Lösungen zu Blatt 8 Spezielle stetige und diskrete Verteilungen Biostatistik BMT

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lösungen zu Blatt 8 Spezielle stetige und diskrete Verteilungen Biostatistik BMT"

Transkript

1 Zu Aufgab 0) Folgnd Mssdatn wurdn von inr sttign Glichvrtilung R([a,b]) rhobn: 3,5,4, 5, 4, 3, 3, 5 Gbn Si in Schätzung für di Grnzn a und b nach dr Momntnmthod an! sih Vorlsung. Zu Aufgab ) Es wurd übr in Vrkhrsmssung di Daur von 30 Tlfonatn (in Minutn) gmssn. Passn Si in gignt Vrtilung an di Datn an! Sih Vorlsung 4,43 4,64 4,70 5,43 6,5 7,06 7,7 7,36 7,38 8,66 8,9 8,98 9,04 9,05 9,05 9,7 9,0 9,36 9,44 9,89 9,96 0,04,75,09, 3,04 4,09 4,8 4,55 4,90 Zu Aufgab ) Si ~ N(0,). Skizzirn und brchnn Si folgnd Wahrschinlichkitn untr Vrwndung dr Tabll dr Standardnormalvrtilung:: a) > -4), b) -<<), c) - <) d) > / > 0) ) Bi wlchm Wrt x gilt: < x) 0,9? a) > -4) - Φ(-4) - 0 b) -<<) Φ()-Φ(-) 0,843 (-0,977) 0,885 c) - <) - < - < ) 0 < < ) Φ()-Φ(0) 0,977 0,5 0,477 0 < < ) 0,477 0,477 d) > / > 0) 0, 9544 > 0) Φ(0) 0,5 ) Bi wlchm Wrt x gilt: < x) Φ(x) 0,9? Antwort: Wir lsn di Tabll von innn nach außn: x,8

2 Zu Aufgab 3) Si ~ N(0,9). Skizzirn und brchnn Si untr Vrwndung dr Transformation F(x) folgnd Wahrschinlichkitn: x µ Φ σ a) 8<<0), b) -0 <3) c) di bdingt Wahrschinlichkit: > 3 / >0) (Skizz von Wahrschinlichkitn: Als Fläch untr dr ntsprchndn Dichtfunktion) a) 8<<0) Φ Φ( 0) Φ( 0,67) 3 3 0,5 ( Φ 0,67 ) 0,5 + Φ(0,67) 0,7486 0,5 0, ( ) 486, b) -0 <3) 0 3 < 0 + 3) Φ Φ 3 3 Φ ( ) *0,843 0, 686 ( ) Φ( ) c) > 3 / > 0) > 3 > 0) > 0) > 3) > 0) F(3) F(0) ( ) Φ Φ(0) 0,843 0,374 0,5 Skizzn: Sih Vorlsung. Zu Aufgab 4) Si ~ N(µ,σ ) in blibig normalvrtilt Zufallsgröß mit dn Paramtrn µ und σ Brchnn Si di Wahrschinlichkit dr -, - und 3- σ - Brich, d.h.: P ( µ σ < < µ + σ ), P ( µ σ < < µ + σ ) und P ( µ 3σ < < µ + 3σ ) und wisn Si nach, dass dis Wahrschinlichkitn nicht von µ und σ abhängn, d.h. für all µ und σ idntisch sind!

3 ~ N( µ, σ ) µ 3σ µ σ µ σ µ µ + σ µ + σ µ + 3σ -σ-brich -σ-brich 3-σ-Brich Satz: Si ~ N(, ).) µ σ µ σ).) µ σ µ σ) 3.) µ σ µ σ) µ σ. Dann gilt: + 0, , , 998 Bwis ds Satzs: ( µ σ µ + σ) F( µ + iσ ) F( µ iσ ) P i i µ / + iσ / µ / µ / iσ / µ / Φ Φ σ/ σ/ Φ i Φ i ( ) ( ) Φ( i ),i,, 3 Nun gilt:.) ( ) µ σ µ σ ).) ( ) µ σ µ σ ) 3.) ( ) µ σ µ σ ) Φ 0, , 843 0, 68 Φ 0, , 977 0, 955 Φ 3 0, , , 998 q..d Bdutung: Ca. 3 allr bobachtbarn Wrt inr normalvrtiltn Zufallsgröß lign im - σ-brich und fast all bobachttn Wrt von lign im 3-σ-Brich. 3

4 Zu Aufgab 5) Di zufällig Übrtragungszit T von Bildsignaln durch inn Kanal K si normalvrtilt mit dm Erwartungswrt µ50 ms und dr σ 4ms, d.h. s glt T~N(50, 4). a) In wlchm Brich lign nahzu all Zitn? D.h. brchnn Si dn 3-σ-Brich! b) Mit wlchr Wahrschinlichkit ligt di Übrtragungszit zwischn 4 und 53 ms? c) Gbn Si inn symmtrischn Brich [50-c,50+c] ms um di mittlr Übrtragungszit an, in dm 90 % allr Zitn lign! d) Wi groß ist di Wahrschinlichkit dafür, dass bi 5 (stochastisch unabhängign) Übrtragungn bi mindstns inr di Übrtragungszit mhr als 50 ms bträgt? Zu a) σ 4, Fast all Datn lign im 3-σ-Brich [50 6, ][44ms, 56mms]. Zu b) P ( 4 < T < 53) F(53) F(4) Φ Φ(,5 ) Φ( 4) 0, ,9339 Zu c) Gsucht ist c so dass gilt: P ( 50 c < T < 50 + c) 0, 9 Wir lösn dis Glichung infach nach c auf: P ( 50 c < T < 50 + c) 0,9 F(50 + c) F(50 c) c c 50 Φ 0.9 c c Φ 0.9 Symmtri dr Normalvrtilung c c c Φ φ Φ 0.9 c Φ,9 / 0,95 c,645 Tabll c 3,9ms Antwort: 90% allr Zitn lign im Intrvall [46.7 ms, 53.9ms] 4

5 Zu d) Si di zufällig Anzahl von 5 unabhängign Übrtragungn, bi dnn di Übrtragungszit T mhr als 50ms bträgt. Gsucht ist ). Wir btrachtn folgnd Erigniss: Ai Di Übrtragungszit T dr i.tn Übrtragung ist 50 ms Damit ist ) < ) 0) A A A3 A4 A5) Unabhängigkit A) A) A3) A4) A5) Witrhin gilt: Ai) T 50) F(50) Φ(0) 0,5 für all i,,3,4,5 und folglich rhaltn wir: ) A) A) A3) A4) A5) 0, , Zu Aufgab 6) Di zufällig Zit T (Stundn), di bis zum Abbau inr bstimmtn Drog (z.b. in Glas Win, 0. cl) im mnschlichn Blut vrght, si durch folgnd Dichtfunktion charaktrisirt: f(x) { 0, falls x 0, x, falls x > 0 a) Skizzirn Si di Dichtfunktion! b) Brchnn Si di Vrtilungsfunktion F(x) und skizzirn Si dis! c) Brchnn Si di rwartt Abbauzit E und di Varianz Var(). d) In wivil Proznt allr Fäll daurt dr Abbau längr als Stundn? Skizzirn Si dis Prozntzahl als Fläch untr dr Dicht! ) Wlch Abbauzit übrschritn 0 % dr Prsonn? Skizzirn Si disn Wrt in dr Grafik dr Dichtfunktion! f) In wivil % allr Fäll, in dnn di Abbauzit brits Stund übrschritt, übrschritt si auch Stundn? 5

6 Zu a) Sih Vorlsung Zu b) u x x x x x F x f u du dx ( ) ( ) für x 0 und 0 0 F(x) 0 für x < 0. Zu c) ist xponntialvrtilt mit dm Paramtr λ ½ pro h. Aus Aufgab 4 rgibt sich dann E h und Var() 4 h. Zu c) In wivil Proznt allr Fäll daurt dr Abbau längr als Stundn? Gs. > ) >) - ) -F() - ( ) 0,37 37 % Zu d) Wlch Abbauzit übrschritn 0 % dr Prsonn? Gsucht ist di Zit t für di gilt: t) 0,9 t t t) F( t) 0,9 0, t ln(0,) t ln(0,) 4,6 D..h. Nur 0 % allr Prsonn übrschritn di Abbauzit von 4,6 Stundn, 90% nicht. Zu f) In wivil % allr Fäll, in dnn di Abbauzit brits Stund übrschritt, übrschritt si auch Stundn? Gs.: Bdingt Wahrschinlichkit > / >) > > ) > ) F() > / > ) 0, 6 > ) > ) F() Antwort: In 6% allr Fäll, in dnn di Abbauzit brits Stund übrschritt, übrschritt si auch Stundn. 6

7 Zu Aufgab 7) Si in xponntialvrtilt Zufallsgröß mit dm Intnsitätsparamtr λ. bschrib in zufällig Lbnsdaur bzw. Daur ins Vorgangs. Zu a) Zign Si di sognannt Vrgssns- bzw. Nichtaltrungsignschaft dr Exponntialvrtilung: >s+t/ >s) >t) di bsagt, das di Wahrschinlichkit, in Zitintrvall dr Läng t zu übrlbn unabhängig davon ist, ob di Zufallsgröß brits di Zit s übrlbt hat odr ob di Lbnsdaur sobn bginnt. >s+t/ >s) λ ( s+ t) s < > s + t) > s + t) F( s + t) λt F( t) > t) λs > s) > s) F( s) q..d Zu b) Wi groß ist di Wahrschinlichkit dafür, dass > E ist? λ >E) -F(E) -F(/λ) -( λ ) 0, 37 Zu c) Angnommn, di Patintn trffn bi inm Arzt im Schnitt all 4 Minutn abr mit xponntialvrtiltr Zwischnzit TZ~E(/4 pro Minut) in und di Daur dr Untrsuchungszit TU bim Arzt bträgt im Schnitt auch 4 Minutn, ist abr normalvrtilt: TU~N(4, ). Warum wird di Wartschlang mit dr Zit immr längr, obwohl durchschnittlich Zwischnankunftszit dr Patintn und Untrsuchungszit ds Arzts idntisch 4 Minutn sind? Wil in 63% allr Fäll (wgn dr Exponntialvrtilung) di Zwischnankunftszit TZ klinr ist als 4 Minutn, währnd dr Artzt (wgn dr Normalvrtilung) nur in 50 % allr Fäll schnllr ist als 4 Minutn. D.h., dr Arzt kommt nicht hintrhr. 7

8 Zu Aufgab 8) Si di zufällig Anzahl von Schsn bim 4 malign Würfln. a) Wlch Vrtilung bsitzt? b) Mit wivil Schsn kann man im Schnitt bi inm Wurf mit 4 Würfln rchnn? c) Wi groß ist di Wahrschinlichkit dafür, bim Würfln mit 4 Würfln c) gnau in Schs c) höchstns in Schs zu würfln? a) ~ B(n4, p/6) ( ist Binomialvrtilt) b) E np /3 0, c) ) c) ) 0 ) + ) Zu Aufgab 9) Si di zufällig Anzahl von Würflvrsuchn mit inm Würfl, bis zum rstn mal in 6 gwürflt wird. a) Wlch Vrtilung bsitzt? b) Wi oft muss man mit inm Würfl im Schnitt würfln, bis zum rstn mal in 6 gwürflt wird? c) Wi groß ist di Wahrschinlichkit dafür, dass rst im 3. Wurf in Schs gwürflt wird? a) ist gomtrisch vrtilt mit dm Paramtr p /6 b) E /p 6 c) 3)

Normalverteilung als Näherung der Binomialverteilung

Normalverteilung als Näherung der Binomialverteilung V Normalvrtilung als Nährung dr Binomialvrtilung Ggbn ist in nach B(n,p) vrtilt Zufallsgröß mit großm n. Sthn di Wahrschinlichkitn für das btrffnd n nicht in dr Tabll (z.b. wil n zu groß ist), dann ist

Mehr

Heizlastberechnung Seite 1 von 5. Erläuterung der Tabellenspalten in den Heizlast-Tabellen nach DIN EN 12831

Heizlastberechnung Seite 1 von 5. Erläuterung der Tabellenspalten in den Heizlast-Tabellen nach DIN EN 12831 Hizlastbrchnung Sit 1 von 5 Erläutrung dr Tabllnspaltn in dn Hizlast-Tablln nach DIN EN 12831 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 3x4x5 6-7 12 + 13 8 x 11 x 14 15 x Θ Orintirung Bautil Anzahl Brit Läng

Mehr

www.math-aufgabn.com Abiturprüfung Mathmatik 7 Badn-Württmbrg (ohn CAS) Pflichttil - Aufgabn Aufgab : ( VP) Bildn Si di rst Ablitung dr Funktion f mit f () + ( sin ). Aufgab : ( VP) ln Brchnn Si das Intgral

Mehr

Übersicht EUROWINGS VERSICHERUNGSSCHUTZ. Leistungsbestandteile im Überblick. Hinweise im Schadenfall:

Übersicht EUROWINGS VERSICHERUNGSSCHUTZ. Leistungsbestandteile im Überblick. Hinweise im Schadenfall: Übrsicht EUROWINGS VERSICHERUNGSSCHUTZ Si intrssirn sich für in HansMrkur Risvrsichrung in gut Wahl! Listungsbstandtil im Übrblick BasicPaktschutz Bstandtil Ihrr Risvrsichrung: BasicSmartRücktrittsschutz

Mehr

Übungsaufgaben zu Exponentialfunktionen. Übungsaufgaben zu Exponentialfunktionen. Aufgabe 1:

Übungsaufgaben zu Exponentialfunktionen. Übungsaufgaben zu Exponentialfunktionen. Aufgabe 1: Bruskollg Marinschul Lippstadt Schul dr Skundarstu II mit gymnasialr Obrstu - staatlich anrkannt - Übungsaugabn zu Eponntialunktionn Schuljahr /7 Kurs: Mathmatik AHR. Kurslhrr: Gödd / Langnbach Bruskollg

Mehr

Durchführungsbestimmungen zum Großen Wiener Faschingsumzug 2016

Durchführungsbestimmungen zum Großen Wiener Faschingsumzug 2016 An l äs s l i c h 2 5 0J a h r Wi n rpr a t r! Großr Faschingsumzugs 2016 im Winr Pratr Lib Frund ds Großn Faschingsumzugs 2016 im Winr Pratr! Es ist mir in bsondr Frud, Euch di Ausschribungsuntrlagn zum

Mehr

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg Pflichttilaufgabn zu Stammfunktion, Intgral Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com August 5 Übungsaufgabn: Ü: Gbn Si in Stammfunktion f mit 5 f() = +

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik nalysis Listungskurs Zntral schriftlich biturprüfungn im Fach Mathmatik ufgab Prispolitik Ein Industriuntrnhmn, das nur in Produkt hrstllt, ntnimmt sinr tribsbuchhaltung (ostn- und Listungsrchnung) folgnd

Mehr

[Arbeitsblatt Trainingszonen]

[Arbeitsblatt Trainingszonen] [Arbitsblatt Trainingszonn] H r z f r q u n z 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 RHF spazirn walkn lockrs zügigs MHF Jogging Jogging Gsundhits -brich Rohdatn

Mehr

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg

Pflichtteilaufgaben zu Stammfunktion, Integral. Baden-Württemberg Pflichttilaufgabn zu Stammfunktion, Intgral Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com Sptmbr 6 Übungsaufgabn: Ü: Gbn Si in Stammfunktion f mit 5 f() = +

Mehr

Erfolg im Mathe-Abi. H. Gruber, R. Neumann. Prüfungsaufgaben Hessen

Erfolg im Mathe-Abi. H. Gruber, R. Neumann. Prüfungsaufgaben Hessen H. Grubr, R. Numann Erfolg im Math-Abi Prüfungsaufgabn Hssn Übungsbuch für dn Listungskurs mit Tipps und Lösungn - plus Aufgabn für GTR und CAS Inhaltsvrzichnis Inhaltsvrzichnis Analysis 1 Ganzrational

Mehr

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien Vorlsung 0 Spnnungsnrgi dr Cyclolkn Wi in dr ltztn Vorlsung bsprochn, rgibt di Diffrnz zwischn dn Stndrdbildungsnthlpin dr Cyclolkn C n n und dm n-fchn Bitrg für di C - Gruppn [n (-0.) kj mol - ] di Ringspnnung.

Mehr

Makroökonomie I/Grundlagen der Makroökonomie

Makroökonomie I/Grundlagen der Makroökonomie Makroökonomi I/Grundzüg dr Makroökonomi Pag 1 1 Makroökonomi I/Grundlagn dr Makroökonomi Kapitl 14 Erwartungn: Di Grundlagn Güntr W. Bck 1 Makroökonomi I/Grundzüg dr Makroökonomi Pag 2 2 Übrblick Nominal-

Mehr

Kondensator an Gleichspannung

Kondensator an Gleichspannung Musrlösung Übungsbla Elkrochnisch Grundlagn, WS / Musrlösung Übungsbla 2 Prof. aiingr / ammr sprchung: 6..2 ufgab Spul an Glichspannung Ggbn is di Schalung nach bb. -. Di Spannung bräg V. Di Spul ha di

Mehr

c) f (t) = 4. Berechnen Sie den exakten Wert des bestimmten Integrals! Runden Sie dann auf Hundertstel! 1 x 2 eine Stammfunktion von

c) f (t) = 4. Berechnen Sie den exakten Wert des bestimmten Integrals! Runden Sie dann auf Hundertstel! 1 x 2 eine Stammfunktion von Eponntialfunktionn. Vrinfachn Si so wit wi möglich! a) ln.5 b) 4 ln c). Bildn Si di rst Ablitung! Vrinfachn ist nicht rfordrlich. t a) f () = - + 3 b) f () = c) f (t) = + t 3. Ermittln Si das unbstimmt

Mehr

chemisches Fortgeschrittenenpraktikum SS 2000

chemisches Fortgeschrittenenpraktikum SS 2000 Physikalisch-chmischs chmischs Fortgschrittnnpraktikum SS Vrsuch F- 3: UV/VIS-Spktroskopi Vrsuchstag: 7.6. Svn Entrlin Grupp 3 18 97 36 174 Vrsuch F-3: UV/VIS-Spktroskopi PC-Fortgschrittnnpraktikum Glidrung:

Mehr

Auswertung P2-60 Transistor- und Operationsverstärker

Auswertung P2-60 Transistor- und Operationsverstärker Auswrtung P2-60 Trnsistor- und Oprtionsrstärkr Michl Prim & Tobis Volknndt 26. Juni 2006 Aufgb 1.1 Einstufigr Trnsistorrstärkr Wir butn di Schltung gmäß Bild 1 uf, wobi wir dn 4,7µ F Kondnstor, sttt ds

Mehr

Erfolg im Mathe-Abi. H. Gruber, G. Kowalski, R. Neumann. Prüfungsaufgaben Nordrhein-Westfalen

Erfolg im Mathe-Abi. H. Gruber, G. Kowalski, R. Neumann. Prüfungsaufgaben Nordrhein-Westfalen H. Grubr, G. Kowalski, R. Numann Erfolg im Math-Abi Prüfungsaufgabn Nordrhin-Wstfaln Übungsbuch für dn Listungskurs mit Tipps und Lösungn - plus Aufgabn für CAS Inhaltsvrzichnis Inhaltsvrzichnis Analysis

Mehr

Vorbereitung. Geometrische Optik. Stefan Schierle. Versuchsdatum: 22. November 2011

Vorbereitung. Geometrische Optik. Stefan Schierle. Versuchsdatum: 22. November 2011 Vorbritung Gomtrisch Optik Stfan Schirl Vrsuchsdatum: 22. Novmbr 20 Inhaltsvrzichnis Einführung 2. Wllnnatur ds Lichts................................. 2.2 Vrschidn Linsn..................................

Mehr

19. Bauteilsicherheit

19. Bauteilsicherheit 9. Bautilsichrhit Ein wsntlich Aufgab dr Ingniurpraxis ist s, Bautil, di infolg dr äußrn Blastung inm allgminn Spannungs- und Vrformungszustand untrlign, so zu dimnsionirn, dass s währnd dr gsamtn Btribszit

Mehr

VERGLEICH VON QUERKRÄFTEN BEI 2D- UND 3D- FE- MODELLIERUNG EINES MAGNETSYSTEMS

VERGLEICH VON QUERKRÄFTEN BEI 2D- UND 3D- FE- MODELLIERUNG EINES MAGNETSYSTEMS Vrglich von Qurkrätn bi 2D- und 3D- FE-Modllirung in Magntytm 1 VERGLEICH VON QUERKRÄFTEN BEI 2D- UND 3D- FE- MODELLIERUNG EINES MAGNETSYSTEMS Z. Shi Für vil vom IMAB ntwicklt Antribytm wrdn zwckmäßig

Mehr

Aufg.-Nr.: 2 Bereich: e-funktion Kursart: GK CAS

Aufg.-Nr.: 2 Bereich: e-funktion Kursart: GK CAS Aufg.-Nr.: Brich: -Funktion Kursart: GK CAS Forllnzucht In inr Forllnzuchtanstalt im Saurland wurd bi glichaltrign Forlln di durchschnittlich Läng rmittlt. Di Tabll zigt inn Til dr gwonnnn Datn: Altr (in

Mehr

K b) [2P] Lösungsvorschlag 1: f '(x) 3 e 2 3x e x e 3x 5 e. (Produktregel und bei der Ableitung der e-funktion Kettenregel anwenden)

K b) [2P] Lösungsvorschlag 1: f '(x) 3 e 2 3x e x e 3x 5 e. (Produktregel und bei der Ableitung der e-funktion Kettenregel anwenden) Mathmati Lösung Klausur Nr. K1 10.1.1 Abürzungn bi dr Korrtur: S: Schribfhlr R: Rchnfhlr D: Dnfhlr Mist: Dr Lösungswg ist nicht brauchbar (falsch). Es ist dann oft sinnvoll, mit mir darübr zu rdn. Gnrll

Mehr

TI II. Sommersemester 2008 Prof. Dr. Mesut Güneş 5. Exercise with Solutions

TI II. Sommersemester 2008 Prof. Dr. Mesut Güneş 5. Exercise with Solutions Distributd mbddd 5. Exrcis with olutions Problm 1: Glitkomma-Darstllung (2+2+2+2+2+2=12) Ghn i bi dr binärn Glitkommadarstllung von 2-Byt großn Zahln aus. Dr Charaktristik sthn 4 Bit zur Vrfügung, dr Mantiss

Mehr

Lösungen zu Übungsblatt 5

Lösungen zu Übungsblatt 5 Lösungn u Übungsblatt 5 Zu Aufgab Stlln Si folgnd komplxn Zahln als Zigr im kartsischn Koordinatnsystm dar! Gbn Si Raltil, Imaginärtil und dn Btrag an! a + b 5 c Grafisch Darstllung als komplx Zigr: Raltil,

Mehr

( ( ) ( ) ) ( 1 2. ( x) LÖSUNGEN. der Übungsaufgaben II zur Klausur Nr.3 (Exponentialfunktionen) 4. Schnittpunkt mit der y-achse.

( ( ) ( ) ) ( 1 2. ( x) LÖSUNGEN. der Übungsaufgaben II zur Klausur Nr.3 (Exponentialfunktionen) 4. Schnittpunkt mit der y-achse. Brufskollg Marinschul Lippstadt Schuljahr 6/7 Kurs: Mathmatik AHR. Brufskollg Marinschul Lippstadt Schuljahr 6/7 Kurs: Mathmatik AHR. LÖSUNGEN dr Übungsaufgabn II zur Klausur Nr.3 (Eponntialfunktionn Aufgab

Mehr

D-CHAB Grundlagen der Mathematik I (Analysis A) HS 2014 Theo Bühler. 1. Berechne die Ableitung der Funktion, wenn diese existiert.

D-CHAB Grundlagen der Mathematik I (Analysis A) HS 2014 Theo Bühler. 1. Berechne die Ableitung der Funktion, wenn diese existiert. D-CHAB Grundlagn dr Mathmatik I Analysis A HS 0 Tho Bühlr Lösung 3 Brchn di Ablitung dr Funktion, wnn dis istirt a ++ Wir vrwndn widrholt di Produkt-, Quotintn- und Kttnrgl für di Ablitung Vorlsung und

Mehr

Fachhochschule Koblenz Blatt 1 von 7 Name Fachbereich Maschinenbau. Prof. Dr. W. Kröber

Fachhochschule Koblenz Blatt 1 von 7 Name Fachbereich Maschinenbau. Prof. Dr. W. Kröber Fachhochschul Koblnz Blatt 1 von 7 Nam Fachbrich Maschinnbau Tchnisch Mchanik II SS 05 Matr.-Nr. Prof. Dr.. Kröbr Bitt lösn Si jd Aufgab auf dm vorgshnn Blatt. Bschriftn Si möglichst nur di Vordrsitn.

Mehr

Informationstechnik Lösung SS 2007

Informationstechnik Lösung SS 2007 Prüfung: Informationstchnik MT 7D51 Trmin: Mittwoch, 18. Juli 2007 8:30 10:30 Prüfr: Prof. J. Waltr Hilfsmittl: blibig / kin Intrnt / kin WLAN Nam: Vornam: Projkt: Stick: PC: bitt kin rot Farb vrwndn (nicht

Mehr

In der Mathematik werden Wachstumsprozesse graphisch durch steigende Graphen dargestellt. Diese können linear oder kurvenförmig verlaufen.

In der Mathematik werden Wachstumsprozesse graphisch durch steigende Graphen dargestellt. Diese können linear oder kurvenförmig verlaufen. Vorbmrkungn Wachstum und Zrall (Jochn Pllatz 2013) Das Thma Eponntialunktionn ist in ignständigs Gbit in dr Mathmatik und wird in dr Schul in vrschidnn Stun untrrichtt. Einach Eponntialunktionn (Kapitl

Mehr

SigmaDeWe Risikomanagement

SigmaDeWe Risikomanagement In Märktn mit ngativm Langzittrnd (Bärnmärkt) sind Invstmnts, di mit dm Markt ghn (wi z.b. Aktin, Bonuszrtifikat und Discountzrtifikat), in schlcht Anlagform. Ganz andrs Invstmnts, di sich invrs zum Markt

Mehr

EBA SERIE 1/2 INFORMATION KOMMUNIKATION IKA ADMINISTRATION SCHULISCHES QUALIFIKATIONSVERFAHREN SCHLUSSPRÜFUNG 2013 BÜROASSISTENTIN UND BÜROASSISTENT

EBA SERIE 1/2 INFORMATION KOMMUNIKATION IKA ADMINISTRATION SCHULISCHES QUALIFIKATIONSVERFAHREN SCHLUSSPRÜFUNG 2013 BÜROASSISTENTIN UND BÜROASSISTENT SCHLUSSPRÜFUNG 013 BÜROASSISTENTIN UND BÜROASSISTENT SCHULISCHES QUALIFIKATIONSVERFAHREN 1 EBA INFORMATION KOMMUNIKATION IKA ADMINISTRATION SERIE 1/ Kandidatnnummr Nam Vornam Datum dr Prüfung PUNKTE UND

Mehr

Makroökonomie I/Grundlagen der Makroökonomie

Makroökonomie I/Grundlagen der Makroökonomie Makroökonomi I/Grundzüg dr Makroökonomi Pag Makroökonomi I/Grundlagn dr Makroökonomi Kapitl 5 Finanzmärkt und Erwartungn Güntr W. Bck Makroökonomi I/Grundzüg dr Makroökonomi Pag 2 2 Übrblick Kurs und Rnditn

Mehr

Analysis III Winter 2016/17 Prof. Dr. George Marinescu/Dr. Frank Lapp / M.Sc. Hendrik Herrmann Serie 10 mit Musterlösungen

Analysis III Winter 2016/17 Prof. Dr. George Marinescu/Dr. Frank Lapp / M.Sc. Hendrik Herrmann Serie 10 mit Musterlösungen Analyi III Wintr 6/7 Prof. Dr. Gorg Marincu/Dr. Frank Lapp / M.Sc. Hndrik Hrrmann Sri mit Mutrlöungn Aufgab Zign Si, da da Intgral in α d 4 Punkt für α und α wdr al unigntlich Rimann-Intgral noch al Lbgu

Mehr

Lösungsvorschläge Klausur Nr.3 K

Lösungsvorschläge Klausur Nr.3 K Lösungsvorschläg Klausur Nr. K..6 Pflichttil (twa 0 min) Ohn Taschnrchnr und ohn Formlsammlung (Disr Til muss mit dn Lösungn abggbn sin, h dr GTR und di Formalsammlung vrwndt wrdn dürfn.) Aufgab : [P]

Mehr

5 Grenzwertregel von Bernoulli

5 Grenzwertregel von Bernoulli Grnzwrtrgl von Brnoulli und d L Hospital Sit 5-5 Grnzwrtrgl von Brnoulli und d L Hospital Oft muss man dn Grnzwrt inr Funktion brchnn Ist di Funktion in Quotint zwir Funktionn, so kann di Grnzwrtbildung

Mehr

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe

Mehr

Quick-Guide für das Aktienregister

Quick-Guide für das Aktienregister Quick-Guid für das Aktinrgistr pord by i ag, spritnbach sitzrland.i.ch/aktinrgistr Quick-Guid Sit 2 von 7 So stign Si in Nach dm Si auf dr Hompag von.aktinrgistr.li auf das Flash-Intro gklickt habn, rschint

Mehr

Kodierungstipps. Frage 4: Stimmst Du der Aussage zu: Kinder verbringen zu viel Zeit im Internet [] ja [] nein

Kodierungstipps. Frage 4: Stimmst Du der Aussage zu: Kinder verbringen zu viel Zeit im Internet [] ja [] nein Ihr habt inn bogn gstaltt, fotokopirt und untrs Volk gbracht. Jtzt stht Ihr da, habt inn Stapl bögn, und fragt Euch: Wi soll daraus inr schlau wrdn? Um bögn intrprtirn zu könnn, ist s sinnvoll, all Datn

Mehr

5.5. Konkrete Abituraufgaben zu Exponentialfunktionen

5.5. Konkrete Abituraufgaben zu Exponentialfunktionen 5.5. Konkr Abiuraufgabn zu Exponnialfunkionn Aufgab : Kurvnunrsuchung, Ingraion () Übr in Vnil kann das Wassrvolumn in inm Wassrbhälr grgl wrdn. Di Särk ds Wassrsroms durch diss Vnil is ggbn durch in Funkion

Mehr

Anpassung einer Funktion an Messwerte

Anpassung einer Funktion an Messwerte Anpssung inr Funktion n Msswrt Di Mthod dr klinstn Fhlrqudrt Crl Fridrich Guß (777-855 Brnd Hitznn Msswrt inr Größ wurdn bstit! 8 6 4 8 6 4 3 4 5 6 7 Zit [in] Msswrt t t t 3 3 t 4 4 t n n Funktion zur

Mehr

WEGEN Umbau. Renovierung des letzten Teilstücks der Herbesthaler Straße. Auch mit Baustelle ohne Probleme in die Eupener Innenstadt! Wir für Eupen!

WEGEN Umbau. Renovierung des letzten Teilstücks der Herbesthaler Straße. Auch mit Baustelle ohne Probleme in die Eupener Innenstadt! Wir für Eupen! Wir für Eupn! WEGEN Umbau... göffnt! Wir für Eupn! Wir für Eupn! Auch mit Baustll ohn Problm in di Eupnr Innnstadt! Rnovirung ds ltztn Tilstücks dr Lib Bürgrinnn und Bürgr, wir möchtn Si informirn, dass

Mehr

Geldwäscheprävention aus Sicht der Sparkasse Nürnberg

Geldwäscheprävention aus Sicht der Sparkasse Nürnberg Nürnbrg Gldwäschprävntion aus Sicht dr Nürnbrg Jürgn Baur Markus Hartung Sit 1 Agnda 1. Maßnahmn zur Gldwäschprävntion 2. Vorghnswis bi vrdächtign Transaktionn 3. Fallbispil Nürnbrg Sit 2 Agnda 1. Maßnahmn

Mehr

Fachhochschule Koblenz Blatt 1 von 3 Name Fachbereich Maschinenbau

Fachhochschule Koblenz Blatt 1 von 3 Name Fachbereich Maschinenbau Fachhochschul Koblnz Blatt 1 von 3 Nam Fachbrich Maschinnbau Maschinndnamik SS 5 Matr.-Nr. Prof. Dr.. Kröbr Zur Bwrtung dr Aufgabn muss dr gsamt Lösungstil rsichtlich sin. - Barbitungszit : 9 min - Erlaubt

Mehr

2010 A I Angabe. 0 1 ln 1 x 0 ln 1 x 1. Untersuchen Sie das Verhalten der Funktionswerte f x an den Rändern der Definitionsmenge. 1 ln 1 x 4 1 x 1 1

2010 A I Angabe. 0 1 ln 1 x 0 ln 1 x 1. Untersuchen Sie das Verhalten der Funktionswerte f x an den Rändern der Definitionsmenge. 1 ln 1 x 4 1 x 1 1 BE 3 7....3 A I Angab ln Ggbn ist di rll Funtion : in ihrr größtmöglichn Dinitionsmng ID. ID ; gilt, und brchnn Si dn atn Wrt dr Nullstll dr Zign Si, dass Funtion. Im Zählr muss gltn: Im Nnnr muss gltn:

Mehr

Diplomarbeit Verteidigung

Diplomarbeit Verteidigung iplomarbit Vrtidigung Mikrocontrollrgstützt Slbstorganisationsprinzipin rkonfigurirbarr Rchnrsystm am Bispil dr Xilinx FPGA-Architktur Falk Nidrlin s6838029@inf.tu-drsdn.d 1 nstitut für chnisch nformatik

Mehr

Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert

Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert Physikalischs Praktikum Wirtschaftsingniurwsn Physikalisch Tchnik und Orthopäditchnik Prof. Dr. Chlbk, MSc. M. Gilbrt E 07 Elkronn im Magntfld (Pr_EX_E07_Elktronnröhr_6, 4.09.009) Nam Matr. Nr. Grupp Tam

Mehr

Arbeitszeit 60 Minuten Seite 1 von 6. FH München, FB 03 Bordnetze SS 02. Name:... Vorname:... St. Grp...

Arbeitszeit 60 Minuten Seite 1 von 6. FH München, FB 03 Bordnetze SS 02. Name:... Vorname:... St. Grp... Arbitszit 60 Minutn Sit von 6 FH Münchn, F 03 ordntz SS 0 Nm:... Vornm:... St. Grp.... Aufgbnstllr: Prof. Dr. Wrmuth, Arbitszit: 60 min, Hilfsmittl: Tschnrchnr Aufg. Aufg. Aufg. 3 Aufg. 4 Aufg. 5 Aufg.

Mehr

Kapitel 2: Finanzmärkte und Erwartungen. Makroökonomik I -Finanzmärkte und Erwartungen

Kapitel 2: Finanzmärkte und Erwartungen. Makroökonomik I -Finanzmärkte und Erwartungen Kapitl 2: Finanzmärkt und 1 /Finanzmärkt -Ausblick Anlihn Aktinmarkt 2 2.1 Anlihn I Anlih Ausfallrisiko Laufzit Staatsanlihn Untrnhmnsanlihn Risikoprämi: Zinsdiffrnz zwischn inr blibign Anlih und dr Anlih

Mehr

EBA. Schlussprüfung 2010. Punkte. Kandidatennummer. Name. Vorname. Datum der Prüfung. Punkte und Bewertung Erreichte Punkte / Maximum.

EBA. Schlussprüfung 2010. Punkte. Kandidatennummer. Name. Vorname. Datum der Prüfung. Punkte und Bewertung Erreichte Punkte / Maximum. Schlussprüfung 2010 büroassistntin und büroassistnt Schulischs Qualifikationsvrfahrn 1 EBA information kommunikation IKA administration Sri 2/2 Kandidatnnummr Nam Vornam Datum dr Prüfung und Bwrtung Erricht

Mehr

EBA. Schlussprüfung 2010. Punkte. Kandidatennummer. Name. Vorname. Datum der Prüfung. Punkte und Bewertung Erreichte Punkte / Maximum.

EBA. Schlussprüfung 2010. Punkte. Kandidatennummer. Name. Vorname. Datum der Prüfung. Punkte und Bewertung Erreichte Punkte / Maximum. Schlussprüfung 2010 büroassistntin und büroassistnt Schulischs Qualifikationsvrfahrn 1 EBA information kommunikation IKA administration Sri 1/2 Kandidatnnummr Nam Vornam Datum dr Prüfung und Bwrtung Erricht

Mehr

Allgemeine Hinweise zu den Beispielen 6-8 (Abscheidung von Metallen, Elektrodenpotentiale, Redoxreaktionen in Lösung)

Allgemeine Hinweise zu den Beispielen 6-8 (Abscheidung von Metallen, Elektrodenpotentiale, Redoxreaktionen in Lösung) Allgmin Hinwis zu dn Bispiln 6-8 (Abschidung von Mtalln, Elktrodnpotntial, Rdoxraktionn in Lösung) Grundlagn: Oxidation, Rduktion, Oxidationszahln, Elktrongativität, Rdoxraktionn, lktrochmisch Spannungsrih,

Mehr

Sensorik. Praktikum Halbleiterbauelemente. B i p o l a r e T r a n s i s t o r e n

Sensorik. Praktikum Halbleiterbauelemente. B i p o l a r e T r a n s i s t o r e n Snsorik Praktikum Halblitrbaulmnt i p o l a r T r a n s i s t o r n 1 Grundlagn... 2 1.1 Struktur und Wirkungsprinzip ds Transistors... 2 1.2 Arbitswis dr Transistorn... 3 1.3 Einstllung ds Arbitspunkts...

Mehr

Kostenlosen Zugriff auf den Downloadbereich für ELOoffice bekommen Sie, wenn Sie Ihre Lizenz registrieren (Siehe Kapitel 5.2, Seite 28).

Kostenlosen Zugriff auf den Downloadbereich für ELOoffice bekommen Sie, wenn Sie Ihre Lizenz registrieren (Siehe Kapitel 5.2, Seite 28). 21 Si solltn nach Möglichkit immr di aktullstn Vrsionn intzn, bvor Si dn ELO-Support kontaktirn. Oft sind Prlm bi inm nun Updat schon bhn. 21.1 ELOoffic Downloads und Programmaktualisirungn Kostnlon Zugriff

Mehr

Handout zu Übung 1. Vorbemerkung: Hinweise auf Fehler sind willkommen. Keine Gewähr für die vollständige Richtigkeit der Ausführungen.

Handout zu Übung 1. Vorbemerkung: Hinweise auf Fehler sind willkommen. Keine Gewähr für die vollständige Richtigkeit der Ausführungen. Übung zu Mikro III (SS 05) Tri Vi Dang Handout zu Übung Vorbmrkung: Hinwis auf Fhlr sind willkommn. Kin Gwähr für di vollständig Richtigkit dr usführungn. Thma : Thori ds llgminn Glichgwichts Das Framwork

Mehr

2. Diskutiere die Funktion und zeichne den Graphen: (b) f(x) = 2xe x2

2. Diskutiere die Funktion und zeichne den Graphen: (b) f(x) = 2xe x2 . Diskutir di Funktion f(x) = x x und zichn ihrn Graphn. Gib di Glichung dr Wndtangnt an. Brchn das Volumn, das ntstht, wnn di Fläch zwischn dr Kurv und dr x-achs im. Quadrantn um di x-achs rotirt!. Diskutir

Mehr

a) Wie groß ist das Feuchtedefizit D? b) Wie groß ist die Taupunkttemperatur? c) Was bedeutet das Erreichen der Taupunkttemperatur physikalisch?

a) Wie groß ist das Feuchtedefizit D? b) Wie groß ist die Taupunkttemperatur? c) Was bedeutet das Erreichen der Taupunkttemperatur physikalisch? Kluur Ingniurhydrologi I Sptmbr 006 Aufgb 1: Auf inm Grgndch, d 7 m lng und m brit it, oll ich in.5 cm trk ichicht mit inr Dicht ρ=97 kg/m bfindn. Di ichicht oll in Tmprtur von t=0 C hbn. ) Wlch M i ligt

Mehr

Überblick über die Intel Virtualization Technology

Überblick über die Intel Virtualization Technology Übrblick übr di ntl Virtualization chnology hilo Vörtlr s7933688@mail.inf.tu-drsdn.d 1 nstitut für chnisch nformatik http://www.inf.tu-drsdn.d// 13.07.2005 Glidrung Einlitung Hardwar Virtualisirung ntl

Mehr

Lösungen der Aufgaben 9.3/5/6

Lösungen der Aufgaben 9.3/5/6 Lösungn dr Aufgabn 9.3/5/6 Dr Gütrmarkt inr offnn Volkswirtschaft wird durch folgnds Glichungssystm bschribn: = a + b (Y T ), () (i, q) = c + q, (2) q = d Y i, (3) G = G, (4) X = x 0 + x Y x 2 σ, (5) Z

Mehr

Übungen zu Frage 79: Nr. 1: Im rechtwinkligen Dreieck ABC ist D der Mittelpunkt

Übungen zu Frage 79: Nr. 1: Im rechtwinkligen Dreieck ABC ist D der Mittelpunkt Übungn Trigonomtri Rchnn mit Paramtr Übungn zu rag 79: Nr 1: Im rchtwinklign rick ist dr Mittlpunkt dr Sit Zign Si ohn Vrwndung grundtr Wrt, dass dr lächninhalt ds 1 Vircks mit dr orml = wrdn kann (i Lösung

Mehr

b) Weisen Sie nach, dass g und f im selben Punkt ein Minimum besitzen.

b) Weisen Sie nach, dass g und f im selben Punkt ein Minimum besitzen. Znral schriflich Abiurprüfungn im Fach Mahmaik Analysis Lisungskurs Aufgab 3 ln-funkion und Vrknüpfungn In dr Anlag sind di Graphn zwir Funkionn g und f dargsll. Ggbn sind wirhin zwi Funkionn h und h,

Mehr

Sicherheit des geheimen Schlüssels

Sicherheit des geheimen Schlüssels Sichrhit ds ghimn Schlüssls Michal Starosta 5. April 006. Motivation Wir lbn in inm Zitaltr in dm di Kryptographi nicht mhr nur in dr Mathmatik in Anwndung findt. Im nahzu jdn Lbnsbrich ds Alltags kommn

Mehr

4. Berechnung von Transistorverstärkerschaltungen

4. Berechnung von Transistorverstärkerschaltungen Prof. Dr.-ng. W.-P. Bchwald 4. Brchnng on Transistorrstärkrschaltngn 4. Arbitspnktinstllng Grndorasstzng für dn Entwrf inr Transistorrstärkrstf ist di alisirng ins Arbitspnkts, m dn hrm im Knnlininfld

Mehr

Graphentheorie. Folie 1

Graphentheorie. Folie 1 Prof. Thomas Richtr 11. Mai 2017 Institut für Analysis und Numrik Otto-von-Gurick-Univrsität Magdburg thomas.richtr@ovgu.d Matrial zur Vorlsung Algorithmisch Mathmatik II am 11.05.2017 Graphnthori 1 Grundlagn

Mehr

7.8 Träge Masse der Bandelektronen

7.8 Träge Masse der Bandelektronen Physik dr kondnsirtn Matri WS 00/0 0..00 7.8 Träg Mass dr Bandlktronn Di Bschribung dr Elktronn rfolgt durch in Wllnpakt aus Übrlagrung von Blochwlln aus in klinn Brich von k-vktorn. Di Bwgung dr Tilchn

Mehr

Bürger-Energie für Schwalm-Eder. Bürger-Energie für Schwalm-Eder! Die FAIR-Merkmale der kbg! Leben. Sparen. Dabeisein. Einfach fair. h c.

Bürger-Energie für Schwalm-Eder. Bürger-Energie für Schwalm-Eder! Die FAIR-Merkmale der kbg! Leben. Sparen. Dabeisein. Einfach fair. h c. Di FAIR-Mrkmal dr kbg! Bürgr-Enrgi für Schwalm-Edr! Unsr Stromtarif transparnt, günstig, fair! Di kbg ist in in dr Rgion sit 1920 vrwurzlt Gnossnschaft mit übr 1.400 Mitglidrn und in ihrm Wirkn fri von

Mehr

1 Übungen und Lösungen

1 Übungen und Lösungen ST ING Eltrotchni 4 - - _ Übngn nd ösngn Übngn EINTOE Z Schn Si ds Impdnzvrhltn für di vir drgstlltn Eintor mit dn Normirngn bzihngswis Stlln Si ds Impdnzvrhltn (trg) f doppltlogrithmischm Ppir dr Stlln

Mehr

Neutrinos. Ein Vortrag über die Eigenschaften von Neutrinos und Experimenten mit Neutrinos. Autor: Dieter Oellers. Betreuer: Prof.

Neutrinos. Ein Vortrag über die Eigenschaften von Neutrinos und Experimenten mit Neutrinos. Autor: Dieter Oellers. Betreuer: Prof. Nutrinos Ein Vortrag übr di Eignschaftn von Nutrinos und Exprimntn mit Nutrinos. Autor: Ditr Ollrs Btrur: Prof. Böhm 1.Einlitung Dr β-zrfall und di Nutrinohypoths n p p n Bis 1930: Nutrinos unbkannt 1930:

Mehr

= K. X(s) - - G 2 (s) W 1 (s) Y 1 (s) G 1 (s) Y 2 (s) W 2 (s) G 4 (s) G 3 (s) K I K S1 T S1 K S2 T S2. X S (s) X(s) ( s) X(s) ( t) x(t)

= K. X(s) - - G 2 (s) W 1 (s) Y 1 (s) G 1 (s) Y 2 (s) W 2 (s) G 4 (s) G 3 (s) K I K S1 T S1 K S2 T S2. X S (s) X(s) ( s) X(s) ( t) x(t) Fachbrich glungstchnik 4.. Sit von am: Matr. r.: ot: Punkt: Aufgab : a) Kann in glstrck bsthnd aus zwi hintrinandr gschalttn Intgratorn mit inm Pglr und Einhitsrückführung stabilisirt wrdn? b) Auf wlch

Mehr

Optisches Pumpen und Spektroskopie im optische Bereich

Optisches Pumpen und Spektroskopie im optische Bereich F-Praktikum Optischs Pumpn und Spktroskopi im optisch Brich Moritz Lnz and Stfan Ublackr Datd: 15. März 6) Zil ds Vrsuchs ist s, mit spktroskopischn Mthodn atomar und molkular Übrgäng zu bobachtn und vrschidn

Mehr

LHG - ein starker Partner für den Lebensmitteleinzelhandel

LHG - ein starker Partner für den Lebensmitteleinzelhandel ng Ausbildu adt... bi dr iblst E n i G LH tion in flich Z din bru vsti n I t u g Ein ukunft! LHG - in starkr Partnr für dn Lbnsmittlinzlhandl Di Lbnsmittlhandlsgsllschaft (LHG) ist di größt inhabrgführt

Mehr

Entdecken Sie. in Lostorf. - mit einer schönen Wanderung. - mit dem Auto. - mit den öffentlichen Verkehrsmitteln. Schloss Wartenfels

Entdecken Sie. in Lostorf. - mit einer schönen Wanderung. - mit dem Auto. - mit den öffentlichen Verkehrsmitteln. Schloss Wartenfels Entdckn Si Schlo Wrtnfl in Lotorf - mit inr chönn Wndrung - mit dm Auto - mit dn öffntlichn Vrkhrmittln Schlo W r tn fl Wi rrich ich d Schlo Wrtnfl pr Auto? mit Auto Von Zürich: - Autobhnufhrt Aru Ot Hunznchwil,

Mehr

Für den Flächeninhalt des Dreiecks A BEG gilt: A BEG =

Für den Flächeninhalt des Dreiecks A BEG gilt: A BEG = 008 Pflichtrich Für dn Flächninhalt ds ricks EG gilt: EG = E G i Strckn E und G kann man rchnn, wnn man im rchtwinklign rick EG dn Winkl ε und di Strck EG knnt rchnung ds Winkls ε: n Winkl ε stimmt man

Mehr

Entry Voice Mail für HiPath-Systeme. Bedienungsanleitung für Ihr Telefon

Entry Voice Mail für HiPath-Systeme. Bedienungsanleitung für Ihr Telefon Entry Voic Mail für HiPath-Systm Bdinunsanlitun für Ihr Tlfon Zur vorlindn Bdinunsanlitun Zur vorlindn Bdinunsanlitun Dis Bdinunsanlitun richtt sich an di Bnutzr von Entry Voic Mail und an das Fachprsonal,

Mehr

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und Ministrium für Bildung und Frun Schlsig-Holstin 9 Listungskurs Mthmtik Thm: Anlysis Aufg Ggn ist di Funktionnschr f mit f ( ) = (, IR ) ) Untrsuchn Si di Funktionnschr f uf Nullstlln, ds Vrhltn im Unndlichn,

Mehr

(3) Sie haben 120 Minuten Zeit und können eine Maximalpunktzahl von 120 erreichen.

(3) Sie haben 120 Minuten Zeit und können eine Maximalpunktzahl von 120 erreichen. Klausur Makroökonomik B Prof. Dr. Klaus Adam 21.12.2009 (Hrbssmsr 2009) Wichig: (1) Erlaub Hilfsmil: Nichprogrammirbarr Taschnrchnr, ausländisch Sudirnd zusäzlich in Wörrbuch nach vorhrigr Übrprüfung durch

Mehr

Digitaltechnik. TI-Tutorium. 17. Januar 2012. Tutorium von K. Renner für die Vorlesung Digitaltechnik und Entwurfsverfahren am KIT

Digitaltechnik. TI-Tutorium. 17. Januar 2012. Tutorium von K. Renner für die Vorlesung Digitaltechnik und Entwurfsverfahren am KIT Digitltchnik I-utorium 17. Jnur 2012 utorium von K. Rnnr für di Vorlsung Digitltchnik und Entwurfsvrfhrn m KI hmn Orgnistorischs Anmrkungn zum Übungsbltt 9 Korrktur inr Foli von ltztr Woch Schltwrk Divrs

Mehr

Atomkerne und Radioaktivität

Atomkerne und Radioaktivität tomkrn und Radioaktivität Institut für Krnchmi Univrsität Mainz Klaus Ebrhardt und Razvan Buda 30.04.2012 1 Größnskala tom und Krn nordnung dr tom in inm Kupfr-Chlor-Phthalocyanin-Kristall Elktronnhüll:

Mehr

Beispiel: Ich benutze die folgenden zwei Karten um meine Welt nach FT zu importieren:

Beispiel: Ich benutze die folgenden zwei Karten um meine Welt nach FT zu importieren: Tutorial Importirn inr CC2-Kart nach Fractal Trrains Von Ralf Schmmann (ralf.schmmann@citywb.d) mit dr Hilf von Jo Slayton und John A. Tomkins Übrstzung von Gordon Gurray (druzzil@t-onlin.d) in Zusammnarbit

Mehr

2.2 Multiplizieren von Brüchen

2.2 Multiplizieren von Brüchen ! 2.2 Multiplizin von Büchn Ein Rzpt fü Hftig fodt 1 Lit Milch. Man nimmt di halb Rzptmng. Wi vil Lit Milch 1 l 1000 sind fodlich? 1 / 2 w 1 / 2 w 3 / 4 l 1 / 2 l 1 / 4 l 750 500 250 w 1 / 2 l Ein Hftigzpt

Mehr

Staatlich geprüfter Techniker

Staatlich geprüfter Techniker uszug aus dm Lnmatial Fotbildungslhgang Staatlich gpüft Tchnik uszug aus dm Lnmatial sstchnik (uszüg) D-Tchnikum ssn /.daa-tchnikum.d, Infolin: 0201 83 16 510 Gundlagn zu ustung u. Intptation von sstn

Mehr

Der Konjunktiv I 1. er/sie habe gelesen Zukunft: er/sie wird lesen er/sie werde lesen

Der Konjunktiv I 1. er/sie habe gelesen Zukunft: er/sie wird lesen er/sie werde lesen Frum Wirtschaftsdutsch Dr Knjunktiv I 1 Gbrauch Dr Knjunktiv I wird u.a. vrwndt 1.) in dr indirktn Rd: Das Untrnhmn gab bkannt, dass sich sit März dr Auftragsingang shr psitiv ntwicklt hab. Witr btribsbdingt

Mehr

Die günstige Alternative zur Kartenzahlung. Sicheres Mobile Payment. Informationen für kesh-partner. k sh. smart bezahlen

Die günstige Alternative zur Kartenzahlung. Sicheres Mobile Payment. Informationen für kesh-partner. k sh. smart bezahlen Di günstig Altrnativ zur Kartnzahlung Sichrs Mobil Paymnt Informationn für ksh-partnr k sh smart bzahln Bargldlos. Schnll. Sichr. Was ist ksh? ksh ist in Smartphon-basirts Bzahlsystm dr biw Bank für Invstmnts

Mehr

MS-EXCEL -Tools Teil 2 Auswertung von Schubversuchen

MS-EXCEL -Tools Teil 2 Auswertung von Schubversuchen - 1 - MS-EXCEL -Tools Til 2 Auswrtung von Schubvrsuchn Raab, Olivr Zusammnfassung In dism zwitn Bricht wird di Auswrtung von Schubvrsuchn bi Sandwichbautiln mit Hilf ins klinn EDV-Programms auf dr Basis

Mehr

Theorie der Feuchte Dalton sches Gesetz

Theorie der Feuchte Dalton sches Gesetz Thori dr Fucht Dalton schs Gstz Luft ist in Mischung aus vrschidnn Gasn mit dn Hauptbstandtiln: Gaskomponnt Volumsantil [%] Gwichtsantil [%] Stickstoff N 2 78,03 75,47 Saurstoff O 2 20,99 23,20 Argon Ar

Mehr

Kryptologie am Voyage 200

Kryptologie am Voyage 200 Mag. Michal Schnidr, Krypologi am Voyag200 Khvnhüllrgymn. Linz Krypologi am Voyag 200 Sinn dr Vrschlüsslung is s, inn Tx (Klarx) so zu vrändrn, dass nur in auorisirr Empfängr in dr Lag is, dn Klarx zu

Mehr

Lieber ohne Förderung

Lieber ohne Förderung Libr ohn Fördrung Pflgtaggld. Gut Pflgtaggldvrsichrungn könnn di Finanzlück im Pflgfall schlißn. Di staatlich gfördrt Vorsorg taugt abr wnig. Di gstzlich Pflgvrsichrung wird auch künftig nur inn Til dr

Mehr

SD1+ Sprachwählgerät

SD1+ Sprachwählgerät EDIENUNGSANLEITUNG SD1+ Sprachwählgrät EDIENUNGSANLEITUNG Prfkt Sichrhit für Wohnung, Haus und Gwrb Dis dinungsanlitung ghört zu dism Produkt. Si nthält wichtig Hinwis zur Inbtribnahm und Handhabung. Achtn

Mehr

Vorschlag des Pädagogischen Beirats für IKT Angelegenheiten im SSR für Wien zur Umsetzung der "Digitalen Kompetenzen" am Ende der Grundstufe II

Vorschlag des Pädagogischen Beirats für IKT Angelegenheiten im SSR für Wien zur Umsetzung der Digitalen Kompetenzen am Ende der Grundstufe II Vorschlag ds Pädagogischn Birats für IKT Anglgnhitn im SSR für Win zur Umstzung dr "Digitaln Komptnzn" am End dr Grundstuf II Dis Komptnzlist ntstand untr Vrwndung dr "Digitaln Komptnzn für di 8. Schulstuf"

Mehr

MUFFEN IN WARMSCHRUMPFTECHNIK. ZIEGLER ENGINEERING GmbH 07121-9494-0 07121-9494-94. Stützpunkthändler. Heubergstr. 3 D-72766 Reutlingen

MUFFEN IN WARMSCHRUMPFTECHNIK. ZIEGLER ENGINEERING GmbH 07121-9494-0 07121-9494-94. Stützpunkthändler. Heubergstr. 3 D-72766 Reutlingen IN WARMSCHRUMPFTECHNIK MUFFEN Stützpunkthändlr ZIEGLER ENGINEERING GmbH Hubrgstr. 3 D-72766 Rutlingn 07121-9494-0 07121-9494-94 www.z-gmbh.d info@z-gmbh.d muffn in warmschrumpftchnik Vrbindungsmuffn für

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springr Gablr PLUS Zusatzinformationn zu Mdin von Springr Gablr Grimmr Statisti im Vrsichrungs- und Finanzwsn Ein anwndungsorintirt Einführung 04. Auflag Lösungssizzn dr Übungsaufgabn zu Kapitl 8 [Txt

Mehr

Die günstige Alternative zur Kartenzahlung. Sicheres Mobile Payment. Informationen für kesh-partner. k sh. smart bezahlen

Die günstige Alternative zur Kartenzahlung. Sicheres Mobile Payment. Informationen für kesh-partner. k sh. smart bezahlen Di günstig Altrnativ zur Kartnzahlung Sichrs Mobil Paymnt Informationn für ksh-partnr k sh Bargldlos. Schnll. Sichr. Was ist ksh? ksh ist in Smartphon-basirts Bzahlsystm dr biw Bank für Invstmnts und Wrtpapir

Mehr

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg Badn-Württmbrg: Training Glichungn www.math-aufgabn.com Pflichttilaufgabn zu Glichungn Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com Sptmbr 6 Badn-Württmbrg:

Mehr

Fachrichtung Energieelektroniker - Betriebstechnik

Fachrichtung Energieelektroniker - Betriebstechnik Fchrichtung Enrgilktronikr - Btribstchnik 0...0-8 Schülr Dtum:. Titl dr L.E. : Oprtionsrstärkr und stbilisirt Ntzgrät. Fch / Klss : Fchrchnn,. Ausbildungsjhr. Thmn dr ntrrichtsbschnitt :. Dimnsionirung

Mehr

4 Bäume und Minimalgerüste

4 Bäume und Minimalgerüste 4. Bäum un Wälr Charaktrisirung von Minimalgrüstn 4 Bäum un Minimalgrüst Dfinition 4.1. Es in G = (V, E) in zusammnhängnr Graph. H = (V, E ) hißt Grüst von G gw. wnn H in Baum ist un E E gilt. Bmrkung

Mehr

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg

Pflichtteilaufgaben zu Gleichungen. Baden-Württemberg Badn-Württmbrg: Training Glichungn www.math-aufgabn.com Pflichttilaufgabn zu Glichungn Badn-Württmbrg Hilfsmittl: kin allgminbildnd Gymnasin Alandr Schwarz www.math-aufgabn.com Sptmbr 7 Badn-Württmbrg:

Mehr

EInE FüR AllES Die VISA oder MasterCard Gold von card complete

EInE FüR AllES Die VISA oder MasterCard Gold von card complete EInE FüR AllES Di VISA odr MastrCard Gold von card complt IhRE KARTE FüR den AllTäGlIChEn EInSATz VORTEIlE der KREdITKARTEn VOn CARd COMPlETE AUF EInEn BlICK Bstlln Si jtzt Ihr VISA odr MastrCard Gold

Mehr

Die Suche nach dem Higgs-Boson

Die Suche nach dem Higgs-Boson Di Such nach dm Higgs-Boson spontan Symmtribrchung und Higgsmchanismus Massnrzugung dr W- und Z-Bosonn und Frmionn Mass ds Higgs Produktion und Zrfallskanäl Higgssnsitivität an Tvatron und LHC Spontan

Mehr

T= 1. Institut für Technische Informatik http://www.inf.tu-dresden.de/tei/ 30.01.2008 D C D C

T= 1. Institut für Technische Informatik http://www.inf.tu-dresden.de/tei/ 30.01.2008 D C D C nstitut für chnisch nformatik 30.01.2008 nhaltsvrzichnis 1. Aufgab dr iplomarbit 2. Konzpt und Grundidn 3. Entwurf inr modularn Architktur 4. st und Auswrtung 5. Zusammnfassung 6. Ausblick nstitut für

Mehr

Logistische Regressionsanalyse mit SPSS

Logistische Regressionsanalyse mit SPSS Univrsität Trir Zntrum für Informations-, Mdinund Kommuniationstchnologi (ZIMK) Trir, dn 5.06.0 B. Balts-Götz Logistisch Rgrssionsanalys mit SPSS Logistisch Rgrssionsanalys mit SPSS Inhaltsübrsicht VORWORT

Mehr