, v) Class[v] 0 while Q do u Head[Q] for each v Adj[u] do if Color[v] = white then Color[v] gray Class[v] 1 Class[u] 5

6 Enqueue(q, v) else if Class[v] = Class[u] then return false Dequeue(Q) return true Aufgabe 5 Aufgabe 5 a) 4 Punkte Eine Möglichkeit zur Durchführung einer topologischen Sortierung eines gerichteten, azyklischen Graphen G = (V, E) besteht darin, wiederholt die Knoten mit In-Grad 0 im Graphen zu suchen, auszugeben und samt den ausfallenden Kanten aus dem Graphen zu entfernen. Wie muß der entsprechende Algorithmus implementiert sein, damit er eine Laufzeit von O(V + E) hat? Idee: Verwenden einer Queue zum Speichern der Knoten mit In-Grad 0. Top-Sort(G) do In Deg[v] 0 for each u G[V ] do for each v Adj[u] In Deg[v] In Deg[v] + 1 do if In Deg[v] = 0 then Enqueue(Q, v) while Q do u Head[Q] for each v Adj[u] do In Deg[v] In Deg[v] 1 if In Deg = 0 then Enqueue(Q, v) P rint u Dequeue(Q) Aufgabe 5 b) 1 Punkte Wie reagiert der Algorithmus, falls der zu sortierende Graph zyklisch ist? 6

7 Sobald der gegebene Graph einen Zyklus enthält, existieren Knoten deren In-Grad niemals 0 wird. Somit stoppt der Algorithmus ohne die Knoten zu sortieren, die Teil eines Zyklus sind bzw. von einem Knoten erreicht werden, der Teil eines Zyklus ist. 7

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Dipl-Math. Wolfgang Kinzner 2.4.2012 Kapitel 1: Grundlagen der algorithmischen Graphgentheorie

Mehr

Graphenalgorithmen I

Graphenalgorithmen I Graphenalgorithmen I Vortrag im Seminar Hallo Welt! für Fortgeschrittene 7. Juni 211 Graphenalgorithmen I 1/33 Motivation Problem Wie komme ich am schnellsten ins Kanapee? Problem Wie kommt ein Datenpaket

Mehr

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 07 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München 7 Fortgeschrittene Datenstrukturen Graphen

Mehr

Graphalgorithmen. Graphen

Graphalgorithmen. Graphen (Folie 270, Seite 67 im Skript) Graphen (Folie 271, Seite 67 im Skript) Graphen Definition Ein ungerichteter Graph ist ein Paar (V, E), wobei V die Menge der Knoten und E ( V 2) die Menge der Kanten ist.

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2017/18 20. Vorlesung Tiefensuche und topologische Sortierung Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Themen für den 3. Kurztest (Do, 25.01.18)

Mehr

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47 Graphalgorithmen Dominik Paulus.0.01 Dominik Paulus Graphalgorithmen.0.01 1 / 7 1 Spannbäume Kruskal Prim Edmonds/Chu-Liu Datenstrukturen Fibonacci-Heap Union/Find Kürzeste Pfade Dijkstra Bellman-Ford

Mehr

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung)

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) Wintersemester 2005/06 Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) (Vorlesung) Prof. Dr. Günter Rudolph Fachbereich Informatik Lehrstuhl

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 22. Vorlesung Tiefensuche und Topologische Sortierung Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Vorlesungsumfrage Nutzen Sie die Vorlesungsbefragung

Mehr

9. Übung Algorithmen I

9. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Musterlösung

Mehr

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen Bäume sind verallgemeinerte Listen Datenstrukturen Teil 2 Bäume Jeder Knoten kann mehrere Nachfolger haben Sie sind weiter spezielle Graphen Graphen bestehen aus Knoten und Kanten Kanten können gerichtet

Mehr

Wintersemester 2004/ Dezember 2004

Wintersemester 2004/ Dezember 2004 Lehrstuhl für Praktische Informatik III Norman May B6, 29, Raum C0.05 68131 Mannheim Telefon: (0621) 181 2517 Email: norman@pi3.informatik.uni-mannheim.de Matthias Brantner B6, 29, Raum C0.05 68131 Mannheim

Mehr

Programmierkurs Python

Programmierkurs Python Programmierkurs Python Stefan Thater Michaela Regneri 2010-0-29 Heute Ein wenig Graph-Theorie (in aller Kürze) Datenstrukturen für Graphen Tiefen- und Breitensuche Nächste Woche: mehr Algorithmen 2 Was

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 217 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Graphen, Suchbäume, AVL Bäume Heute: Graphen und Bäume Binäre Suchbäume AVL-Bäume Nächste

Mehr

Programmierkurs Python II

Programmierkurs Python II Programmierkurs Python II Stefan Thater & Michaela Regneri FR.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes Sommersemester 011 Heute Ein wenig Graph-Theorie (in aller Kürze) Datenstrukturen

Mehr

! 1. Rekursive Algorithmen.! 2. Rekursive (dynamische) Datenstrukturen. II.3.2 Rekursive Datenstrukturen - 1 -

! 1. Rekursive Algorithmen.! 2. Rekursive (dynamische) Datenstrukturen. II.3.2 Rekursive Datenstrukturen - 1 - ! 1. Rekursive Algorithmen! 2. Rekursive (dynamische) Datenstrukturen II.3.2 Rekursive Datenstrukturen - 1 - Ausdruck Ausdruck Grundwert ( Typ ) Präfix-Operator Name Methodenaufruf [ Ausdruck ] ( Ausdruck

Mehr

Wintersemester 2004/ Februar 2005

Wintersemester 2004/ Februar 2005 Lehrstuhl für Praktische Informatik III Norman May B6, 29, Raum C0.05 68131 Mannheim Telefon: (0621) 181 2517 Email: norman@pi3.informatik.uni-mannheim.de Matthias Brantner B6, 29, Raum C0.05 68131 Mannheim

Mehr

Felix Brandt, Jan Johannsen. Vorlesung im Wintersemester 2008/09

Felix Brandt, Jan Johannsen. Vorlesung im Wintersemester 2008/09 Felix Brandt, Jan Johannsen Vorlesung im Wintersemester 2008/09 Übersicht Übersicht Definition Ein Matching in G = (V, E) ist eine Menge M E mit e 1 e 2 = für e 1, e 2 M, e 1 e 2 Ein Matching M ist perfekt,

Mehr

Wie wird ein Graph dargestellt?

Wie wird ein Graph dargestellt? Wie wird ein Graph dargestellt? Für einen Graphen G = (V, E), ob gerichtet oder ungerichtet, verwende eine Adjazenzliste A G : A G [i] zeigt auf eine Liste aller Nachbarn von Knoten i, wenn G ungerichtet

Mehr

Graphdurchmusterung, Breiten- und Tiefensuche

Graphdurchmusterung, Breiten- und Tiefensuche Prof. Thomas Richter 18. Mai 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 18.05.2017 Graphdurchmusterung,

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 8 FS 16

Datenstrukturen & Algorithmen Lösungen zu Blatt 8 FS 16 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik. April 0

Mehr

Quicksort ist ein Divide-and-Conquer-Verfahren.

Quicksort ist ein Divide-and-Conquer-Verfahren. . Quicksort Wie bei vielen anderen Sortierverfahren (Bubblesort, Mergesort, usw.) ist auch bei Quicksort die Aufgabe, die Elemente eines Array a[..n] zu sortieren. Quicksort ist ein Divide-and-Conquer-Verfahren.

Mehr

Datenstrukturen und Algorithmen D-INFK

Datenstrukturen und Algorithmen D-INFK Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik Peter Widmayer

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 11 (4.6.2014) Binäre Suchbäume II Algorithmen und Komplexität Binäre Suchbäume Binäre Suchbäume müssen nicht immer so schön symmetrisch sein

Mehr

Datenstrukturen. Mariano Zelke. Sommersemester 2012

Datenstrukturen. Mariano Zelke. Sommersemester 2012 Datenstrukturen Mariano Zelke Sommersemester 2012 Tiefensuche: Die globale Struktur Der gerichtete oder ungerichtete Graph G werde durch seine Adjazenzliste A repräsentiert. Im Array besucht wird vermerkt,

Mehr

Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind.

Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind. 3.5 Gerichteter Pfad Definition 291 Eine Folge (u 0, u 1,..., u n ) mit u i V für i = 0,..., n heißt gerichteter Pfad, wenn ( i {0,..., n 1} ) [ (u i, u i+1 ) A]. Ein gerichteter Pfad heißt einfach, falls

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 10 FS 16

Datenstrukturen & Algorithmen Lösungen zu Blatt 10 FS 16 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 11. Mai

Mehr

Keller, Schlangen und Listen. Elementare Datenstrukturen Keller, Schlangen und Listen 1 / 14

Keller, Schlangen und Listen. Elementare Datenstrukturen Keller, Schlangen und Listen 1 / 14 Keller, Schlangen und Listen Elementare Datenstrukturen Keller, Schlangen und Listen 1 / 14 Listen Listen unterstützen die Operationen Lookup, Insert, Remove. + Listen passen sich der Größe der zu speichernden

Mehr

8. Übung zu Algorithmen I 15. Juni 2016

8. Übung zu Algorithmen I 15. Juni 2016 8. Übung zu Algorithmen I 15. Juni 2016 Lisa Kohl Lisa.Kohl@kit.edu (mit Folien von Julian Arz, Timo Bingmann, Sebastian Schlag, Christian Staudt und Christoph Striecks) Nachtrag: Quicksort, alternative

Mehr

Informatik II Prüfungsvorbereitungskurs

Informatik II Prüfungsvorbereitungskurs Informatik II Prüfungsvorbereitungskurs Tag 4, 9.6.2017 Giuseppe Accaputo g@accaputo.ch 1 Aufbau des PVK Tag 1: Java Teil 1 Tag 2: Java Teil 2 Tag 3: Algorithmen & Komplexität Tag 4: Dynamische Datenstrukturen,

Mehr

Breitensuche BFS (Breadth First Search)

Breitensuche BFS (Breadth First Search) Breitensuche BFS (Breadth First Search) Algorithmus BREITENSUCHE EINGABE: G = (V, E) als Adjazenzliste, Startknoten s V 1 Für alle v V 1 If (v = s) then d[v] 0 else d[v] ; 2 pred[v] nil; 2 Q new Queue;

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Tafelübung 04 Referenzen, Overloading, Klassen(hierarchien) Clemens Lang T2 18. Mai 2010 14:00 16:00, 00.152 Tafelübung zu AuD 1/13 Organisatorisches Nächster Übungstermin

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00

Mehr

Informatik II Prüfungsvorbereitungskurs

Informatik II Prüfungsvorbereitungskurs Informatik II Prüfungsvorbereitungskurs Tag 4, 23.6.2016 Giuseppe Accaputo g@accaputo.ch 1 Programm für heute Repetition Datenstrukturen Unter anderem Fragen von gestern Point-in-Polygon Algorithmus Shortest

Mehr

Datenstrukturen und Algorithmen 2. Klausur SS 2001

Datenstrukturen und Algorithmen 2. Klausur SS 2001 UNIVERSITÄT PADERBORN FACHBEREICH 7 (MATHEMATIK INFORMATIK) Datenstrukturen und Algorithmen 2. Klausur SS 200 Lösungsansätze Dienstag, 8. September 200 Name, Vorname:...................................................

Mehr

Graphalgorithmen I Hallo Welt! für Fortgeschrittene

Graphalgorithmen I Hallo Welt! für Fortgeschrittene Graphalgorithmen I Hallo Welt! für Fortgeschrittene Jens Wetzl (sijewetz@stud.informatik.uni-erlangen.de) 18. Mai 2009 Motivation Grundlagen Beschreibung von Objekten und deren Beziehungen zueinander Vielfältige

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 26. Vorlesung Greedy- und Approximationsalgorithmen Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Operations Research Optimierung für Wirtschaftsabläufe:

Mehr

10 Graphenalgorithmen in Java

10 Graphenalgorithmen in Java 10.1 Implementierung eines gewichteten Graphen 10.2 Implementierung der Breitensuche 10.3 Implementierung der Tiefensuche 10 147 Teil X Graphalgorithmen in Java Überblick Implementierung eines gewichteten

Mehr

Karlsruher Institut für Technologie Institut für Theoretische Informatik. Klausur Algorithmen I

Karlsruher Institut für Technologie Institut für Theoretische Informatik. Klausur Algorithmen I Vorname: Matrikelnummer: Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Jörn Müller-Quade 4. September 2017 Klausur Algorithmen I Aufgabe 1. Kleinaufgaben 15 Punkte Aufgabe

Mehr

Tutoraufgabe 1 (Starke Zusammenhangskomponenten):

Tutoraufgabe 1 (Starke Zusammenhangskomponenten): für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Allgemeine Hinweise: Datenstrukturen und Algorithmen SS1 Übungsblatt (Abgabe 4.0.01) Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder

Mehr

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 Robert Elsässer Paderborn, den 15. Mai 2008 u.v.a. Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 AUFGABE 1 (6 Punkte): Nehmen wir an, Anfang bezeichne in einer normalen

Mehr

Institut für Programmierung und Reaktive Systeme 17. Juli Programmieren II. Übungsklausur

Institut für Programmierung und Reaktive Systeme 17. Juli Programmieren II. Übungsklausur Technische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme 17. Juli 2015 Hinweise: Klausurtermine: Programmieren II Übungsklausur Programmieren I: 7. September

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 10 (27.5.2016) Binäre Suchbäume II Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

1. Typen und Literale (6 Punkte) 2. Zuweisungen (6 = Punkte)

1. Typen und Literale (6 Punkte) 2. Zuweisungen (6 = Punkte) Praktische Informatik (Software) Vorlesung Softwareentwicklung 1 Prof. Dr. A. Ferscha Hauptklausur am 01. 02. 2001 Zuname Vorname Matr. Nr. Stud. Kennz. Sitzplatz HS / / / Punkte Note korr. Fügen Sie fehlende

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Bäume & Graphen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz http://www.inf.uni-konstanz.de/algo/lehre/ss08/info2 Sommersemester 2008 Sven Kosub

Mehr

16. Dezember 2004 Dr. M. Schneider, P. Ziewer

16. Dezember 2004 Dr. M. Schneider, P. Ziewer Technische Universität München WS 2004/2005 Fakultät für Informatik Lösungsvorschläge zu Blatt 8 A. Berlea, M. Petter, 16. Dezember 2004 Dr. M. Schneider, P. Ziewer Übungen zu Einführung in die Informatik

Mehr

Martin Unold INFORMATIK. Geoinformatik und Vermessung

Martin Unold INFORMATIK. Geoinformatik und Vermessung Wiederholung So sieht ein leeres Java-Programm aus public class Programmname { public static void main (String[] args) { // Hier stehen die Anweisungen Welche Arten von Anweisungen gibt es? Anweisungen

Mehr

Binärbäume. Prof. Dr. E. Ehses, 2014 1

Binärbäume. Prof. Dr. E. Ehses, 2014 1 Binärbäume Grundbegriffe der Graphentheorie Bäume und Ihre Anwendungen Unterschiedliche Darstellungen von Bäumen und Binärbäumen Binärbäume in Java Rekursive Traversierung von Binärbäumen Ebenenweise Traversierung

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2016/17 19. Vorlesung Kürzeste Wege & Dijkstras Algorithmus Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Wozu kürzeste Wege? 2 3-8 Modellierung

Mehr

Schnittstellen, Stack und Queue

Schnittstellen, Stack und Queue Schnittstellen, Stack und Queue Schnittstelle Stack Realisierungen des Stacks Anwendungen von Stacks Schnittstelle Queue Realisierungen der Queue Anwendungen von Queues Hinweise zum Üben Anmerkung: In

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda Amortisierte Analyse Suche in sortierten Arrays Heaps Vorstellen des fünften Übungsblatts

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

Die Schnittstelle Comparable

Die Schnittstelle Comparable Die Schnittstelle Comparable Wir wollen Such- und Sortieroperationen für beliebige Objekte definieren. Dazu verwenden wir die vordefinierte Schnittstelle Comparable: public interface Comparable { int compareto(object

Mehr

Informatik II: Algorithmen & Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden!

Informatik II: Algorithmen & Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden! Albert-Ludwigs-Universität Institut für Informatik Prof. Dr. F. Kuhn Informatik II: Algorithmen & Datenstrukturen Montag, 29. August, 2014, 14:00 17:00 Name:...........................................................

Mehr

void bellford ( List adjlst [n], int n, int i, int j){ int d[n] = + inf ; d[i] = 0;

void bellford ( List adjlst [n], int n, int i, int j){ int d[n] = + inf ; d[i] = 0; für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Datenstrukturen und Algorithmen SS5 hristian Dehnert, Friedrich Gretz, enjamin Kaminski, Thomas Ströder Tutoraufgabe (ellman-ford Algorithmus): a) Passen

Mehr

Algorithmen und Datenstrukturen Wintersemester 2004/ November T(n) = T(n a) + T(a) + n

Algorithmen und Datenstrukturen Wintersemester 2004/ November T(n) = T(n a) + T(a) + n Lehrstuhl für Praktische Informatik III Norman May B6, 29, Raum C0.05 68131 Mannheim Telefon: (0621) 181 2517 Email: norman@pi3.informatik.uni-mannheim.de Matthias Brantner B6, 29, Raum C0.05 68131 Mannheim

Mehr

II.3.1 Rekursive Algorithmen - 1 -

II.3.1 Rekursive Algorithmen - 1 - 1. Grundelemente der Programmierung 2. Objekte, Klassen und Methoden 3. Rekursion und dynamische Datenstrukturen 4. Erweiterung von Klassen und fortgeschrittene Konzepte II.3.1 Rekursive Algorithmen -

Mehr

Sortieralgorithmen. Inhalt: InsertionSort BubbleSort QuickSort. Marco Block

Sortieralgorithmen. Inhalt: InsertionSort BubbleSort QuickSort. Marco Block Inhalt: InsertionSort BubbleSort QuickSort Block M.: "Java-Intensivkurs - In 14 Tagen lernen Projekte erfolgreich zu realisieren", Springer-Verlag 2007 InsertionSort I Das Problem unsortierte Daten in

Mehr

Praktikum 4: Delegation

Praktikum 4: Delegation : Delegation 1. Lernziele Die folgenden, in der Vorlesung behandelten Themen sollen vertieft und angewendet werden: Vererbung, abstrakte Klassen, Polymorphie, Delegation sowie das Zeichnen von UML-Klassendiagrammen.

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2016/17 19. Vorlesung Kürzeste Wege & Dijkstras Algorithmus Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Ergebnisse des 1. Kurztests 14 12 10

Mehr

Prof. H. Herbstreith Fachbereich Informatik. Leistungsnachweis. Informatik 1 WS 2001/2002

Prof. H. Herbstreith Fachbereich Informatik. Leistungsnachweis. Informatik 1 WS 2001/2002 Prof. H. Herbstreith 30.01.2002 Fachbereich Informatik Leistungsnachweis Informatik 1 WS 2001/2002 Bearbeitungszeit 120 Minuten. Keine Hilfsmittel erlaubt. Aufgabe 1: 20 Punkte Vervollständigen Sie folgende

Mehr

(08 - Einfache Sortierverfahren)

(08 - Einfache Sortierverfahren) Vorlesung Informatik 2 Algorithmen und Datenstrukturen (08 - Einfache Sortierverfahren) Prof. Dr. Susanne Albers Sortieren Motivation, Einführung Datenbestände müssen sehr oft sortiert werden, etwa um

Mehr

Kapitel 12: Induktive

Kapitel 12: Induktive Kapitel 12: Induktive Datenstrukturen Felix Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung Praktische Informatik I im Herbstsemester 2009 Folien nach einer Vorlage von H.-Peter

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 12, Donnerstag, 22.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 12, Donnerstag, 22. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 014 / 015 Vorlesung 1, Donnerstag,. Januar 015 (Graphen, Breiten/Tiefensuche, Zusammenhangskomponenten) Junior-Prof.

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 13. Vorlesung Elementare Datenstrukturen: Stapel + Schlange + Liste Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2. Test Termin: (voraussichtlich)

Mehr

ALP II Dynamische Datenmengen

ALP II Dynamische Datenmengen ALP II Dynamische Datenmengen Teil III Iteratoren Iterator-Objekt O1 O2 O3 O4 SS 2012 Prof. Dr. Margarita Esponda 22. ALP2-Vorlesung, M. Esponda 2 Motivation: Iteratoren Wir haben für die Implementierung

Mehr

12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013

12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013 12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013 1 Agenda Kontrollfragen Graphen Graphenalgorithmen 2

Mehr

Algorithmen & Datenstrukturen 2 Praktikum 3

Algorithmen & Datenstrukturen 2 Praktikum 3 Algorithmen & Datenstrukturen 2 Praktikum 3 Thema: Graphalgorithmen Sommersemester 2016 Prof. Dr. Christoph Karg Hochschule Aalen Dieses Praktikum widmet sich dem Thema Graphalgorithmen. Ziel ist die Implementierung

Mehr

NAME, VORNAME: Studiennummer: Matrikel:

NAME, VORNAME: Studiennummer: Matrikel: TU Ilmenau, Fakultat IA Institut für Theoretische Informatik FG Komplexitätstheorie und Effiziente Algorithmen Prof. Dr. (USA) M. Dietzfelbinger Klausur Algorithmen und Datenstrukturen SS08, Ing.-Inf.

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen 13. Übung minimale Spannbäume, topologische Sortierung, AVL-Bäume Clemens Lang Übungen zu AuD 4. Februar 2010 Clemens Lang (Übungen zu AuD) Algorithmen und Datenstrukturen

Mehr

Algorithmen und Programmierung III

Algorithmen und Programmierung III Musterlösung zum 4. Aufgabenblatt zur Vorlesung WS 2006 Algorithmen und Programmierung III von Christian Grümme Aufgabe 1 Amortisierte Analyse 10 Punkte Zu erst betrachte ich wie oft die letzte Ziffer

Mehr

Algorithmen und Datenstrukturen SS09. Foliensatz 16. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik

Algorithmen und Datenstrukturen SS09. Foliensatz 16. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik Foliensatz 16 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 2009 TU Ilmenau Seite 1 / 45 Graphen TU Ilmenau Seite 2 / 45 Graphen 1 2 3 4 5 6 7 8

Mehr

Gliederung. 5. Compiler. 6. Sortieren und Suchen. 7. Graphen

Gliederung. 5. Compiler. 6. Sortieren und Suchen. 7. Graphen 5. Compiler Gliederung 1. Struktur eines Compilers 2. Syntaxanalyse durch rekursiven Abstieg 3. Ausnahmebehandlung 4. Arrays und Strings 6. Sortieren und Suchen 1. Grundlegende Datenstrukturen 2. Bäume

Mehr

Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort.

Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Name: Seite 2 Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Aufgabe 1 (8 Punkte) 1. Wie sieht -5 in der 4Bit 2-er Komplementdarstellung aus? 2. Berechnen Sie

Mehr

Verkettete Datenstrukturen: Bäume

Verkettete Datenstrukturen: Bäume Verkettete Datenstrukturen: Bäume 1 Graphen Gerichteter Graph: Menge von Knoten (= Elementen) + Menge von Kanten. Kante: Verbindung zwischen zwei Knoten k 1 k 2 = Paar von Knoten (k 1, k 2 ). Menge aller

Mehr

Informatik 1 - Translation Studies in Information Technology. Musterlösung zum Aufgabenblatt der ersten Pflichtübung im Wintersemester 16/17

Informatik 1 - Translation Studies in Information Technology. Musterlösung zum Aufgabenblatt der ersten Pflichtübung im Wintersemester 16/17 Informatik 1 - Translation Studies in Information Technology INF1 TSIT MUSTERLÖSUNG: PFLICHTÜBUNG 1 Musterlösung zum Aufgabenblatt der ersten Pflichtübung im Wintersemester 16/17 Praktikum zur Vorlesung

Mehr

Informatik Abitur Bayern 2017 / II - Lösung

Informatik Abitur Bayern 2017 / II - Lösung Informatik Abitur Bayern 2017 / II - Lösung Autoren: Wolf (1) Wagner (2) Scharnagl (3-5) 1a 5 1b Diese Methode vergleicht den Namen des Interpreten eines jeden Elements der Liste mit dem gegebenen Namen.

Mehr

Übung 4: Die generische Klasse AvlBaum in Java 1

Übung 4: Die generische Klasse AvlBaum in Java 1 Übung 4: Die generische Klasse AvlBaum in Java 1 Ein binärer Suchbaum hat die AVL -Eigenschaft, wenn sich in jedem Knoten sich die Höhen der beiden Teilbäume höchstens um 1 unterscheiden. Diese Last (

Mehr

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E.

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Das Komplement Ḡ = (V, ( V ) \ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Ein Graph H = (V, E )

Mehr

Institut für Programmierung und Reaktive Systeme 7. Juli Programmieren II. Übungsklausur

Institut für Programmierung und Reaktive Systeme 7. Juli Programmieren II. Übungsklausur Technische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme 7. Juli 2017 Hinweise: Klausurtermine: Programmieren II Übungsklausur Programmieren I: 28. August

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphen (1) Darstellung Traversierung Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 441 Generalisierung von Bäumen Verallgemeinerung (von Listen zu Graphen)

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 25. Vorlesung Dynamisches Programmieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Klausurvorbereitung Tipp: Schreiben Sie sich alle Fragen

Mehr

Technische Universität Braunschweig Institut für Programmierung und Reaktive Systeme

Technische Universität Braunschweig Institut für Programmierung und Reaktive Systeme Technische Universität Braunschweig Institut für Programmierung und Reaktive Systeme Programmieren II Dr. Werner Struckmann 29. August 2014 Name: Vorname: Matrikelnummer: Kennnummer: Anrede: Frau Herr

Mehr

Technische Universität München. Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter

Technische Universität München. Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter Kapitel 7 Fortgeschrittene Datenstrukturen Motivation: Lineare Liste: Suchen eines Elements ist schnell O(log n) Einfügen eines Elements ist langsam

Mehr

Algorithmen & Datenstrukturen Midterm Test 2

Algorithmen & Datenstrukturen Midterm Test 2 Algorithmen & Datenstrukturen Midterm Test 2 Martin Avanzini Thomas Bauereiß Herbert Jordan René Thiemann

Mehr

Programmierkurs Java

Programmierkurs Java Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen

Mehr

Algorithmen I - Tutorium 28 Nr. 11

Algorithmen I - Tutorium 28 Nr. 11 Algorithmen I - Tutorium 28 Nr. 11 13.07.2017: Spaß mit Schnitten, Kreisen und minimalen Spannbäumen Marc Leinweber marc.leinweber@student.kit.edu INSTITUT FÜR THEORETISCHE INFORMATIK (ITI), PROF. DR.

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (12 Hashverfahren: Verkettung der Überläufer) Prof. Dr. Susanne Albers Möglichkeiten der Kollisionsbehandlung Kollisionsbehandlung: Die Behandlung

Mehr

Arrays. Gilbert Beyer und Annabelle Klarl. Einführung in die Informatik. Zentralübung zur Vorlesung Einführung in die Informatik

Arrays. Gilbert Beyer und Annabelle Klarl. Einführung in die Informatik. Zentralübung zur Vorlesung Einführung in die Informatik Arrays Zentralübung zur Vorlesung Einführung in die Informatik http://www.pst.ifi.lmu.de/lehre/wise-11-12/infoeinf WS11/12 Inhalte der heutigen Vorlesung: Arraytypen Speicherdarstellung von Arrays Auswertung

Mehr

CoMa 04. Java II. Paul Boeck. 7. Mai Humboldt Universität zu Berlin Institut für Mathematik. Paul Boeck CoMa 04 7.

CoMa 04. Java II. Paul Boeck. 7. Mai Humboldt Universität zu Berlin Institut für Mathematik. Paul Boeck CoMa 04 7. CoMa 04 Java II Paul Boeck Humboldt Universität zu Berlin Institut für Mathematik 7. Mai 2013 Paul Boeck CoMa 04 7. Mai 2013 1 / 13 Verzweigungen Wenn-Dann Beziehungen if (BEDINGUNG) { else if (BEDINGUNG2)

Mehr

10. Übungsblatt zu Algorithmen I im SS 2010

10. Übungsblatt zu Algorithmen I im SS 2010 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders G.V. Batz, C. Schulz, J. Speck 0. Übungsblatt zu Algorithmen I im SS 00 http//algo.iti.kit.edu/algorithmeni.php

Mehr

Technische Universität Braunschweig Institut für Programmierung und Reaktive Systeme

Technische Universität Braunschweig Institut für Programmierung und Reaktive Systeme Technische Universität Braunschweig Institut für Programmierung und Reaktive Systeme Programmieren II Dr. Werner Struckmann 31. März 2014 Name: Vorname: Matrikelnummer: Kennnummer: Anrede: Frau Herr Studiengang:

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2016/17 11. Vorlesung Elementare Datenstrukturen: Stapel + Schlange + Liste Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2-4 Zur Erinnerung Datenstruktur:

Mehr

Berechnung minimaler Spannbäume. Beispiel

Berechnung minimaler Spannbäume. Beispiel Minimale Spannbäume Definition Sei G pv, Eq ein ungerichteter Graph und sei w : E Ñ R eine Funktion, die jeder Kante ein Gewicht zuordnet. Ein Teilgraph T pv 1, E 1 q von G heißt Spannbaum von G genau

Mehr

Programmieren in Java -Eingangstest-

Programmieren in Java -Eingangstest- Programmieren in Java -Eingangstest- Nummer: 1. Studiengang: Informatik B.Sc. Informatik M.Sc. ESE B.Sc. ESE M.Sc. Sonstiges: Fachsemester: Bitte Fragen, die Sie nicht beantworten können unbedingt mit

Mehr

Übungen zu Programmierung I - Blatt 8

Übungen zu Programmierung I - Blatt 8 Dr. G. Zachmann A. Greß Universität Bonn Institut für Informatik II 1. Dezember 2004 Wintersemester 2004/2005 Übungen zu Programmierung I - Blatt 8 Abgabe am Mittwoch, dem 15.12.2004, 15:00 Uhr per E-Mail

Mehr

Weiterführendes Programmieren Lineare Widerstandsnetzwerke II Aufgabenblatt 6. 1 Zusammenfassung der elektrotechnischen Begriffe

Weiterführendes Programmieren Lineare Widerstandsnetzwerke II Aufgabenblatt 6. 1 Zusammenfassung der elektrotechnischen Begriffe Institut für Wissenschaftliches Rechnen Technische Universität Braunschweig Prof. Hermann G. Matthies, Ph. D. Dr. Elmar Zander Wintersemester 2013/14 14. November 2014 Weiterführendes Programmieren Lineare

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer Vorlesung Informatik 2 Algorithmen und Datenstrukturen (20 Graphen) T. Lauer 1 Motivation Wie komme ich am besten von Freiburg nach Ulm? Was ist die kürzeste Rundreise durch eine gegebene Menge von Städten?

Mehr

10. Übung Algorithmen I

10. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Bäume

Mehr