Wintersemester 2004/ Januar Aus der Vorlesung sind Datenstrukturen zur Repräsentation von Wäldern disjunkter Mengen bekannt.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Wintersemester 2004/ Januar Aus der Vorlesung sind Datenstrukturen zur Repräsentation von Wäldern disjunkter Mengen bekannt."

Transkript

1 Lehrstuhl für Praktische Informatik III Norman May B6, 29, Raum C Mannheim Telefon: (0621) Matthias Brantner B6, 29, Raum C Mannheim Telefon: (0621) Algorithmen und Datenstrukturen 11. svorschlag Wintersemester 2004/ Januar 2005 Aufgabe 1 8 Punkte Aus der Vorlesung sind Datenstrukturen zur Repräsentation von Wäldern disjunkter Mengen bekannt. Aufgabe 1 a) Implementieren Sie die Datenstruktur mit Union-by-Rank und Pfadkomprimierung als Optimierungsheuristiken unter Verwendung der Schnittstelle aus der Vorlesung. Benutze Knotenrepräsentation von Blatt 9. public class DisjointSet extends TreeNode { / create a node in the set / protected DisjointSet(Comparable x) { super(x, null, null, null); rank = 0; / the rank of this tree node in the set / protected int rank; / return the rank / final int getrank() { return rank; / set the rank / final void setrank(int r) { rank = r; TreeNode#toString / public String tostring() { return super.tostring() + ( + rank + ) ; 1

2 / create a singleton set containing x as representative / public static DisjointSet makeset(comparable x) { return new DisjointSet(x); / union two sets / public static DisjointSet union(disjointset x, DisjointSet y) { return link(findset(x ), findset(y)); / link two set nodes using their ranks / public static DisjointSet link( DisjointSet x, DisjointSet y) { if (x.getrank() > y.getrank()) { y.setparent(x); return x; else { x.setparent(y); if (x.getrank() == y.getrank()) { y.setrank(y.getrank() + 1); return y; / find the representative of a set node; do path compression / public static DisjointSet findset(disjointset x) { if (x!= x.getparent()) { x.setparent(disjointset. findset(( DisjointSet ) x.getparent ())); return (DisjointSet)x.getParent(); / testing... / public static void main(string[] args) { DisjointSet s1 = DisjointSet. makeset(new Integer(1)); DisjointSet s2 = DisjointSet. makeset(new Integer(2)); DisjointSet s3 = DisjointSet. makeset(new Integer(3)); DisjointSet s4 = DisjointSet. union(disjointset. union(s1, s2 ), s3); System.out.println( DisjointSet. findset(s4 )); Aufgabe 1 b) 3 Punkte Geben Sie eine Sequenz von MAKE-SET, UNION und FIND-SET Operationen an. Die Länge der Sequenz soll m und die Anzahl der MAKE-SET Operationen soll n = m/3 sein. Die benötigte Laufzeit der Sequenz soll, unter der Annahme daß nur Union-by-Rank als Optimierungsheuristik verwendet wird, Ω(m lg n) betragen. 2

3 1. Sequenz: (a) n MAKE-SET-Operationen zum Erzeugen von n einelementigen Mengen: (0.) {x 1, {x 2,..., {x n (b) n 1 UNION-Operationen zur Bildung eines Baums mit der Höhe lg n. Dabei werden Bäume mit gleicher Höhe verscholzen und x i bzw. x j in den Aufrufen von UNION sind die Repräsentanten der beiden Mengen in Union(x i, x j ): Union(x 1, x 2 ) Union(x 3, x 4 ). Union(x n 1, x n ) Union(x 2, x 4 ) Union(x 6, x 8 ). Union(x n 2, x n ). Union(x n/2, x n ) (1 Punkt) (c) n + 1 FIND-SET-Operationen auf dem tiefsten Element im Baum. (0.) 2. Aufwand der Sequenz: (1 Punkt) 2n 1 + (n + 1) lg n = Ω(m lg n) Aufgabe 2 Die Incidenz-Matrix eines gerichteten Graphen G = (V, E) ist eine V E -Matrix B = (b ij ) so daß: 1 wenn Kante j in Knoten beginnt b ij = 1 wenn Kante j in Knoten i endet 0 sonst Erläutern Sie die Einträge im Ergebnis des Matrix-Produkts B B T, wobei B T für die transponierte Matrix von B steht. 3

4 Die Diagonale im Matrix-Produkt stellt den Grad von allen Knoten des Graphen dar. Wenn P = B B T, dann steht an Stelle P ii die Anzahl der ein- und ausgehenden Kanten von Knoten i. Formal gilt: Dann gilt: E P ij = B ie Bej T e=1 1. Wenn i = j, dann ist B ie B T ej = 1, wenn Kante e in Knoten i beginnt oder endet, sonst Wenn i j, dann ist B ie B T ej = 1, wenn e = (i, j) oder e = (j, i), sonst 0. Daher gilt: P ij = { deg(i) = in-degree + out-degree wenn i = j ( Anzahl der Kanten, die Knoten i und j verbinden) wenn i j Aufgabe 3 4 Punkte Beschreiben Sie die Funktionsweise der Tiefensuche anhand des folgenden Graphen. q r s t u v w x y z Gehen Sie dabei davon aus, daß in den Zeilen 5-7 der DFS-Prozedur die Knoten entsprechend der alphabetischen Reihenfolge besucht werden und daß die Adjazenslisten alphabetisch sortiert sind. Geben Sie die Entdeckungszeit sowie die Endzeit für jeden Knoten an, sowie die Klassifizierung der Kanten. Die Beschriftungen von Knoten und Kanten entsprechen denen im Buch. 4

5 (1,16) q (2,7) s (8,15) t B (17,20) C r B (3,6) v F (9,12) x (18,19) u B (13,14) y C (4,5) w (10,11) z Punkteverteilung: je 2 Punkte für korrekte Beschriftung der Knoten bzw. der Kanten. Aufgabe 4 Ein ungerichteter Graph G = (V, E) ist bipartit, wenn V sich in zwei disjunkte Teilmengen V und V zerlegen läßt, so daß gilt: (u, v) E (u V v V ) (v V u V ) Geben Sie einen Algorithmus an, der überprüft, ob ein ungerichteter Graph bipartit ist. Idee: Zur Überprüfung werden während einer Breitensuche alle besuchten Kanten klassifiziert. Falls eine Kante mit zwei Knoten der gleichen Klasse auftaucht, ist der Graph nicht bipartit. Zur Speicherung der Klassifizierung wird das Array Class verwendet. BIPARTIT(G) do color[v] white do if Color[v] = white then Color[v] gray Enqueue(Q, v) Class[v] 0 while Q do u Head[Q] for each v Adj[u] do if Color[v] = white then Color[v] gray Class[v] 1 Class[u] 5

6 Enqueue(q, v) else if Class[v] = Class[u] then return false Dequeue(Q) return true Aufgabe 5 Aufgabe 5 a) 4 Punkte Eine Möglichkeit zur Durchführung einer topologischen Sortierung eines gerichteten, azyklischen Graphen G = (V, E) besteht darin, wiederholt die Knoten mit In-Grad 0 im Graphen zu suchen, auszugeben und samt den ausfallenden Kanten aus dem Graphen zu entfernen. Wie muß der entsprechende Algorithmus implementiert sein, damit er eine Laufzeit von O(V + E) hat? Idee: Verwenden einer Queue zum Speichern der Knoten mit In-Grad 0. Top-Sort(G) do In Deg[v] 0 for each u G[V ] do for each v Adj[u] In Deg[v] In Deg[v] + 1 do if In Deg[v] = 0 then Enqueue(Q, v) while Q do u Head[Q] for each v Adj[u] do In Deg[v] In Deg[v] 1 if In Deg = 0 then Enqueue(Q, v) P rint u Dequeue(Q) Aufgabe 5 b) 1 Punkte Wie reagiert der Algorithmus, falls der zu sortierende Graph zyklisch ist? 6

7 Sobald der gegebene Graph einen Zyklus enthält, existieren Knoten deren In-Grad niemals 0 wird. Somit stoppt der Algorithmus ohne die Knoten zu sortieren, die Teil eines Zyklus sind bzw. von einem Knoten erreicht werden, der Teil eines Zyklus ist. 7

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 22. Vorlesung Tiefensuche und Topologische Sortierung Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Vorlesungsumfrage Nutzen Sie die Vorlesungsbefragung

Mehr

9. Übung Algorithmen I

9. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Musterlösung

Mehr

! 1. Rekursive Algorithmen.! 2. Rekursive (dynamische) Datenstrukturen. II.3.2 Rekursive Datenstrukturen - 1 -

! 1. Rekursive Algorithmen.! 2. Rekursive (dynamische) Datenstrukturen. II.3.2 Rekursive Datenstrukturen - 1 - ! 1. Rekursive Algorithmen! 2. Rekursive (dynamische) Datenstrukturen II.3.2 Rekursive Datenstrukturen - 1 - Ausdruck Ausdruck Grundwert ( Typ ) Präfix-Operator Name Methodenaufruf [ Ausdruck ] ( Ausdruck

Mehr

Felix Brandt, Jan Johannsen. Vorlesung im Wintersemester 2008/09

Felix Brandt, Jan Johannsen. Vorlesung im Wintersemester 2008/09 Felix Brandt, Jan Johannsen Vorlesung im Wintersemester 2008/09 Übersicht Übersicht Definition Ein Matching in G = (V, E) ist eine Menge M E mit e 1 e 2 = für e 1, e 2 M, e 1 e 2 Ein Matching M ist perfekt,

Mehr

Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind.

Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind. 3.5 Gerichteter Pfad Definition 291 Eine Folge (u 0, u 1,..., u n ) mit u i V für i = 0,..., n heißt gerichteter Pfad, wenn ( i {0,..., n 1} ) [ (u i, u i+1 ) A]. Ein gerichteter Pfad heißt einfach, falls

Mehr

Quicksort ist ein Divide-and-Conquer-Verfahren.

Quicksort ist ein Divide-and-Conquer-Verfahren. . Quicksort Wie bei vielen anderen Sortierverfahren (Bubblesort, Mergesort, usw.) ist auch bei Quicksort die Aufgabe, die Elemente eines Array a[..n] zu sortieren. Quicksort ist ein Divide-and-Conquer-Verfahren.

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 11 (4.6.2014) Binäre Suchbäume II Algorithmen und Komplexität Binäre Suchbäume Binäre Suchbäume müssen nicht immer so schön symmetrisch sein

Mehr

Datenstrukturen. Mariano Zelke. Sommersemester 2012

Datenstrukturen. Mariano Zelke. Sommersemester 2012 Datenstrukturen Mariano Zelke Sommersemester 2012 Tiefensuche: Die globale Struktur Der gerichtete oder ungerichtete Graph G werde durch seine Adjazenzliste A repräsentiert. Im Array besucht wird vermerkt,

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Tafelübung 04 Referenzen, Overloading, Klassen(hierarchien) Clemens Lang T2 18. Mai 2010 14:00 16:00, 00.152 Tafelübung zu AuD 1/13 Organisatorisches Nächster Übungstermin

Mehr

8. Übung zu Algorithmen I 15. Juni 2016

8. Übung zu Algorithmen I 15. Juni 2016 8. Übung zu Algorithmen I 15. Juni 2016 Lisa Kohl Lisa.Kohl@kit.edu (mit Folien von Julian Arz, Timo Bingmann, Sebastian Schlag, Christian Staudt und Christoph Striecks) Nachtrag: Quicksort, alternative

Mehr

10 Graphenalgorithmen in Java

10 Graphenalgorithmen in Java 10.1 Implementierung eines gewichteten Graphen 10.2 Implementierung der Breitensuche 10.3 Implementierung der Tiefensuche 10 147 Teil X Graphalgorithmen in Java Überblick Implementierung eines gewichteten

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00

Mehr

1. Typen und Literale (6 Punkte) 2. Zuweisungen (6 = Punkte)

1. Typen und Literale (6 Punkte) 2. Zuweisungen (6 = Punkte) Praktische Informatik (Software) Vorlesung Softwareentwicklung 1 Prof. Dr. A. Ferscha Hauptklausur am 01. 02. 2001 Zuname Vorname Matr. Nr. Stud. Kennz. Sitzplatz HS / / / Punkte Note korr. Fügen Sie fehlende

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Binärbäume. Prof. Dr. E. Ehses, 2014 1

Binärbäume. Prof. Dr. E. Ehses, 2014 1 Binärbäume Grundbegriffe der Graphentheorie Bäume und Ihre Anwendungen Unterschiedliche Darstellungen von Bäumen und Binärbäumen Binärbäume in Java Rekursive Traversierung von Binärbäumen Ebenenweise Traversierung

Mehr

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 Robert Elsässer Paderborn, den 15. Mai 2008 u.v.a. Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 AUFGABE 1 (6 Punkte): Nehmen wir an, Anfang bezeichne in einer normalen

Mehr

Sortieralgorithmen. Inhalt: InsertionSort BubbleSort QuickSort. Marco Block

Sortieralgorithmen. Inhalt: InsertionSort BubbleSort QuickSort. Marco Block Inhalt: InsertionSort BubbleSort QuickSort Block M.: "Java-Intensivkurs - In 14 Tagen lernen Projekte erfolgreich zu realisieren", Springer-Verlag 2007 InsertionSort I Das Problem unsortierte Daten in

Mehr

16. Dezember 2004 Dr. M. Schneider, P. Ziewer

16. Dezember 2004 Dr. M. Schneider, P. Ziewer Technische Universität München WS 2004/2005 Fakultät für Informatik Lösungsvorschläge zu Blatt 8 A. Berlea, M. Petter, 16. Dezember 2004 Dr. M. Schneider, P. Ziewer Übungen zu Einführung in die Informatik

Mehr

Schnittstellen, Stack und Queue

Schnittstellen, Stack und Queue Schnittstellen, Stack und Queue Schnittstelle Stack Realisierungen des Stacks Anwendungen von Stacks Schnittstelle Queue Realisierungen der Queue Anwendungen von Queues Hinweise zum Üben Anmerkung: In

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

ALP II Dynamische Datenmengen

ALP II Dynamische Datenmengen ALP II Dynamische Datenmengen Teil III Iteratoren Iterator-Objekt O1 O2 O3 O4 SS 2012 Prof. Dr. Margarita Esponda 22. ALP2-Vorlesung, M. Esponda 2 Motivation: Iteratoren Wir haben für die Implementierung

Mehr

II.3.1 Rekursive Algorithmen - 1 -

II.3.1 Rekursive Algorithmen - 1 - 1. Grundelemente der Programmierung 2. Objekte, Klassen und Methoden 3. Rekursion und dynamische Datenstrukturen 4. Erweiterung von Klassen und fortgeschrittene Konzepte II.3.1 Rekursive Algorithmen -

Mehr

Algorithmen und Datenstrukturen Wintersemester 2004/ November T(n) = T(n a) + T(a) + n

Algorithmen und Datenstrukturen Wintersemester 2004/ November T(n) = T(n a) + T(a) + n Lehrstuhl für Praktische Informatik III Norman May B6, 29, Raum C0.05 68131 Mannheim Telefon: (0621) 181 2517 Email: norman@pi3.informatik.uni-mannheim.de Matthias Brantner B6, 29, Raum C0.05 68131 Mannheim

Mehr

Programmierkurs Java

Programmierkurs Java Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen

Mehr

Prof. H. Herbstreith Fachbereich Informatik. Leistungsnachweis. Informatik 1 WS 2001/2002

Prof. H. Herbstreith Fachbereich Informatik. Leistungsnachweis. Informatik 1 WS 2001/2002 Prof. H. Herbstreith 30.01.2002 Fachbereich Informatik Leistungsnachweis Informatik 1 WS 2001/2002 Bearbeitungszeit 120 Minuten. Keine Hilfsmittel erlaubt. Aufgabe 1: 20 Punkte Vervollständigen Sie folgende

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer Vorlesung Informatik 2 Algorithmen und Datenstrukturen (20 Graphen) T. Lauer 1 Motivation Wie komme ich am besten von Freiburg nach Ulm? Was ist die kürzeste Rundreise durch eine gegebene Menge von Städten?

Mehr

Informatik 1 - Translation Studies in Information Technology. Musterlösung zum Aufgabenblatt der ersten Pflichtübung im Wintersemester 16/17

Informatik 1 - Translation Studies in Information Technology. Musterlösung zum Aufgabenblatt der ersten Pflichtübung im Wintersemester 16/17 Informatik 1 - Translation Studies in Information Technology INF1 TSIT MUSTERLÖSUNG: PFLICHTÜBUNG 1 Musterlösung zum Aufgabenblatt der ersten Pflichtübung im Wintersemester 16/17 Praktikum zur Vorlesung

Mehr

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E.

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Das Komplement Ḡ = (V, ( V ) \ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Ein Graph H = (V, E )

Mehr

Verkettete Datenstrukturen: Bäume

Verkettete Datenstrukturen: Bäume Verkettete Datenstrukturen: Bäume 1 Graphen Gerichteter Graph: Menge von Knoten (= Elementen) + Menge von Kanten. Kante: Verbindung zwischen zwei Knoten k 1 k 2 = Paar von Knoten (k 1, k 2 ). Menge aller

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (18 Bäume: Grundlagen und natürliche Suchbäume) Prof. Dr. Susanne Albers Bäume (1) Bäume sind verallgemeinerte Listen (jedes Knoten-Element kann mehr

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (12 Hashverfahren: Verkettung der Überläufer) Prof. Dr. Susanne Albers Möglichkeiten der Kollisionsbehandlung Kollisionsbehandlung: Die Behandlung

Mehr

11.1 Grundlagen - Denitionen

11.1 Grundlagen - Denitionen 11 Binärbäume 11.1 Grundlagen - Denitionen Denition: Ein Baum ist eine Menge, die durch eine sog. Nachfolgerrelation strukturiert ist. In einem Baum gilt: (I) (II) 1 Knoten w ohne VATER(w), das ist die

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

11. Elementare Datenstrukturen

11. Elementare Datenstrukturen 11. Elementare Datenstrukturen Definition 11.1: Eine dynamische Menge ist gegeben durch eine oder mehrer Mengen von Objekten sowie Operationen auf diesen Mengen und den Objekten der Mengen. Dynamische

Mehr

Übungen zu Programmierung I - Blatt 8

Übungen zu Programmierung I - Blatt 8 Dr. G. Zachmann A. Greß Universität Bonn Institut für Informatik II 1. Dezember 2004 Wintersemester 2004/2005 Übungen zu Programmierung I - Blatt 8 Abgabe am Mittwoch, dem 15.12.2004, 15:00 Uhr per E-Mail

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

Customization (Zuschneiden)

Customization (Zuschneiden) Customization (Zuschneiden) Anpassen der (Graph)Datenstruktur an die Anwendung. I Ziel: schnell, kompakt. I benutze Entwurfsprinzip: make the common case fast I Listen vermeiden Mögliches Problem: Software-Engineering-Alptraum

Mehr

Allgemeine Hinweise:

Allgemeine Hinweise: TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen WS 12/13 Einführung in die Informatik I Wiederholungsklausur Prof. Dr. Helmut Seidl, A. Lehmann,

Mehr

Graphen: Datenstrukturen und Algorithmen

Graphen: Datenstrukturen und Algorithmen Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12 1. Kapitel 11. Listen. Listen

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12 1. Kapitel 11. Listen. Listen Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12 1 Kapitel 11 Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12 2 Ziele Implementierungen für

Mehr

Das Heiratsproblem. Definition Matching

Das Heiratsproblem. Definition Matching Das Heiratsproblem Szenario: Gegeben: n Frauen und m > n Männer. Bekanntschaftsbeziehungen zwischen allen Männern und Frauen. Fragestellung: Wann gibt es für jede der Frauen einen Heiratspartner? Modellierung

Mehr

3. Übungsblatt zu Algorithmen I im SoSe 2017

3. Übungsblatt zu Algorithmen I im SoSe 2017 Karlsruher Institut für Technologie Prof. Dr. Jörn Müller-Quade Institut für Theoretische Informatik Björn Kaidel, Sebastian Schlag, Sascha Witt 3. Übungsblatt zu Algorithmen I im SoSe 2017 http://crypto.iti.kit.edu/index.php?id=799

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

EndTermTest PROGALGO WS1516 A

EndTermTest PROGALGO WS1516 A EndTermTest PROGALGO WS1516 A 14.1.2016 Name:................. UID:.................. PC-Nr:................ Beachten Sie: Lesen Sie erst die Angaben aufmerksam, genau und vollständig. Die Verwendung von

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Listen & Bäume Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 SvenKosub@uni-konstanzde Sprechstunde: Freitag, 14:00-15:00 Uhr, onv Sommersemester

Mehr

Breiten- und Tiefensuche in Graphen

Breiten- und Tiefensuche in Graphen Breiten- und Tiefensuche in Graphen Inhalt Theorie. Graphen. Die Breitensuche in der Theorie am Beispiel eines ungerichteten Graphen. Die Tiefensuche in der Theorie am Beispiel eines gerichteten Graphen

Mehr

Algorithmen & Datenstrukturen 1. Klausur

Algorithmen & Datenstrukturen 1. Klausur Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse

Mehr

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Fachschaft Informatik Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Michael Steinhuber König-Karlmann-Gymnasium Altötting 15. Januar 2016 Folie 1/77 Inhaltsverzeichnis I 1 Datenstruktur Schlange

Mehr

Objektorientierte Programmierung

Objektorientierte Programmierung Universität der Bundeswehr Fakultät für Informatik Institut 2 Priv.-Doz. Dr. Lothar Schmitz FT 2006 Übungsblatt 5 Lösungsvorschlag Objektorientierte Programmierung 22. 05. 2006 Lösung 9 (SMS-Eingabe am

Mehr

188.154 Einführung in die Programmierung für Wirtschaftsinformatik

188.154 Einführung in die Programmierung für Wirtschaftsinformatik Beispiel 1 Vererbung (Liste) Gegeben sind die beiden Klassen ListNode und PersonNode. 188.154 Einführung in die Programmierung für Wirtschaftsinformatik Wiederholung, Prüfungsvorbereitung Monika Lanzenberger

Mehr

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume.

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume. Universität Osnabrück 1 Bäume 3 - Objektorientierte Programmierung in Java Vorlesung 10: Collections 4 Einführung Bäume sind verallgemeinerte Listenstrukturen Lineare Liste Jedes Element hat höchstens

Mehr

Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda

Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda Bäume O1 O2 Text O3 O4 O5 O6 O7 Prof. Dr. Margarita Esponda SS 2012 22. ALP2-Vorlesung, M. Esponda Inhalt 1. Einführung 2. Warum Bäume? 3. Listen und Arrays vs. Bäume 4. Einfach verkettete binäre Suchbäume

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Counting - Sort [ [ ] [ [ ] 1. SS 2008 Datenstrukturen und Algorithmen Sortieren in linearer Zeit

Counting - Sort [ [ ] [ [ ] 1. SS 2008 Datenstrukturen und Algorithmen Sortieren in linearer Zeit Counting-Sort Counting - Sort ( A,B,k ). for i to k. do C[ i]. for j to length[ A]. do C[ A[ j ] C[ A[ j ] +. > C[ i] enthält Anzahl der Elemente in 6. for i to k. do C[ i] C[ i] + C[ i ]. > C[ i] enthält

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Grundlagen der Programmierung Prof. H. Mössenböck. 14. Schrittweise Verfeinerung

Grundlagen der Programmierung Prof. H. Mössenböck. 14. Schrittweise Verfeinerung Grundlagen der Programmierung Prof. H. Mössenböck 14. Schrittweise Verfeinerung Entwurfsmethode für Algorithmen Wie kommt man von der Aufgabenstellung zum Programm? Beispiel geg.: Text aus Wörtern ges.:

Mehr

Schwerpunkte. Verkettete Listen. Verkettete Listen: 7. Verkettete Strukturen: Listen. Überblick und Grundprinzip. Vergleich: Arrays verkettete Listen

Schwerpunkte. Verkettete Listen. Verkettete Listen: 7. Verkettete Strukturen: Listen. Überblick und Grundprinzip. Vergleich: Arrays verkettete Listen Schwerpunkte 7. Verkettete Strukturen: Listen Java-Beispiele: IntList.java List.java Stack1.java Vergleich: Arrays verkettete Listen Listenarten Implementation: - Pascal (C, C++): über Datenstrukturen

Mehr

Einführung Elementare Datenstrukturen. Der Konstruktor muß den Listenkopf head erzeugen. Der Vorgänger und Nachfolger von head ist head selbst.

Einführung Elementare Datenstrukturen. Der Konstruktor muß den Listenkopf head erzeugen. Der Vorgänger und Nachfolger von head ist head selbst. Einführung Elementare Datenstrukturen (Folie 38, Seite 23 im Skript) Der Konstruktor muß den Listenkopf head erzeugen. Der Vorgänger und Nachfolger von head ist head selbst. Einführung Elementare Datenstrukturen

Mehr

Name: Seite 1. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort.

Name: Seite 1. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Name: Seite 1 Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Aufgabe 1 (8 Punkte) 1. Wie wird bei der Zusicherungsmethode die Zusicherung genannt, die vor Eintritt

Mehr

Institut für Programmierung und Reaktive Systeme 27. Mai Programmieren II. 12. Übungsblatt

Institut für Programmierung und Reaktive Systeme 27. Mai Programmieren II. 12. Übungsblatt Technische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme 27. Mai 206 Programmieren II 2. Übungsblatt Hinweis: Auf diesem und den folgenden Übungsblättern

Mehr

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Rekursion Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-12-13/infoeinf WS12/13 Aufgabe 1: Potenzfunktion Schreiben Sie eine Methode, die

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Datenstrukturen: Anordnung von Daten, z.b. als Liste (d.h. in bestimmter Reihenfolge) Beispiel: alphabetisch sortiertes Wörterbuch... Ei - Eibe - Eidotter... als Baum (d.h.

Mehr

Übersicht. Informatik 2 Teil 3 Anwendungsbeispiel für objektorientierte Programmierung

Übersicht. Informatik 2 Teil 3 Anwendungsbeispiel für objektorientierte Programmierung Übersicht 3.1 Modell Konto 3.2 Modell Konto - Erläuterungen 3.3 Benutzer Ein- und Ausgabe mit Dialogfenster I 3.4 Benutzer Ein- und Ausgabe mit Dialogfenster II 3.5 Klassen- und Objekteigenschaften des

Mehr

Programmieren I. Methoden-Special Heusch --- Ratz 6.1, Institut für Angewandte Informatik

Programmieren I. Methoden-Special Heusch --- Ratz 6.1, Institut für Angewandte Informatik Programmieren I Methoden-Special Heusch --- Ratz 6.1, 6.2 KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Parameterübergabe: Wertkopie -By- public class MethodParameters { public

Mehr

Informatik II Vorlesung am D-BAUG der ETH Zürich

Informatik II Vorlesung am D-BAUG der ETH Zürich Informatik II Vorlesung am D-BAUG der ETH Zürich Vorlesung 9, 2.5.2016 [Nachtrag zu Vorlesung : Numerische Integration, Zusammenfassung Objektorientierte Programmierung] Dynamische Datenstrukturen II:

Mehr

Einfache Arrays. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Einfache Arrays. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative student"

Mehr

Zweizusammenhang und starker Zusammenhang

Zweizusammenhang und starker Zusammenhang .. Zeizusammenhang und starker Zusammenhang Carsten Gutenger Vorlesung Algorithmen und Datenstrukturen WS /. Januar Zeizusammenhang Betrachte ein Netzerk (Graph) Z.B. Computernetzerk, Flug- oder Schienennetzerk

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 7 (21.5.2014) Binäre Suche, Hashtabellen I Algorithmen und Komplexität Abstrakte Datentypen : Dictionary Dictionary: (auch: Maps, assoziative

Mehr

Lösungsvorschläge. zu den Aufgaben im Kapitel 4

Lösungsvorschläge. zu den Aufgaben im Kapitel 4 Lösungsvorschläge zu den Aufgaben im Kapitel 4 Aufgabe 4.1: Der KNP-Algorithmus kann verbessert werden, wenn in der Funktion nexttabelle die Zuweisung next[tabindex] = ruecksprung; auf die etwas differenziertere

Mehr

Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort.

Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Name: Seite 2 Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Aufgabe 1 (8 Punkte) 1. Wie viele negative Zahlen (ohne 0) lassen sich im 4-Bit-Zweierkomplement darstellen?

Mehr

Beispiele für Ausdrücke. Der imperative Kern. Der imperative Kern. Imperativer Kern - Kontrollstrukturen. Deklarationen mit Initialisierung

Beispiele für Ausdrücke. Der imperative Kern. Der imperative Kern. Imperativer Kern - Kontrollstrukturen. Deklarationen mit Initialisierung Beispiele für Ausdrücke Der imperative Kern Deklarationen mit Initialisierung Variablendeklarationen int i = 10; int j = 15; Beispiele für Ausdrücke i+j i++ i & j i j [] [static]

Mehr

Musterlösungen zur Klausur Informatik 3

Musterlösungen zur Klausur Informatik 3 Musterlösungen zur Klausur Informatik 3 Justus-Liebig-Universität Gießen Wintersemester 2003/2004 Aufgabe 1 (6 Punkte) Man kreuze bei den folgenden Deklarationen und Definitionen jeweils an, ob sie aus

Mehr

Klausur Software-Entwicklung September 00

Klausur Software-Entwicklung September 00 Aufgabe 1: Wahrheitstafeln ausgeben (ca. 8 Punkte) Matrikelnr : Ergänzen Sie in folgendem Programm, eine rekursive Funktion, die eine Boole'sche Wahrheitstafel für N Variablen ausgibt. Die Zahl N soll

Mehr

Prof. Dr. Uwe Schmidt. 21.August Aufgaben zur Klausur Objektorientierte Programmierung im SS 2007 (BInf 211, BTInf 211, BMInf 211, BWInf 211)

Prof. Dr. Uwe Schmidt. 21.August Aufgaben zur Klausur Objektorientierte Programmierung im SS 2007 (BInf 211, BTInf 211, BMInf 211, BWInf 211) Prof. Dr. Uwe Schmidt 21.August 2007 Aufgaben zur Klausur Objektorientierte Programmierung im SS 2007 (BInf 211, BTInf 211, BMInf 211, BWInf 211) Zeit: 75 Minuten erlaubte Hilfsmittel: keine Bitte tragen

Mehr

Informatik II. /* c) Baumstruktur in einen String schreiben und zurueckgeben */ public String tostring() {

Informatik II. /* c) Baumstruktur in einen String schreiben und zurueckgeben */ public String tostring() { Universität Augsburg, Institut für Informatik Sommersemester 2006 Prof. Dr. Werner Kießling 08. Juni. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Aufgabe 1: Cloneable Tree.java Informatik II

Mehr

Musterlösung Stand: 5. Februar 2009

Musterlösung Stand: 5. Februar 2009 Fakultät IV Elektrotechnik/Informatik Probeklausur Einführung in die Informatik I Hinweis: Diese Probeklausur ist eine kleine Aufgabensammlung, die etwa dem Schwierigkeitsgrad der Teilleistung TL 2 (Programmiertest)

Mehr

Peg-Solitaire. Florian Ehmke. 29. März / 28

Peg-Solitaire. Florian Ehmke. 29. März / 28 Peg-Solitaire Florian Ehmke 29. März 2011 1 / 28 Gliederung Einleitung Aufgabenstellung Design und Implementierung Ergebnisse Probleme / Todo 2 / 28 Einleitung Das Spiel - Fakten Peg-33 33 Löcher, 32 Steine

Mehr

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten Gliederung Zusammenhang von Graphen Stark Zusammenhängend K-fach Zusammenhängend Brücken Definition Algorithmus zum Finden von Brücken Anwendung Zusammenhangskomponente Definition Wichtige Aussagen und

Mehr

Thomas Gewering Benjamin Koch Dominik Lüke. (geschachtelte Schleifen)

Thomas Gewering Benjamin Koch Dominik Lüke. (geschachtelte Schleifen) Technische Informatik für Ingenieure WS 2010/2011 Musterlösung Übungsblatt Nr. 6 2. November 2010 Übungsgruppenleiter: Matthias Fischer Mouns Almarrani Rafał Dorociak Michael Feldmann Thomas Gewering Benjamin

Mehr

Graphen. Leonhard Euler ( )

Graphen. Leonhard Euler ( ) Graphen Leonhard Euler (1707-1783) 2 Graph Ein Graph besteht aus Knoten (nodes, vertices) die durch Kanten (edges) miteinander verbunden sind. 3 Nachbarschaftsbeziehungen Zwei Knoten heissen adjazent (adjacent),

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 16/17. Kapitel 14. Bäume. Bäume 1

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 16/17. Kapitel 14. Bäume. Bäume 1 Kapitel 14 Bäume Bäume 1 Ziele Den Begriff des Baums in der Informatik kennenlernen Bäume als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf Bäumen verstehen und schreiben können

Mehr

1. Aufgabe (6 Punkte): Java-Programmierung (Arrays)

1. Aufgabe (6 Punkte): Java-Programmierung (Arrays) Der folgende Mitschrieb wurde von Prof. Alexa am 16.07.2008 als Probeklausur in der MPGI2 Vorlesung gezeigt und wurde auf http://www.basicinside.de/2008/node/94 veröffentlicht. Die Abschrift ist unter

Mehr

Studentische Lösung zum Übungsblatt Nr. 7

Studentische Lösung zum Übungsblatt Nr. 7 Studentische Lösung zum Übungsblatt Nr. 7 Aufgabe 1) Dynamische Warteschlange public class UltimateOrderQueue private Order[] inhalt; private int hinten; // zeigt auf erstes freies Element private int

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java Vorlesung vom 18.4.07, Grundlagen Übersicht 1 Kommentare 2 Bezeichner für Klassen, Methoden, Variablen 3 White Space Zeichen 4 Wortsymbole 5 Interpunktionszeichen 6 Operatoren 7 import Anweisungen 8 Form

Mehr

188.154 Einführung in die Programmierung Vorlesungsprüfung

188.154 Einführung in die Programmierung Vorlesungsprüfung Matrikelnummer Studienkennzahl Name Vorname 188.154 Einführung in die Programmierung Vorlesungsprüfung Donnerstag, 27.1.2005, 18:15 Uhr EI 7 Arbeitszeit: 60 min - max. 50 Punkte erreichbar - Unterlagen

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Wdhlg.: Dijkstra-Algorithmus I Bestimmung der

Mehr

Tutoraufgabe 1 (2 3 4 Bäume):

Tutoraufgabe 1 (2 3 4 Bäume): Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Lösung - Übung F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe ( Bäume): a) Löschen Sie den Wert aus dem folgenden Baum und geben Sie den dabei

Mehr

Programmieren II. Innere Klassen. Heusch 10, Ratz 5.2.1, Institut für Angewandte Informatik

Programmieren II. Innere Klassen. Heusch 10, Ratz 5.2.1, Institut für Angewandte Informatik Programmieren II Innere Klassen Heusch 10, 13.10 Ratz 5.2.1, 9.8 KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Innere Klassen Bisher kennen wir nur Klassen, die entweder zusammen

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 6. Klassische Suche: Datenstrukturen für Suchalgorithmen Malte Helmert Universität Basel 7. März 2014 Klassische Suche: Überblick Kapitelüberblick klassische Suche:

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

Praktikum Informatik II Prof. Dr. Martin Trauth, Dr. Michael Männel

Praktikum Informatik II Prof. Dr. Martin Trauth, Dr. Michael Männel Praktikum Informatik II Prof. Dr. Martin Trauth, Dr. Michael Männel FB Physikalische Technik Musterlösungen Teil 4 Aufgabe 1 package teil4; import javax.swing.*; public class Ei { int haltung, ident; String

Mehr

Informatik II Musterlösung

Informatik II Musterlösung Ludwig-Maximilians-Universität München SS 2006 Institut für Informatik Übungsblatt 4 Prof. Dr. M. Wirsing, M. Hammer, A. Rauschmayer Informatik II Musterlösung Zu jeder Aufgabe ist eine Datei abzugeben,

Mehr

Kap. 6.3: Traversieren von Graphen Kap. 6.4: Elementare Graphalgorithmen

Kap. 6.3: Traversieren von Graphen Kap. 6.4: Elementare Graphalgorithmen Kap. 6.3: Traversieren von Graphen Kap. 6.4: Elementare Graphalgorithmen Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 19. VO DAP2 SS 2008 19. Juni 2008 1

Mehr

6 Speicherorganisation

6 Speicherorganisation Der Speicher des Programms ist in verschiedene Speicherbereiche untergliedert Speicherbereiche, die den eigentlichen Programmcode und den Code der Laufzeitbibliothek enthalten; einen Speicherbereich für

Mehr