Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten)"

Transkript

1 HTW Dresden 9. Februar 2012 FB Informatik/Mathematik Prof. Dr. J. Resch Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) Name, Vorname: Matr.-nr.: Anzahl der abge- Unterschrift: gebenen Blätter: A Aufg Note a b a b c d a b c d e a b c d a b a b c d Soll: Ist: Allgemeine Hinweise: Die Lösung jeder Aufgabe bitte auf einer neuen Seite (oben) beginnen. Erstreckt sich die Lösung einer Aufgabe über mehrere Seiten, so ist auf jeder Seite oben anzugeben, zu welcher Aufgabe/Teilaufgabe die folgenden Lösungen gehören. Alle Aussagen sind zu begründen, falls Sie komplexere Terme mit dem Taschenrechner berechnen bzw. Gleichungen mit dem Taschenrechner lösen, so sind die verwendeten Formeln/Gleichungen anzugeben, so dass der Lösungsweg nachvollziehbar ist. Bei Pivot-Verfahren (Simplex-Meth., Gauß-Alg., AT-Verf.) sind alle Tableaus anzugeben. 1. Herr A. liest von einem Kreditangebot, in dem Kredite bis zu e angeboten werden, wobei für eine Kreditlaufzeit von vier Monaten nur 3.5% Zinsen berechnet werden. Allerdings wird bei Vertragsabschluss eine Bearbeitungsgebühr von 50 e fällig. (a) Herr A. benötigt dringend e und überlegt, ob er dieses Angebot wahrnehmen soll. Welchem Effektivzins (p.a.) entspricht das Angebot in diesem Fall? (b) Auf welchen Effektivzins käme er insgesamt, wenn er von der Möglichkeit Gebrauch macht, sein Konto um e zu überziehen, wobei für diesen Überziehungskredit ein Zinssatz von 12.5% (p.a.) berechnet wird? Er müsste sich dann nur noch die fehlenden e über das o.g. Kreditangebot besorgen. 2. Herr B. hat einen Kredit in Höhe von e aufgenommen. Mit der Bank wurde ein Zinssatz von 4.2% für 15 Jahre fest vereinbart und die Tilgung sollte 2% (zzgl. ersparter Zinsen) betragen. (a) Wie hoch ist die jährlich nachschüssig zu zahlende Annuität und wie hoch wäre die Restschuld nach 15 Jahren? (b) Wie hoch wäre eine äquivalente, monatliche (nachschüssige) Zahlung? (c) Welche Tilgungsdauer ergibt sich, wenn davon ausgegangen wird, dass der Zinssatz von 4.2% auch nach den ersten 15 Jahren weiterhin gilt? Bestimmen Sie die letzten beiden Zeilen des Tilgungsplanes mit einer verminderten Abschlussannuität! (d) Welche Tilgungsdauer ergibt sich insgesamt, wenn nach den ersten 15 Jahren der Zinssatz auf 6% steigt (weiterhin gleiche Annuität wie unter (a) bestimmt, Tilgung wieder mit verminderter Abschlussannuität)?

2 3. In einem Unternehmen wurden in einer zweistufigen Fertigung bisher aus drei Rohteilen R 1, R 2 und R 3 zunächst die drei Zwischenprodukte Z 1, Z 2 und Z 3 und aus diesen die vier Endprodukte E 1, E 2, E 3 und E 4 hergestellt. Die Stücklisten für die in den beiden Fertigungsstufen hergestellten Zwischen- und Endprodukte sind in den folgenden beiden Tabellen zusammengestellt. Z 1 Z 2 Z 3 R R R R E 1 E 2 E 3 E 4 Z Z Z (a) Die Fertigung soll auf eine einstufige Fertigungsstruktur umgestellt werden. Stellen Sie die Stücklisten für die Endprodukte auf Basis der Rohteile auf! (b) Wie viele der Rohteile R 1, R 2, R 3 und R 4 müssen für die Produktion bereitgestellt werden, wenn von E 1 20 Teile sowie von E 2, E 3 und E 4 je 10 Teile gefertigt werden sollen? (c) Wie hoch sind die Materialkosten für die Zwischen- und Endprodukte (beide in e /Stück), wenn die Rohteile zu Preisen von 5 e (R 1 ), 4 e (R 2 ), 7 e (R 3 ) und 1 e (R 4 ) je Stück eingekauft werden? (d) Könnte ein Lagerbestand z (L1) = (50, 30, 40) (Zwischenprodukte) vollständig zu Endprodukten verarbeitet werden? Wenn ja, geben Sie die Menge aller möglichen Produktionsvektoren an, bei denen der Lagerbestand vollständig aufgebraucht wird! (e) Formulieren Sie ein lineares Optimierungsproblem, mit dem man berechnen kann, wie der Lagerbestand z (L2) = (2 000, 2 400, 3 000) (Zwischenprodukte) so zu Endprodukten verarbeitet werden kann, dass mit diesen Endprodukten ein maximaler Erlös erzielt werden kann, wenn die Endprodukte zu Preisen von 400, 60, 300, 330 e/stück verkauft werden. Der Lagerbestand ist dabei nicht unbedingt vollständig aufzubrauchen, nicht verbrauchte Zwischenprodukte können aber später nicht mehr verarbeitet werden, sie können nur noch unter Wert für einen Schrottpreis von 10 e/stück verkauft werden. Hinweis: Nur das mathematische Modell aufstellen!!! 4. Gegeben ist das folgende lineare Optimierungsproblem: z = 3x 1 7x 2 + 5x 3 min 4x 1 + 3x 2 4x 3 70 x 1 + 7x 2 + x 3 = 40 5x 1 + x 2 + 2x 3 50 x 1 0 x 2 0 Stellen Sie ein Anfangstableau für die 2-Phasen-Methode/Simplex-Methode auf und markieren Sie alle möglichen Pivot-Elemente!

3 5. Gegeben ist das folgende lineare Optimierungsproblem (Produktionsplanung) mit den Restriktionen R1 bis R4 (verfügbare Materialmengen): z = 12x x x x 4 max 3x 1 + 2x 2 + 3x 3 + 4x (R1) 3x 1 + 5x 2 + 6x 3 + 6x (R2) 5x 1 + 4x 2 + 5x 3 + 4x (R3) 2x 1 + 2x 2 + 2x 3 + 4x (R4) x 1, x 2, x 3, x 4 0 Dabei steht die Zielfunktion für den Erlös, die Koeffizienten der Zielfunktion sind Verkaufspreise in e/me und die Variablen x j stehen für die Produktionsmengen der Produkte P j in ME. Während der Lösung des obigen LOP hat sich das folgende Simplextableau ergeben x 1 x 4 x 6 x 8 1 x x x x z Dabei sind x 5,..., x 8 die Schlupfvariablen der Restriktionen R1,..., R4. (a) Bestimmen Sie alle optimalen Lösungen und den optimalen Zielfunktionswert. (b) Welche Änderungen des Verkaufspreises von P 1 (des Zielfunktionskoeffizienten von x 1 ) hätten keinen Einfluss auf die Optimalität der Lösung(en)? Wie würden die Menge der optimalen Lösungen und der optimale Zielfunktionswert aussehen, wenn der Verkaufspreis von P 1 auf 26 e/me steigt? (c) In welchem Bereich dürfte der Verkaufspreis von P 2 (Zielfunktionskoeffizient von x 2 ) variieren, so dass die in Teilaufgabe (a) bestimmte(n) Lösung(en) noch optimal ist bzw. sind? Würde sich dies auf den optimalen Zielfunktionswert auswirken? Wenn ja, wie? (d) Geben Sie den Schattenpreis für die Restriktion R3 an und bestimmen Sie seinen Gültigkeitsbereich. Was bedeutet dieser Schattenpreis? Welche optimale Lösung und welcher maximale Zielfunktionswert ergeben sich, wenn in Restriktion R3 die rechte Seite (verfügbare Materialmenge) um 3 (auf 703) erhöht wird?

4 6. Gegeben ist das nebenstehende Grundtableau eines Transportproblems, wobei Aufwandskoeffizienten M für gesperrte Transportwege stehen. B 1 B 2 B 3 B 4 B 5 a i A M A A 3 M M A M 40 b j (a) Bestimmen Sie eine Anfangsbasislösung nach der Methode von Vogel und danach mit der Potentialmethode alle optimalen Lösungen dieses mathematischen Problems sowie den minimalen Zielfunktionswert! (b) Gibt es eine optimale Lösung mit x 15 = 20? Wenn ja, geben Sie eine solche Lösung an. 7. Bei der Lösung eines Transportproblems hat sich das folgende, optimale Tableau ergeben, wobei die hochgestellten Werte die Werte der Basisvariablen (Transportmengen auf den entsprechenden Wegen) sind. B 1 B 2 B 3 B 4 B 5 a i A A A A b j z = 3530 (a) In welchen Grenzen könnte der spezifische Transportaufwand c 32 von A 3 nach B 2 variieren, so dass die vorgegebene optimale Lösung weiterhin gilt? Wie verhält sich dabei der optimale Zielfunktionswert? (b) In welchen Grenzen könnte der spezifische Transportaufwand c 24 von A 2 nach B 4 variieren, so dass die vorgegebene optimale Lösung weiterhin gilt? Wie verhält sich dabei der optimale Zielfunktionswert? (c) Wie würden die allgemeine Lösung (Menge aller optimalen Lösungen) und z min aussehen, wenn sich der Transportaufwand von A 4 nach B 1 um 5 (auf 11) verringert? (d) Wie wäre das Grundtableau des Transportproblems zu modifizieren, wenn die Bedarfsorte B 1 und B 3 vom Aufkommensort A 3 nicht beliefert werden dürfen und von den übrigen Aufkommensorten jeweils nur maximal 20 ME geliefert bekommen sollen? (TP soll nicht gelöst werden!!!)

5 Lösungen: 1. (a) % (b) % 2. (a) A = e, K 15 = e (b) A m = e (c) n = 27.5 d.h. n = 28 Jahre K 26 = , Z 27 = , T 27 = , A 27 = , K 27 = , Z 28 = , T 28 = , A 28 = , (d) n 15 = , d.h. n = 30 Jahre 3. (a) A RZ A ZE = A RE : E 1 E 2 E 3 E 4 (b) r = R R R R (c) p z = (32, 27, 40) p e = (310, 40, 190, 211) (d) e = (e) 400 e e e e z z z 3 max 3 e e e 4 + z 1 = e e 3 + e 4 + z 2 = e 1 + e 2 + e 3 + 3e 4 + z 3 = e 1, e 2, e 3, e 4, z 1, z 2, z x 1 x 2 x 3 x 3 x 6 1 x y y z z

6 5. (a) x opt = (0, 25, 120, 0 110, 0, 0, 40), z max = 4490 (b) c 1 26 bzw. c 1 14 keine Änderungen; Bei c 1 = 26 gilt x opt = (0, 25, 120, 0) + t (1, 15, 13, 0), t [0, 20], 3 mit z max = (c) c 2 = 26 + t z max = t t [ 2, 2] 5 3 (d) 7 = 4, d.h. wenn bei R3 eine ME mehr verfügbar ist, kann der ZFW um 25 max. 4 steigen. Gültigkeitsbereich: b 3 [ 20, ] 6 b3 = = 703 ( b 3 = +3) z max = = 4502, x = (0, 7, 135, 0), 6. (a) X (0) = X (opt) = (b) nein , z min = (a) keine Änderungen bei X opt und z min c 32 4 (b) z min = c 24, c 24 [ 1, 1] (c) X (opt) = 40 t 30 + t 10 + t 40 t 20 t 40 + t t 20 t 30, t [0, 20], z min = 3530 (d) B 1 B 1 B 1 B 2 B 3 B 3 B 3 B 4 B 5 a i A M M M M M M 20 A 02 M M M M M M 10 A 1 12 M M M M A 2 M 25 M 19 M 27 M A 3 M M M 14 M M M A 4 M M 16 8 M M b j

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten)

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) HTW Dresden 11. Februar 2014 FB Informatik/Mathematik Prof. Dr. J. Resch Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) Name, Vorname: Matr.-nr.: Anzahl der abge-

Mehr

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Verbundstudiengang Wirtschaftsingenieurwesen Prof. Dr. rer. nat. habil. J. Resch Prüfung: Mathematik Termin: 1. September 2012 Bearbeitungszeit:

Mehr

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Verbundstudiengang Wirtschaftsingenieurwesen Prof. Dr. rer. nat. habil. J. Resch Prüfung: Mathematik Termin: 7. September 2013 Bearbeitungszeit:

Mehr

Fachhochschule Bochum Fachhochschule Südwestfalen

Fachhochschule Bochum Fachhochschule Südwestfalen Fachhochschule Bochum Fachhochschule Südwestfalen Verbundstudiengang Wirtschaftsingenieurwesen Prof. Dr. rer. nat. habil. J. Resch Prüfung: Mathematik Termin: August 2008 Bearbeitungszeit: 180 Minuten

Mehr

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Verbundstudiengang Technische Betriebswirtschaft Prof. Dr. rer. nat. habil. J. Resch Teilprüfung: Mathematik 2 (Modul) Termin: 15.

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 8.02.11

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 8.02.11 HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 8.02.11 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 6 gesamt erreichbare P. 6 10 12 12

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 20.02.2015

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 20.02.2015 HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 20.02.205 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 2 4 5 6 7 8 gesamt erreichbare P.

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 15.2.2013

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 15.2.2013 HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 5..3 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 3 4 5 6 7 8 gesamt erreichbare P. 4 6 3

Mehr

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Verbundstudiengang Technische Betriebswirtschaft Prof. Dr. rer. nat. habil. J. Resch Modulprüfung Mathematik 1 Termin: November

Mehr

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Verbundstudiengang Technische Betriebswirtschaft Prof. Dr. rer. nat. habil. J. Resch Teilprüfung: Mathematik 1 (Modul) Termin: 19.

Mehr

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Verbundstudiengang Technische Betriebswirtschaft Prof. Dr. rer. nat. habil. J. Resch Teilprüfung: Mathematik 2 (Modul) Termin: Sommer

Mehr

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen

Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Verbundstudiengang Technische Betriebswirtschaft Prof. Dr. rer. nat. habil. J. Resch Teilprüfung: Mathematik 1 (Modul) Termin: Februar

Mehr

Mathematik-Klausur vom 2. Februar 2006

Mathematik-Klausur vom 2. Februar 2006 Mathematik-Klausur vom 2. Februar 26 Studiengang BWL DPO 1997: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang B&FI DPO 21: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang BWL DPO 23:

Mehr

Mathematik-Klausur vom 4.2.2004

Mathematik-Klausur vom 4.2.2004 Mathematik-Klausur vom 4.2.2004 Aufgabe 1 Ein Klein-Sparer verfügt über 2 000, die er möglichst hoch verzinst anlegen möchte. a) Eine Anlage-Alternative besteht im Kauf von Bundesschatzbriefen vom Typ

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 0.02.206 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 2 4 5 6 7 8 gesamt erreichbare P. 5

Mehr

Übungsserie 11: Modellierung

Übungsserie 11: Modellierung HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Wirtschaftsmathematik I Lineare Optimierung Mathematik für Wirtschaftsingenieure - Übungsaufgaben Übungsserie : Modellierung Die über die Modellierung

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 4.2.24 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 2 3 4 5 6 7 8 9 gesamt erreichbare P.

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure und BWL am

Prüfungsklausur Mathematik I für Wirtschaftsingenieure und BWL am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure und BWL am 0.0.07 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 4 5 6 gesamt erreichbare P. 5

Mehr

Mathematik-Klausur vom und Finanzmathematik-Klausur vom

Mathematik-Klausur vom und Finanzmathematik-Klausur vom Mathematik-Klausur vom 27.09.2010 und Finanzmathematik-Klausur vom 04.10.2010 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:

Mehr

Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S;

Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; 1 5.3. Tilgungsrechnung Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; Bezeichnung: S... Schuld, Darlehen, Kredit

Mehr

Zinsen, Zinseszins, Rentenrechnung und Tilgung

Zinsen, Zinseszins, Rentenrechnung und Tilgung Zinsen, Zinseszins, Rentenrechnung und Tilgung 1. Zinsen, Zinseszins 2. Rentenrechnung 3. Tilgung Nevzat Ates, Birgit Jacobs Zinsrechnen mit dem Dreisatz 1 Zinsen Zinsrechnen mit den Formeln Zinseszins

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 221 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode eingezahlt, so spricht

Mehr

3.3. Tilgungsrechnung

3.3. Tilgungsrechnung 3.3. Tilgungsrechnung Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; Bezeichnung: S... Schuld, Darlehen, Kredit Es

Mehr

Übungsaufgaben Tilgungsrechnung

Übungsaufgaben Tilgungsrechnung 1 Zusatzmaterialien zu Finanz- und Wirtschaftsmathematik im Unterricht, Band 1 Übungsaufgaben Tilgungsrechnung Überarbeitungsstand: 1.März 2016 Die grundlegenden Ideen der folgenden Aufgaben beruhen auf

Mehr

Angewandte Mathematik

Angewandte Mathematik Name: Klasse/Jahrgang: Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung BHS 11. Mai 2015 Angewandte Mathematik Teil B (Cluster 8) Hinweise zur Aufgabenbearbeitung Das vorliegende

Mehr

Mathematik-Klausur vom 28.01.2008

Mathematik-Klausur vom 28.01.2008 Mathematik-Klausur vom 28.01.2008 Studiengang BWL PO 1997: Aufgaben 1,2,3,4 Dauer der Klausur: 90 Min Studiengang B&FI PO 2001: Aufgaben 1,2,3,4 Dauer der Klausur: 90 Min Studiengang BWL PO 2003: Aufgaben

Mehr

Mathematik-Klausur vom 02.02.2011 und Finanzmathematik-Klausur vom 31.01.2011

Mathematik-Klausur vom 02.02.2011 und Finanzmathematik-Klausur vom 31.01.2011 Mathematik-Klausur vom 02.02.2011 und Finanzmathematik-Klausur vom 31.01.2011 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:

Mehr

Mathematik-Klausur vom 08.07.2011 und Finanzmathematik-Klausur vom 14.07.2011

Mathematik-Klausur vom 08.07.2011 und Finanzmathematik-Klausur vom 14.07.2011 Mathematik-Klausur vom 08.07.20 und Finanzmathematik-Klausur vom 4.07.20 Studiengang BWL DPO 200: Aufgaben 2,,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 200: Aufgaben 2,,4 Dauer der Klausur: 60 Min

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

"Produktion und Logistik"

Produktion und Logistik Prof. Dr. Jutta Geldermann, Dipl.-Kfm. Harald Uhlemair Klausur im Fach "Produktion und Logistik" zur Veranstaltung "Produktion und Logistik" Wintersemester 2007/08 Name:... Vorname:... Matrikelnummer:...

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 239 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Durch die wird ein Zahlungsstrom beschrieben, der zur Rückführung eines geliehenen Geldbetrags dient. Der zu zahlende

Mehr

Übungsaufgaben WFW Finanzierung und Investition handlungsspezifische Qualifikation 2. Tag

Übungsaufgaben WFW Finanzierung und Investition handlungsspezifische Qualifikation 2. Tag 1. Aufgabe Als Assistent der Geschäftsleitung wurden Sie beauftragt herauszufinden, ob die Investition in Höhe von 1.200.000 Euro in eine neue Produktionsanlage rentabel ist. Dafür liegen Ihnen folgende

Mehr

Mathematik-Klausur vom und Finanzmathematik-Klausur vom

Mathematik-Klausur vom und Finanzmathematik-Klausur vom Mathematik-Klausur vom 15.07.2008 und Finanzmathematik-Klausur vom 08.07.2008 Studiengang BWL PO 1997: Aufgaben 1,2,3, Dauer der Klausur: 90 Min Studiengang B&FI PO 2001: Aufgaben 1,2,3, Dauer der Klausur:

Mehr

Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012

Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012 Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012 Studiengang BWL DPO 2003: Aufgaben 2,3, Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3, Dauer der Klausur: 60

Mehr

Mathematik-Klausur vom Finanzmathematik-Klausur vom

Mathematik-Klausur vom Finanzmathematik-Klausur vom Mathematik-Klausur vom 01.10.2012 Finanzmathematik-Klausur vom 24.09.2012 Studiengang BWL DPO 2003: Aufgaben 1,2,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 1,2,4 Dauer der Klausur:

Mehr

Mathematik-Klausur vom 06.07.2010 und Finanzmathematik-Klausur vom 07.07.2010

Mathematik-Klausur vom 06.07.2010 und Finanzmathematik-Klausur vom 07.07.2010 Mathematik-Klausur vom 06.07.2010 und Finanzmathematik-Klausur vom 07.07.2010 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:

Mehr

a) Geben Sie die zugehörigen Matrizen A RZ, A ZE und A RE. Berechnen Sie die fehlenden Werte der Rohstoff-Zwischenprodukt-Matrix.

a) Geben Sie die zugehörigen Matrizen A RZ, A ZE und A RE. Berechnen Sie die fehlenden Werte der Rohstoff-Zwischenprodukt-Matrix. Lineare lgebra / nalytische Geometrie Leistungskurs ufgabe 4 Kosten und Gewinne Ein Betrieb stellt aus den Rohstoffen R 1, R 2, R 3 und R 4 die Zwischenprodukte Z 1, Z 2, Z 3 und Z 4 her und aus diesen

Mehr

Fall 3: Mehrere Kapazitätsengpässe

Fall 3: Mehrere Kapazitätsengpässe Fall 3: Mehrere Kapazitätsengpässe ei Vorliegen mehrerer Engpässe ist zunächst zu prüfen, ob ein Engpass die anderen Engpässe dominiert. Ist dies der Fall, reduziert sich das Optimierungsproblem auf den

Mehr

WHB11 - Mathematik Klausur Nr. 3 AFS 3 Ökonomische Anwendungen linearer Funktionen

WHB11 - Mathematik Klausur Nr. 3 AFS 3 Ökonomische Anwendungen linearer Funktionen Name: Note: Punkte: von 50 (in %: ) Unterschrift des Lehrers : Zugelassene Hilfsmittel: Taschenrechner, Geodreieck, Lineal Wichtig: Schreiben Sie Ihren Namen oben auf das Klausurblatt und geben Sie dieses

Mehr

RUHR - UNIVERSITÄT BOCHUM KLAUSUR. Name. Vorname. Teilnehmer-Nr. Zur Beachtung. Bitte nicht ausfüllen

RUHR - UNIVERSITÄT BOCHUM KLAUSUR. Name. Vorname. Teilnehmer-Nr. Zur Beachtung. Bitte nicht ausfüllen RUHR - UNIVERSITÄT BOCHUM Fakultät für Wirtschaftswissenschaft KLAUSUR Mathematik für Ökonomen L i n e a r e A l g e b r a 5.2.998 (WS 998) Name Vorname Teilnehmer-Nr. Zur Beachtung Die Klausur umfaßt

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011

Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011 Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:

Mehr

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45.

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45. Mathematik I für Wirtschaftswissenschaftler Klausur am 8.6.4, 5.45 7.45. Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. b) Lösungswege und Begründungen sind anzugeben. Die

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Kursrechnung Festverzinsliche Wertpapiere Wertpapier: Investor erwirbt für bestimmten Preis

Mehr

Hauptprüfung Fachhochschulreife Baden-Württemberg

Hauptprüfung Fachhochschulreife Baden-Württemberg Baden-Württemberg: Fachhochschulreife 203 www.mathe-aufgaben.com Hauptprüfung Fachhochschulreife 203 Baden-Württemberg Aufgabe 5 Wirtschaftliche Anwendungen Hilfsmittel: grafikfähiger Taschenrechner Berufskolleg

Mehr

Startkapital. Erstellen Sie eine Zeitlinie zu diesem Zahlungsfluss. Berechnen Sie, über welchen Betrag Simon nach diesen 10 Jahren verfügen kann.

Startkapital. Erstellen Sie eine Zeitlinie zu diesem Zahlungsfluss. Berechnen Sie, über welchen Betrag Simon nach diesen 10 Jahren verfügen kann. Startkapital Aufgabennummer: B_146 Technologieeinsatz: möglich erforderlich S Simon möchte sich selbstständig machen. Er setzt für die Gründung seines Unternehmens als Startkapital seine Ersparnisse und

Mehr

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln. Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.de Übungen zur Vorlesung QM2 Nachschüssige Verzinsung Aufgabe

Mehr

Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t B 1. Schulbezeichnung:.. Klasse: Vorname: Datum:.

Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t B 1. Schulbezeichnung:.. Klasse: Vorname: Datum:. Projekt Standardisierte schriftliche Reifeprüfung in Mathematik T e s t h e f t B Schulbezeichnung:.. Klasse: Schüler(in) Nachname:. Vorname: Datum:. B Große und kleine Zahlen In Wikipedia findet man die

Mehr

Download. Führerscheine Zinsrechnung. Schnell-Tests zur Lernstandserfassung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Führerscheine Zinsrechnung. Schnell-Tests zur Lernstandserfassung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hardy Seifert Führerscheine Zinsrechnung Schnell-Tests zur Lernstandserfassung Downloadauszug aus dem Originaltitel: Führerscheine Zinsrechnung Schnell-Tests zur Lernstandserfassung

Mehr

Problemstellung in Per2: Wie soll ich bloß meinen Preis festlegen?

Problemstellung in Per2: Wie soll ich bloß meinen Preis festlegen? Inhalt Fragen der Woche Problemstellung in Per2: Wie soll ich bloß meinen Preis festlegen? die nächsten Tutorien 15.05.15 1 FdW - Organisatorisches Mein Planspielpartner in einer Zweiergruppe möchte dieses

Mehr

Zweistufige Produktion

Zweistufige Produktion Aufgabennummer: B_163 Zweistufige Produktion Technologieeinsatz: möglich erforderlich T In einem Unternehmen werden 3 Endprodukte E 1, E 2 und E 3 über 3 Zwischenprodukte Z 1, Z 2 und aus 2 verschiedenen

Mehr

Mathematik-Klausur vom 10. Juli 2007

Mathematik-Klausur vom 10. Juli 2007 Mathematik-Klausur vom 10. Juli 2007 Studiengang BWL DPO 1997: Aufgaben 1,2,3,5,6 Dauer der Klausur: 0 Min Studiengang B&FI DPO 2001: Aufgaben 1,2,3,5,6 Dauer der Klausur: 0 Min Studiengang BWL DPO 2003:

Mehr

Lernfeld 11 Finanzierung Musterlösungen zum Modul Finanzierungsbegleitende Buchungen

Lernfeld 11 Finanzierung Musterlösungen zum Modul Finanzierungsbegleitende Buchungen Aufgabe 1 Nennen und erläutern Sie drei Darlehensformen nach den Tilgungsarten und nennen Sie je ein Beispiel. Lösung 1 Hinweis: Leider werden die Begrifflichkeiten in verschiedenen Lehrbüchern u. a. Veröffentlichungen

Mehr

Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber

Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Sitzplatznr.: Wiederholungsklausur zur Vorlesung Operations Research im Wintersemester

Mehr

Tilgungsrechnung. n = ln. K 0 + R / ln(q) (vorschüssig) Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. q 1. q 1.

Tilgungsrechnung. n = ln. K 0 + R / ln(q) (vorschüssig) Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. q 1. q 1. (K + R ) q 1 n = ln K 0 + R / ln(q) (nachschüssig) q 1 n = ln ( K q + R ) q 1 K 0 + R / ln(q) (vorschüssig) q 1 Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. Tilgungsrechnung

Mehr

Verhaltenskodex über vorvertragliche Informationen für wohnungswirtschaftliche Kredite

Verhaltenskodex über vorvertragliche Informationen für wohnungswirtschaftliche Kredite Verhaltenskodex über vorvertragliche Informationen für wohnungswirtschaftliche Kredite 1. Allgemeine Informationen, die dem Verbraucher zur Verfügung gestellt werden sollten Die ersten Informationen über

Mehr

Simplex-Umformung für Dummies

Simplex-Umformung für Dummies Simplex-Umformung für Dummies Enthält die Zielfunktion einen negativen Koeffizienten? NEIN Optimale Lösung bereits gefunden JA Finde die Optimale Lösung mit dem Simplex-Verfahren! Wähle die Spalte mit

Mehr

Kostenrechnung. Mengenangaben (Betriebsoptimum, gewinnmaximierende Menge) sind immer auf ganze ME zu runden.

Kostenrechnung. Mengenangaben (Betriebsoptimum, gewinnmaximierende Menge) sind immer auf ganze ME zu runden. Mengenangaben (Betriebsoptimum, gewinnmaximierende Menge) sind immer auf ganze ME zu runden. 1. Berechnen Sie die Gleichung der linearen Betriebskostenfunktion! a. Die Fixkosten betragen 300 GE, die variablen

Mehr

A 95 223 B 125 396 C 75 169 D 105 277 E 115 421 F 85 269

A 95 223 B 125 396 C 75 169 D 105 277 E 115 421 F 85 269 Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@fh-koeln.de Übungen zur Vorlesung Wirtschaftsstatistik Wiederholungsaufgaben für die Klausur

Mehr

Übungsklausur der Tutoren *

Übungsklausur der Tutoren * Übungsklausur der Tutoren * (* Aufgabenzusammenstellung erfolgte von den Tutoren nicht vom Lehrstuhl!!!) Aufgabe 1 - Tilgungsplan Sie nehmen einen Kredit mit einer Laufzeit von 4 Jahren auf. Die Restschuld

Mehr

Kurs Grundlagen der Linearen Algebra und Analysis

Kurs Grundlagen der Linearen Algebra und Analysis Aufgabe B0513 Lineare Optimierung Ein Unternehmen stellt drei Endprodukte P 1,P und P 3 her. Die jeweils zur Produktion einer Mengeneinheit des jeweiligen Endproduktes benötigten Mengeneinheiten des Zwischenproduktes

Mehr

Download. Mathematik üben Klasse 8 Zinsrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Zinsrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Differenzierte Materialien

Mehr

Erzielte Bonuspunkte aus der Vorklausur:

Erzielte Bonuspunkte aus der Vorklausur: Fakultät für Wirtschaftswissenschaft KLAUSUR Mathematik für Ökonomen Wintersemester 016/017 1..017 Name Vorname Matrikelnummer Teilnehmer-Nr. Unterschrift Erzielte Bonuspunkte aus der Vorklausur: Punkte

Mehr

Neo-Institutionalistischer Finanzierungsbegriff

Neo-Institutionalistischer Finanzierungsbegriff Finanzierung: (1) Beschaffung (Zufluss) finanzieller Mittel... (2)... welche in der Folge einen Abfluss liquider Mittel zur Folge Hat/haben kann... Neo-Institutionalistischer Finanzierungsbegriff (3)...unter

Mehr

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung Rainer Hufnagel / Laura Wahrig 2006 Diese Woche LO - Sensitivitätsanalyse Simulation Beispiel Differenzengleichungen

Mehr

Aufgaben zur Finanzmathematik, Nr. 1

Aufgaben zur Finanzmathematik, Nr. 1 Aufgaben zur Finanzmathematik, Nr. 1 1.) Ein Unternehmen soll einen Kredit in Höhe von 800.000 in fünf gleich großen Tilgungsraten zurückzahlen. Der Zinssatz beträgt 6,5 % p. a. Erstellen Sie einen Tilgungsplan!

Mehr

Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig)

Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig) (K n + R n = ln n = ln q 1 K 0 + R q 1 (K n q + R q 1 K 0 q + R q 1 ) / ln(q) (nachschüssig) ) / ln(q) (vorschüssig) Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. Tilgungsrechnung

Mehr

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe Lösungen zu den Übungsaufgaben im Kapitel 1 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier 1. Lösen Sie die folgende lineare Optimierungsaufgabe

Mehr

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 9 14 jutta.arrenberg@th-koeln.de Übungen zur Vorlesung QM I (Wirtschaftsmathematik) Gleichungssysteme

Mehr

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Wintersemester 2005/06 20.2.2006 Prof. Dr. Jörg Rambau Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Bitte lesbar ausfüllen, Zutreffendes ankreuzen Herr Frau Name, Vorname:

Mehr

Finanzmathematik. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.

Finanzmathematik. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000. Finanzmathematik Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.de Das Tilgungsrechnen Für Kredite gibt es drei unterschiedliche

Mehr

Kaufmännische Berufsmatura 2010 Kanton Zürich Serie 1

Kaufmännische Berufsmatura 2010 Kanton Zürich Serie 1 Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Bedingungen: Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden

Mehr

Fakultät für Wirtschaftswissenschaften. Brückenkurs WS14/15: Investitionsrechnung

Fakultät für Wirtschaftswissenschaften. Brückenkurs WS14/15: Investitionsrechnung Fakultät für Wirtschaftswissenschaften Lehrstuhl BWL III: Unternehmensrechnung und Controlling Prof. Dr. Uwe Götze Brückenkurs WS14/15: Investitionsrechnung Aufgabe 1: Kostenvergleichsrechnung Für ein

Mehr

Die Laufzeit muss nun ebenfalls in Monaten gerechnet werden und beträgt 25 12 = 300 Monate. Damit liefert die Sparkassenformel (zweiter Teil):

Die Laufzeit muss nun ebenfalls in Monaten gerechnet werden und beträgt 25 12 = 300 Monate. Damit liefert die Sparkassenformel (zweiter Teil): Lösungen zur Mathematikklausur WS 2004/2005 (Versuch 1) 1.1. Hier ist die Rentenformel für gemischte Verzinsung (nachschüssig) zu verwenden: K n = r(12 + 5, 5i p ) qn 1 q 1 = 100(12 + 5, 5 0, 03)1, 0325

Mehr

Alexander möchte für seine Pension ansparen. In den folgenden Aufgaben wird die Kapitalertragssteuer

Alexander möchte für seine Pension ansparen. In den folgenden Aufgaben wird die Kapitalertragssteuer Aufgabe 1 Pensionsvorsorge Alexander möchte für seine Pension ansparen. In den folgenden Aufgaben wird die Kapitalertragssteuer nicht berücksichtigt. a) Er zahlt 15 Jahre lang monatlich vorschüssig 400

Mehr

Klausur Wirtschaftsmathematik Lösungshinweise

Klausur Wirtschaftsmathematik Lösungshinweise Klausur Wirtschaftsmathematik Lösungshinweise Prüfungsdatum: 27. Juni 2015 Prüfer: Etschberger Studiengang: Wirtschaftsingenieurwesen Aufgabe 1 16 Punkte Anton Arglos hat von seiner Großmutter 30 000 geschenkt

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Unterjährige Raten und jährliche Verzinsung Aufteilung der Zinsperiode in mehrere gleich

Mehr

4.3.3 Simplexiteration

4.3.3 Simplexiteration 7. Januar 2013 53 4.3.3 Simplexiteration Eine Simplexiteration entspricht dem Übergang von einer Ecke des zulässigen Bereiches in eine benachbarte Ecke Dabei wird genau eine Nichtbasisvariable (die zugehörige

Mehr

Prüfung: Produktion, Logistik und Operations Research SS 2009. Prüfungsbogen. Vom Klausurteilnehmer auszufüllen!

Prüfung: Produktion, Logistik und Operations Research SS 2009. Prüfungsbogen. Vom Klausurteilnehmer auszufüllen! Klausur: 1122 1 von 12 Prüfung: Produktion, Logistik und Operations Research SS 29 Prüfer: Prof. Dr. Karl Inderfurth Prüfungsbogen Vom Klausurteilnehmer auszufüllen! Name, Vorname : Fakultät : Matrikelnummer

Mehr

Zinsrechnung A: Die Zinsen

Zinsrechnung A: Die Zinsen Zinsrechnung A: Die Zinsen EvB Mathematik Köberich Berechne bei den nachfolgenden Aufgaben jeweils die Zinsen! Z X X X X X x K 2400 2400 2400 2400 2400 2400 i 15 Tage 2 Monate 100 Tage 7 Monate ¼ Jahr

Mehr

AUFGABENTEIL. Klausur: Modul Optimierungsmethoden des Operations Research. Termin:

AUFGABENTEIL. Klausur: Modul Optimierungsmethoden des Operations Research. Termin: Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Univ.-Prof. Dr. Andreas Kleine AUFGABENTEIL Klausur: Modul 32621 Termin: 19.09.2016 Prüfer: Prof. Dr. Andreas

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Fachhochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel

Fachhochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel Fachhochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 9 14 jutta.arrenberg@fh-koeln.de Übungen zur Vorlesung Wirtschaftsmathematik Gleichungssysteme

Mehr

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Wintersemester 2007/08 27.2.2008 Dr. Sascha Kurz Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Bitte lesbar ausfüllen, Zutreffendes ankreuzen Herr Frau Name, Vorname: Anschrift:

Mehr

Übung 3, Simplex-Algorithmus

Übung 3, Simplex-Algorithmus Übung 3, 21.6.2011 Simplex-Algorithmus Aufgabe 3.1 Lösen Sie das folgende Optimierungsproblem (von Aufgabe 2.3) graphisch. Substituieren Sie dazu z = 5 y um ein 2-dimensionales Problem zu erhalten. Rechnung

Mehr

Download. Klassenarbeiten Mathematik 8. Zinsrechnung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 8. Zinsrechnung. Jens Conrad, Hardy Seifert. Downloadauszug aus dem Originaltitel: Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Dieser Download ist ein Auszug aus dem Originaltitel Klassenarbeiten

Mehr

Angewandte Mathematik

Angewandte Mathematik Informelle Kompetenzmessung zur standardisierten kompetenzorientierten schriftlichen Reife- und Diplomprüfung BHS Jänner 2015 Angewandte Mathematik Teil A + Teil B (Cluster 8) Korrekturheft Aufgabe 1 Bevölkerungswachstum

Mehr

Zugeordneter bipartiter Graph

Zugeordneter bipartiter Graph Zugeordneter bipartiter Graph Für ein Transportproblem sei A = {A 1,...,A m } die Menge der Fabriken und B = {B 1,...,B n } sei die Menge der Warenhäuser. Wir ordnen nun einem Transportproblem einen bipartiten

Mehr

Produktionsplanung und Lineare Optimierung im Rahmen des Projekts Mathematik und Ökonomie 12./13. November 2003 in Düsseldorf.

Produktionsplanung und Lineare Optimierung im Rahmen des Projekts Mathematik und Ökonomie 12./13. November 2003 in Düsseldorf. Übungsaufgaben Aufgabe 1a Medikamentenmischung Ein Pharmaziehersteller möchte ein neues Medikament auf den Markt bringen. Das Medikament kann aus vier verschiedenen Komponenten (K1 K4) zusammengestellt

Mehr

Errata. Grundlagen der Finanzierung. verstehen berechnen entscheiden. Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003

Errata. Grundlagen der Finanzierung. verstehen berechnen entscheiden. Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003 Errata in Grundlagen der Finanzierung verstehen berechnen entscheiden Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003 Stand 10. April 2006 Änderungen sind jeweils fett hervorgehoben.

Mehr

Hypothekendarlehen. Festlegungen im Kreditvertrag. Beispiel 1. Beispiel 1 / Lösung 16.04.2012. Finanzmathematik HYPOTHEKENDARLEHEN

Hypothekendarlehen. Festlegungen im Kreditvertrag. Beispiel 1. Beispiel 1 / Lösung 16.04.2012. Finanzmathematik HYPOTHEKENDARLEHEN Finanzmathematik Kapitel 3 Tilgungsrechnung Prof. Dr. Harald Löwe Sommersemester 2012 Abschnitt 1 HYPOTHEKENDARLEHEN Festlegungen im Kreditvertrag Der Kreditvertrag legt u.a. folgende Daten fest Kreditsumme

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Linearen Gleichungssysteme Anwendungsaufgaben

Linearen Gleichungssysteme Anwendungsaufgaben Linearen Gleichungssysteme Anwendungsaufgaben Lb S. 166 Nr.9 Im Jugendherbergsverzeichnis ist angegeben, dass in der Jugendherberge in Eulenburg 145 Jugendliche in 35 Zimmern übernachten können. Es gibt

Mehr

Mathematik-Klausur SS 2000

Mathematik-Klausur SS 2000 fachhochschule hamburg Mathematik-Klausur SS 2000 Prof.Dr.Horst Kreth Name: Vorname: Matrikel-Nr.: Studiengang: Bitte beachten Sie: 1. Alle Rechnungen müssen nachvollziehbar dargestellt sein. Je mehr Sie

Mehr

Bedienungsanleitung Rückabwicklungsrechner

Bedienungsanleitung Rückabwicklungsrechner 1 Eingaben Zelle C2 Auszahlungsbetrag Hier muss der erste Auszahlungsbetrag eingegeben werden. Weitere Auszahlungen siehe Weiter unten. Zelle C3 Zeitpunkt der Auszahlung Datum der ersten Auszahlung Zelle

Mehr

Aufgabe 1: Bestimmen Sie Zahlen a b. ,, für die. = b. und gleichzeitig a + b + 1 = 0 gilt. Lösung zu Aufgabe 1:

Aufgabe 1: Bestimmen Sie Zahlen a b. ,, für die. = b. und gleichzeitig a + b + 1 = 0 gilt. Lösung zu Aufgabe 1: WS 99/99 Aufgabe : Bestimmen Sie Zahlen a b,, für die 6 b a und gleichzeitig a + b + gilt. Lösung zu Aufgabe : WS 99/99 Aufgabe : Ein Unernehmen stellt aus ohstoffen (,,, ) Zwischenprodukte ( Z, Z, Z )

Mehr

Kreditmanagement. EK Finanzwirtschaft

Kreditmanagement. EK Finanzwirtschaft EK Finanzwirtschaft a.o.univ.-prof. Mag. Dr. Christian KEBER Fakultät für Wirtschaftswissenschaften www.univie.ac.at/wirtschaftswissenschaften christian.keber@univie.ac.at Kreditmanagement 1 Kreditmanagement

Mehr

Doing Economics with the Computer Sommersemester 2002. Excel Solver 1

Doing Economics with the Computer Sommersemester 2002. Excel Solver 1 Universität Bern Kurt Schmidheiny / Manuel Wälti Doing Economics with the Computer Sommersemester 2002 Excel Solver 1 Mit dem Solver unterstützt Excel eine Funktion, mit der u.a. komplex verschachtelte

Mehr

Mathematik-Klausur vom 16.4.2004

Mathematik-Klausur vom 16.4.2004 Mathematik-Klausur vom 16..200 Aufgabe 1 Die Wucher-Kredit GmbH verleiht Kapital zu einem nominellen Jahreszinsfuß von 20%, wobei sie die anfallenden Kreditzinsen am Ende eines jeden Vierteljahres der

Mehr

III. Transportaufgaben 1. Problemstellung 2. Analyse 3. Bestimmung der Startecke 4. Eckenaustausch 5. Umladeprobleme 6. Zuordnungsprobleme

III. Transportaufgaben 1. Problemstellung 2. Analyse 3. Bestimmung der Startecke 4. Eckenaustausch 5. Umladeprobleme 6. Zuordnungsprobleme III. Transportaufgaben 1. Problemstellung 2. Analyse 3. Bestimmung der Startecke 4. Eckenaustausch 5. Umladeprobleme 6. Zuordnungsprobleme H. Weber, FHW, OR SS07, Teil 6, Seite 1 1. Problemstellung Wir

Mehr