Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Größe: px
Ab Seite anzeigen:

Download "Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008"

Transkript

1 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Übungen zu Kusvolesung Physik II (Elektodynamik) Sommesemeste8 Übungsblatt N. 4 Aufgabe 3: Feldstäke im Innen eines Ladungsinges a) Betachten wi nun zunächst mal die Längen s und s. Diese können duch eine Appoximation ausgedückt weden duch,,. Es ist nun nämlich so, dass in einem Keis mit dem Radius und dem Winkel die Stecke s des Keisausschnitts gegeben ist duch: s= Da wi hie nun keinen wiklichen Keis haben, sonden nu ungefäh, müssen wi eine kleine Annäheung duchfühen, die jedoch ziemlich gut ist, wie wi in de Skizze nebenan sehen. Daaus folgt fü unsee beiden Stecken s und s : s = s = Die Ladung betägt aus de Definition de Linienladungsdichte: = s = s Damit folgt fü die Ladungen de beiden Keisausschnitte: = = Zunächst betachten wi nu das Feld, das die Ladung auf dem Keissegment s hevouft. Da die Ladungen ja fü jeden Keisausschnitt (näheungsweise) in einem Keis um den Punkt P angeodnet sind, kann man die Kaft duch eine Punktladung im Abstand ausdücken: F E = F Genau analog funktioniet dies auch mit E : E = Betachten wi nun das Vehältnis von E zu E : = E E = Damit ezeugt die Ladung von s das stäkee Feld.

2 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) b) Fü die Ladungen und gilt imme noch dasselbe wie in de Aufgabe a). Wi müssen nun nu unsee Kaft F entspechend anpassen: F E = F Jetzt setzen wi wiede unsee Ladungen in E ein und die entspechenden : E = E = Damit ezeugen beide Ladungen dieselbe Feldstäke. c) Betachten wi nun statt eines Keisausschnitts einen Kugelausschnitt. Diese ist duch einen Öffnungswinkel gegeben. Diese hat folgende Beziehungen: 4 = s 4 (I) Wobei de entspechende Raumwinkel des Kugelsegments ist, 4 de volle Raumwinkel, s die Fläche des Kugelsegments und 4 die gesamte Obefläche de Kugel gibt. Wenn wi uns nun wiede unse spezielles Poblem anschauen, können wi wie schon in de a) eine seh gute Appoximation duch eine Kugel machen, sodass die Relation (I) gilt. Damit folgt fü unsee Kugelsegmente: 4 = s 4 s= s = s = Mit de Flächenladungsdichte = s folgt: = s = s Wenn wi nun das elektische Feld im Potential betachten: E s E s = = Damit ezeugen beide Kugelausschnitte dasselbe elektische Feld.

3 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Wenn wi das ganze nun analog mit einem E = Potential machen, bekommen wi: E = Betachten wi nun das Vehältnis von E zu E : E E = Damit ezeugt die Ladung von s das stäkee Feld. A 4: Supeposition und Gauß'sche Satz a) Da wi das elektische Feld duch Supeposition beechnen sollen, beechnen wi die elektischen Felde de beiden Ladungen = und =. Da wi ein eindimensionales Poblem haben, müssen wi nicht mit Vektoen abeiten: Es gilt: E= F Damit folgt fü unsee elektischen Felde E und E : E E Übe das Supepositionspinzip folgt somit: E Ges = E E = a a a a a = a 9 = 8 9 9a a = 9 a b) De Gaußsche Satz besagt folgendes: =lin E da= (Heleitung steht seh gut in de Volesung) Mit dem Flächenelement da= sin d d und E nicht abhängig von, kann man das elektische Feld aus dem Integal ausziehen: = E sin d d =E 4 = E =4 3

4 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Hiebei ist, da: die von die von de Gauß'schen Obefläche umhüllt ist. Diese ist nun abe in diesem Fall = = Dies escheint auch logisch, da dies ein Dipol ist und jede Feldlinie die aus de Kugel austitt auch wiede eintitt und damit ist de Fluss: = = Daaus folgt jedoch auch: =E 4 = Und damit, da eine Vaiable mit : E = c) Wi können dieses elektische Feld nicht übe den Gauß'schen Satz beechnen, da wi keine zum Radius symmetische und homogene Ladungsveteilung haben, sonden einen Dipol (siehe obee Skizze). Dahe ist de Fluss estens automatisch und zweitens sind gilt fü die Feldlinien, die aus de Gauß'schen Obefläche heausteten nicht: E da Damit kann man hie das elektische Feld nicht duch den Gauß'schen Satz beechnen. De Gauß'sche Satz macht zum Beispiel Sinn, wenn man die Feldstäken beide Kugelladungen zunächst einzeln beechnet und dann übe das Supepositionspinzip die Gesamtfeldstäke beechnet. Dann kommt man wiede auf: E Ges = E E = a 9 = a = 9 a A5: Ladungsveteilungen, E-Felde und Potentiale a) Da wi hie wiede eine symmetische Ladungsveteilung haben, können wi wiede mit dem Gauß'schen Satz abeiten. Hie noch mal eine kuze Heleitung: =E A= E A falls E A Anmekung: De Vekto A bzw. da wid senkecht zu wiklichen Obefläche definiet, ähnlich dem Dehimpuls, de ja auch nicht in die Richtung de Geschwindigkeitsfläche, sonden senkecht daauf steht. Somit folgt fü eine zu symmetischen und homogenen Ladungsveteilung: 4

5 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) = O E da Wobei wi in de Volesung gezeigt haben, dass es egal ist, übe welche Obefläche wi integieen. Also integieen wi übe eine Keisobefläche. Damit folgt da= sin d d. = O E da= E sin d d =E sin d d =E 4 Wenn wi nun eine zu symmetische Ladungsveteilung haben, ist es ähnlich ode wie eine Punktladung und es gilt fü E das Coulomb'sche Gesetz: =E 4 4 = Nun zu unseem konketen Poblem. Wi haben =4 R. Einsetzen in unse Gauß'sches Gesetz: =E 4 = = 4 R E = R Auf dieses Egebnis wäe man jedoch auch einfach übe einsetzen von in das Coulomb'sche Gesetz gekommen. Jedenfalls folgt daauf fü das Potential V : V = E ' d' =[ R ] = R Diese Felsstäken und Potentiale gelten jedoch nu fü R, da fü R keine Ladung von de Gauß'schen Obefläche umschlossen wäe und damit =E = und V = E d=konst. wäe. Die Konstante von V fü R ist genau das Potential an de Stelle V R, da das Potential stetig sein muss, also V R= R R = R. De Velauf von Feldstäke und Potential in de Skizze: 5

6 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) b) Fü R nutzen wi einfach das Coulomb'sche Gesetz: E= F 4 3 R3 = R3 3 V = E d= R3 3 Nun könnten wi noch betachten was passiet, wenn R ist. De Gauß'sche Satz besagt, das wenn die von de Gauß'schen (Kugel-)Obefläche umhüllte Ladung ist, die Feldstäke gegeben ist duch: E 4 = (I) Dies ist wie man sieht äuivalent zum Coulomb'schen Gesetz. Nun ist die Ladung Kugel abhängig von, wobei gilt: innehalb de Ges = V V Ges : Ladung V :Volumen = V Ges = 4/3 3 4 /3 R 3 = 4 V Ges 4 /3 R Einsetzen von in Gleichung (I) gibt uns: E 4/3 3 = 3. Somit wüde unse Potential natülich ~ sein. Da das Potential nun abe divegieen wüde, setzt man nomaleweise ein Standadpotential (z.b. bei R und beechnet dann den Potentialunteschied, auch Spannung U. 6

7 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) c) Fü diese Aufgabe benötigen wi nun zwingend das Gauß'sche Gesetz [wie schon ewähnt hätte man die a) und b) auch mit Coulomb echnen können], den nun handelt es sich nicht meh um eine Punktladung. Wie wi ja in de Volesung gezeigt haben, gilt de Gauß'sche Satz (falls wi wie hie eine zum Abstand symmetische Ladungsveteilung haben) fü jede beliebige Obefläche: = O E da Da wi hie einen Stab, also einen Zylinde haben, empfiehlt es sich, hie übe einen Zylinde zu integieen. Fü einen Zylinde gilt folgendes Flächenelement: da= dl Damit folgt: = O l E da= E dl= E l= E = l (I) Die Linienladungsdichte ist = R. Damit entspicht die Ladung : = l= R l Einsetzen in den Fluss (Gleichung (I)): E = l = R Fü das Potential folgt dann: V = E ' d' =[ R ln ] divegent Nun wi das Potential andes definiet. Wi nehmen uns ein Standadpotential an de Stelle geben das Potential bezüglich dieses Punktes als Potentialdiffeenz (Spannung U) an: U V R V = R [ R ] = R [ln ln R]= R ln R =R und Fü R müssen wi nun wiede schauen, wie man die von de Gauß'schen Fläche umschlossene Ladung in Abhängigkeit von bescheiben kann. Es gilt nun wiede: Ges = V V Ges : Ladung V :Volumen = V Ges = l R l = l V Ges R l 7

8 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Eneutes einsetzen in unsee Gleichung (I): E = l = l l = Fü das Potential gilt dann: V = divegent Also definieen wi wiede den Potentialunteschied U : U =V R V = R Damit folgt fü die Velaufsskizzen E und U : d) Hie haben wi zunächst wiede ein Kabel wie bei de c), nu dass es von einem dünnen geladenen Hohlzylinde umgeben ist. In diesem geladenen Hohlzylinde hat diese keinen Einfluss, da es sich um eine symmetische Ladungsveteilung handelt und die äußee Ladung daauf keinen Einfluss nimmt (Gauß'sche Satz). Dahe veläuft die Feldstäke und die Spannung wie in de Aufgabe c). Nun betachten wi was passiet, wenn im Beeich des äußeen Hohlzylindes ist, also R R 3. Die Ladung des umschlossenen Außenzylindes ist wiede gegeben duch: Ges = V V Ges : Ladung V :Volumen V Ges = V Ges 8

9 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Wobei das Volumen eines Hohlzylindes mit inneen Radius R und äußeen Radius gegeben ist duch: V =l R V Ges=l R 3 R Ges= l R 3 R Einsetzen bingt uns: = l R Damit folgt fü die Gesamtladung im inneen de Gauß'schen Zylindeobefläche in Abhängigkeit vom Radius : = =l R l R =l R R l Mit dem Gauß'schen Satz (fü Zylindeobefläche hegeleitet in c) )folgt damit: E = l = l R R l l l =K ~ K Nun beechnen wi wiede die Spannung (in Relation zu R also dem inneen Radius, da wi ein stetiges Potential haben wollen und damit einen allgemeinen Bezugspunkt. Wi haben schon in de c) den Radius des inneen Zylindes als Standadpotential genutzt): R U = E =K R R 4 Wobei die Ladung fü R 3 ist, da nun beide Ladungen, die entgegengesetzt gleich sind umschlossen sind. Damit ist die wikende Kaft fü R 3 gleich und das Potential konstant. 9

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Positive und negative Ladung Das Coulombsche Gesetz F 1 4πε q q 1 Quantisieung und haltung de elektischen Ladung e 19 1, 6 1 C Das

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen PN 2 Einfühung in die alphysik fü Chemike und Biologen 2. Volesung 27.4.07 Nadja Regne, Thomas Schmiee, Gunna Spieß, Pete Gilch Lehstuhl fü BioMolekulae Optik Depatment fü Physik LudwigMaximiliansUnivesität

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Einführung in die Physik I. Elektromagnetismus 1

Einführung in die Physik I. Elektromagnetismus 1 infühung in die Physik I lektomagnetismus O. von de Lühe und. Landgaf lektische Ladung lektische Ladung bleibt in einem abgeschlossenen System ehalten s gibt zwei Aten elektische Ladung positive und negative

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Magnetfeld: Pemanentmagnete und Elektomagnete F = qv B B Gekeuzte Felde De Hall-Effekt Geladene Teilchen auf eine Keisbahn = mv

Mehr

Der elektrische Dipol Sind zwei unterschiedliche Ladungen in einem Abstand d angeordnet, dann liegt ein elektrischer Dipol vor.

Der elektrische Dipol Sind zwei unterschiedliche Ladungen in einem Abstand d angeordnet, dann liegt ein elektrischer Dipol vor. De elektische Dipol Sind zwei unteschiedliche Ladungen in einem Abstand d angeodnet, dann liegt ein elektische Dipol vo. +q d q Man definiet das Dipolmoment: p q d Das Diplomoment ist ein Vekto, de entlang

Mehr

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes Fakultät fü Physik R: Rechenmethoden fü Physike, WiSe 06/7 Dozent: Jan von Delft Übungen: Hong-Hao Tu, Fabian Kugle http://www.physik.uni-muenchen.de/lehe/volesungen/wise_6_7/_ echenmethoden_6_7/ Repetitoium

Mehr

9.2. Bereichsintegrale und Volumina

9.2. Bereichsintegrale und Volumina 9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen

Mehr

Elektrostatik. Salze lösen sich in Wasser um Lösungen geladener Ionen zu bilden, die drei Viertel der Erdoberfläche bedecken.

Elektrostatik. Salze lösen sich in Wasser um Lösungen geladener Ionen zu bilden, die drei Viertel der Erdoberfläche bedecken. Elektostatik Elektische Wechselwikungen zwischen Ladungen bestimmen gosse Teile de Physik, Chemie und Biologie. z.b. Sie sind die Gundlage fü stake wie schwache chemische Bindungen. Salze lösen sich in

Mehr

Kreis / Kugel - Integration. 5. Kugelsegment 6. Kreiskegel 7. Kugelausschnitt 8. Rotationskörper: Torus

Kreis / Kugel - Integration. 5. Kugelsegment 6. Kreiskegel 7. Kugelausschnitt 8. Rotationskörper: Torus Keis / Kugel - Integation 1. Keis 2. Kugel 3. Keissekto 4. Keissegment 5. Kugelsegment 6. Keiskegel 7. Kugelausschnitt 8. Rotationsköpe: Tous 1. Keis Fomelsammlung - Fläche: A = 2 Integation katesische

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mathematik fü Ingenieue Doppelintegale THE SERVICES Mathematik PROVIDER fü Ingenieue DIE - Doppelintegale Anschauung des Integals ingenieusmäßige Intepetation des bestimmten Integals Das bestimmte Integal

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Inhalt der Vorlesung Teil 2

Inhalt der Vorlesung Teil 2 Physik A/B SS 7 PHYSIK B Inhalt de Volesung Teil 3. Elektizitätslehe, Elektodynamik Einleitung Elektostatik Elektische Stom Magnetostatik Zeitlich veändeliche Felde - Elektodynamik Wechselstomnetzweke

Mehr

Man erkennt, dass die Feldlinien an der Rundung und der Spitze Ecken besonders dicht liegen. Entsprechend ist hier die auch Ladungsdichte am höchsten.

Man erkennt, dass die Feldlinien an der Rundung und der Spitze Ecken besonders dicht liegen. Entsprechend ist hier die auch Ladungsdichte am höchsten. 1.6. Ladungen in Metallen; Influenz In diesem Abschnitt wollen wi zunächst betachten, wie sich Ladungen in geladenen metallischen 1 Objekten anodnen und welche allgemeinen Aussagen sich übe das elektische

Mehr

Magnetostatik. Feldberechnungen

Magnetostatik. Feldberechnungen Magnetostatik 1. Pemanentmagnete. Magnetfeld stationäe Stöme i. Elektomagnetismus Phänomenologie ii. Magnetische Fluss Ampeesches Gesetz iii. Feldbeechnungen mit Ampeschen Gesetz i.das Vektopotenzial.

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische

Mehr

11.11 Das elektrische Potential

11.11 Das elektrische Potential . Das elektische Potential Wie wi im voigen Abschnitt gesehen haben kann eine Pobeladung q in jedem Punkt P eines elektischen Feldes eine feldezeugenden Ladung Q eindeutig eine entielle negie zugeodnet

Mehr

12. Berechnung reeller Integrale mit dem Residuensatz

12. Berechnung reeller Integrale mit dem Residuensatz 72 Andeas Gathmann 2. Beechnung eelle Integale mit dem esiduensatz Wi haben geade gesehen, dass man mit Hilfe des esiduensatzes nahezu beliebige geschlossene komplexe Kuvenintegale beechnen kann. In diesem

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

Experimentelle Physik II

Experimentelle Physik II Expeimentelle Physik II Sommesemeste 08 Vladimi Dyakonov (Lehstuhl Expeimentelle Physik VI VL#4/5 07/08-07-008 Tel. 0931/888 3111 dyakonov@physik.uni-wuezbug.de Expeimentelle Physik II 8. Bandstuktu und

Mehr

Kapitel 4 Energie und Arbeit

Kapitel 4 Energie und Arbeit Kapitel 4 negie und Abeit Kaftfelde Wenn wi jedem unkt des Raums eindeutig einen Kaft-Vekto zuodnen können, ehalten wi ein Kaftfeld F ( ) Häufig tauchen in de hysik Zental-Kaftfelde auf : F( ) f ( ) ˆ

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

Ist die elektrische Feldstärke einer Punktladung exakt proportional 1/r 2?

Ist die elektrische Feldstärke einer Punktladung exakt proportional 1/r 2? Ist die elektische Feldstäke eine Punktladung exakt popotional 1/? Feynman s Lectues on Physics sind unübetoffen, wenn es daum geht, Physik zu vestehen 1 Inteessant auch die Ausflüge in die Nischen de

Mehr

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= 4 + 0 + s 3 ;,s 0 3 4 a) Duch geeignete Wahl de Paamete und s ehält man

Mehr

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS ARBEITSBLATT 15 DER KREIS Zunächst einmal wollen wi uns übelegen, was man mathematisch unte einem Keis vesteht. Definition: Ein Keis ist die Menge alle Punkte, die von einem gegebenen Punkt ( Keismittelpunkt)

Mehr

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld 11. Elektrodynamik Physik für ETechniker 11. Elektrodynamik 11.1 Das Gaußsche Gesetz 11.2 Kraft auf Ladungen 11.2.1 Punktladung im elektrischen Feld 11.2.2 Dipol im elektrischen Feld 11. Elektrodynamik

Mehr

Elektrostatik II Felder, elektrische Arbeit und Potential, elektrischer Fluss

Elektrostatik II Felder, elektrische Arbeit und Potential, elektrischer Fluss Physik A VL9 (.. Elektostatik II Fele, elektische Abeit un Potential, elektische Fluss Das elektische Fel elektisches Fel eine Punktlaung Dastellung uch Fellinien elektische Abeit un elektisches Potential

Mehr

Felder ausgewählter Konfigurationen

Felder ausgewählter Konfigurationen Felde ausgewählte Konfiguationen Anwendung von Supepositionspinzip Gauß sche Satz Feldbeechung aus Potenzial. Feld und Potenzial innehalb und außehalb eine Vollkugel. Feld und Potenzial innehalb und außehalb

Mehr

Zusammenfassung magnetische Kraft auf elektrische Ladung

Zusammenfassung magnetische Kraft auf elektrische Ladung 24b Magnetismus 1 Zusammenfassung magnetische Kaft auf elektische Ladung Kaftwikung am elektisch geladenen Isolato ist otsunabhängig Kaftwikung am Magneten ist otsabhängig Maximale Kaft an den Enden Magnete

Mehr

Newtons Problem des minimalen Widerstands

Newtons Problem des minimalen Widerstands Newtons Poblem des minimalen Widestands Newton-Poblem (685: Wie muss ein sich in eine Flüssigkeit mit konstante Geschwindigkeit bewegende Köe aussehen, damit e, bei vogegebenem maximalen Queschnitt einen

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Elektrostatik. Kräfte zwischen Ladungen: quantitative Bestimmung. Messmethode: Coulombsche Drehwaage

Elektrostatik. Kräfte zwischen Ladungen: quantitative Bestimmung. Messmethode: Coulombsche Drehwaage Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld i) Feldbegiff, Definitionen ii) Dastellung von Felden iii) Feldbeechnungen

Mehr

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik Abitupüfung Physik 2016 (Nodhein-Westfalen) Leistungskus Aufgabe 1: Induktion bei de Tolinientechnik Im Fußball sogen egelmäßig umstittene Entscheidungen übe zu Unecht gegebene bzw. nicht gegebene Toe

Mehr

Kondensatoren & Dielektrika. Kapazität, Kondensatortypen,

Kondensatoren & Dielektrika. Kapazität, Kondensatortypen, Kondensatoen & Dielektika Kapazität, Kondensatotypen, Schaltungen, Dielektika 9.6. Sanda Stein Kondensatoen Bauelement, das elektische Ladung speichen kann besteht aus zwei leitenden Köpen, die voneinande

Mehr

Björn Schulz Über die Maxwell-Gleichungen Berlin, den S. 1 / 5. Wahlthema Maxwellsche Gleichungen

Björn Schulz Über die Maxwell-Gleichungen Berlin, den S. 1 / 5. Wahlthema Maxwellsche Gleichungen jön chulz Übe ie Maxwell-Gleichungen elin, en 8923 / 5 I Wahlthema Maxwellsche Gleichungen Es gibt 5 Gleichungen: ie beischeiben as elektomagnetische Fel, seine Ezeugung, Eigenschaften un Wikungen un geben

Mehr

1.3 Das elektrische Feld

1.3 Das elektrische Feld hysik II TU Dotmund SS8 Götz Uhig Shaukat Khan Kapitel.3 Das elektische Feld Elektische Feldstäke = Kaft auf obeladung nomiet q Q F( ) Q F( ) e E( ) e 4 4 q N N m V F q E E C Cm m Nm V (Volt) = C J C Supepositionspinzip:

Mehr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung

Mehr

17. Vorlesung EP. III. Elektrizität und Magnetismus. 17. Elektrostatik

17. Vorlesung EP. III. Elektrizität und Magnetismus. 17. Elektrostatik 17. Volesung EP III. Elektizität und Magnetismus 17. Elektostatik Vesuche: Reibungselektizität Alu-Luftballons (Coulombkaft) E-Feldlinienbilde Influenz Faaday-Beche Bandgeneato 17. Elektostatik 17. Volesung

Mehr

2.12 Dreieckskonstruktionen

2.12 Dreieckskonstruktionen .1 Deieckskonstuktionen 53.1 Deieckskonstuktionen.1.1 B aus a, b und c. Keis um mit Radius b 3. Keis um B mit Radius a 4. Schnittpunkt de Keise ist Bemekung: Es entstehen zwei konguente B..1. B aus α,

Mehr

Magnetostatik I Grundlagen

Magnetostatik I Grundlagen Physik VL31 (08.01.2013) Magnetostatik I Gundlagen Magnetische Käfte und Felde Magnetfelde - Dipolnatu Das Magnetfeld de Ede De magnetische Fluß 1. & 2. Maxwellsche Gleichungen Flußdichte und magnetische

Mehr

Wintersemester 2012/2013 Prof. Dr. Stefan Müller AG Computergraphik km 2 0,1571 0, km 2. r d. 4πI

Wintersemester 2012/2013 Prof. Dr. Stefan Müller AG Computergraphik km 2 0,1571 0, km 2. r d. 4πI 1. Übungsblatt zu Volesung CV-Integation (Lösung) ufgabe 1: Kugelobefläche ufgabe : Raumwinkel 15 43 Wintesemeste 1/13 Pof.. Stefan Mülle G Computegaphik sinθ θ ϕ 43 [ ϕ] 6 ---------- [ cosθ] 18 35 6 35

Mehr

Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung

Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung Kapitel 13 Das Wassestoff-Atom 13.1 negiewete des Wassestoff-Atoms duch Kastenpotential-Näheung Das gobe Atommodell des im Potentialtopf eingespeten Atoms vemag in qualitative Weise das Aufteten von Linienspekten

Mehr

3. Elektrostatik (Motivation) Nervenzelle

3. Elektrostatik (Motivation) Nervenzelle 3. Elektostatik (Motivation) Nevenzelle 18 Jh.: Neuone wie elektische Leite. ABER: Widestand des Axoplasmas seh hoch 2,5 10 8 Ω (vegleichba Holz) Weiteleitung duch Pozesse senkecht zu Zellmemban Zellmemban

Mehr

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld Inhalt 11. Elektrodynamik 11.1 Das Gaußsche Gesetz 11.2 Kraft auf Ladungen 11.2.1 Punktladung im elektrischen Feld 11. Elektromagnetische Kraft 11 Elektrodynamik 11. Elektrodynamik (nur Vakuum = Ladung

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen Aufgabenblatt-Spialen Tangentenwinkel.doc 1 Aufgaben zu Bestimmung des Tangentenwinkels von Spialen Gegeben ist die Spiale mit de Gleichung = 0,5 φ, φ im Bogenmaß. (a) Geben Sie die Gleichung fü Winkel

Mehr

Integration von Ortsgrößen zu Bereichsgrößen

Integration von Ortsgrößen zu Bereichsgrößen Integation von Otsgößen zu Beeichsgößen 1 Integation von Otsgößen zu Beeichsgößen Stömungen sind Bewegungen von Teilchen innehalb von Stoffen. Ihe wesentlichen Gesetzmäßigkeiten gehen aus Zusammenhängen

Mehr

4.3 Magnetostatik Beobachtungen

4.3 Magnetostatik Beobachtungen 4.3 Magnetostatik Gundlegende Beobachtungen an Magneten Auch unmagnetische Köpe aus Fe, Co, Ni weden von Magneten angezogen. Die Kaftwikung an den Enden, den Polen, ist besondes goß. Eine dehbae Magnetnadel

Mehr

Coulombsches Potential und Coulombsches Feld von Metallkugeln TEP

Coulombsches Potential und Coulombsches Feld von Metallkugeln TEP Vewandte Begiffe Elektisches Feld, Feldstäke, elektische Fluss, elektische Ladung, Gauß-Regel, Obeflächenladungsdichte, Induktion, magnetische Feldkonstante, Kapazität, Gadient, Bildladung, elektostatisches

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

Lösung: 1. Für das Volumen gilt die Formel: V = r 2. π. h = 1000 [cm 3 ]. 2. Für die Oberfläche gilt die Formel: O = 2. r 2. π + 2. r. π. h.

Lösung: 1. Für das Volumen gilt die Formel: V = r 2. π. h = 1000 [cm 3 ]. 2. Für die Oberfläche gilt die Formel: O = 2. r 2. π + 2. r. π. h. Analysis Anwendungen Wi 1. Das Konsevendosen-Poblem Ein Konsevendosenhestelle will zylindische Dosen mit einem Inhalt von einem Lite, das sind 1000 cm 3, hestellen und dabei möglichst wenig Mateial vebauchen.

Mehr

34. Elektromagnetische Wellen

34. Elektromagnetische Wellen Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.

Mehr

Aufgabenblatt zum Seminar 04 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 04 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Semina4 PHYS7357 Eletizitätslehe und Magnetismus (Physi, Witschaftsphysi, Physi Lehamt, Nebenfach Physi) Othma Mati, (othma.mati@uni-ulm.de) 3. 5. 9 Aufgaben. Das eletostatische Potential

Mehr

Bei der Wärmeübertragung kann man drei Transportvorgänge voneinander unterscheiden:

Bei der Wärmeübertragung kann man drei Transportvorgänge voneinander unterscheiden: 6 ämeübetagung Bei de ämeübetagung kann man dei Tanspotvogänge voneinande untescheiden: ämeleitung ämeübegang / onvektion ämestahlung De ämetanspot duch Leitung ode onvektion benötigt einen stofflichen

Mehr

2.3 Elektrisches Potential und Energie

2.3 Elektrisches Potential und Energie 2.3. ELEKTRISCHES POTENTIAL UND ENERGIE 17 2.3 Elektisches Potential un Enegie Aus e Mechanik wissen wi, ass ie Abeit Q, ie an einem Massepunkt veichtet wi, wenn iese um einen (kleinen) Vekto veschoben

Mehr

19. Vorlesung. III. Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion

19. Vorlesung. III. Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion 19. Volesung III. Elektizität und Magnetismus 19. Magnetische Felde 20. Induktion Vesuche: Elektonenstahl-Oszilloskop (Nachtag zu 18., Stöme im Vakuum) Feldlinienbilde fü stomduchflossene Leite Feldlinienbilde

Mehr

Elektrodynamik FSU Jena - SS 2007 Klausur - Lösungen

Elektrodynamik FSU Jena - SS 2007 Klausur - Lösungen Elektodynamik FSU Jena - SS 7 Klausu - Lösungen Stilianos Louca 9. Febua 8 Aufgabe Seien Φ und E jeweils das elektostatische Potential bzw. elektische Feld. Die Kugel Ladungsdichte ρ befinde sich im Uspung.

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

Erzeugung eines Skalars durch räumliche Differentiation einer vektoriellen Größe

Erzeugung eines Skalars durch räumliche Differentiation einer vektoriellen Größe eugung eines Skalas duch äumliche Diffeentiation eine ektoiellen Göße Diegen - de Gaußsche Integalsat Diegen ist als Wot aus de Stahlenoptik bekannt wid hie abe iel allgemeine gebaucht: Unte Diegen estehen

Mehr

Klausur 2 Kurs 12PH4 Physik

Klausur 2 Kurs 12PH4 Physik 2014-12-16 Klausu 2 Kus 12PH4 Physik Lösung 1 Teffen Elektonen mit goße Geschwindigkeit auf eine Gafitfolie und dann auf einen Leuchtschim, so sieht man auf dem Leuchtschim nicht nu einen hellen Punkt,

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung athphys-online Abschlusspüfung Beufliche Obeschule 0 Physik Technik - Aufgabe II - Lösung Teilaufgabe.0 Die Raustation ISS ist das zuzeit gößte künstliche Flugobjekt i Edobit. Ihe ittlee Flughöhe übe de

Mehr

Übungen zur Physik II (Elektrodynamik) SS Übungsblatt Bearbeitung bis Mi

Übungen zur Physik II (Elektrodynamik) SS Übungsblatt Bearbeitung bis Mi Übungen zu Physik II (Eektodynamik) SS 5. Übungsbatt 3.6.5 eabeitung bis Mi. 6.7.5 Aufgabe. Loentzkaft (+4) Ein Stab mit de Masse m und dem Ohmschen Widestand kann sich eibungsfei auf zwei paaeen Schienen

Mehr

Lösung der Aufgabe 4.2.2

Lösung der Aufgabe 4.2.2 Elektomagnetische Felde und Wellen: Lösung de Aufgabe 422 1 Lösung de Aufgabe 422 Übeabeitet von: JüM 172005 Aufgabe wie in de Klausu Eine Kugel vom adius ist gleichfömig in x-ichtung polaisiet mit P =

Mehr

[ M ] = 1 Nm Kraft und Drehmoment

[ M ] = 1 Nm Kraft und Drehmoment Stae Köpe - 4 HBB mü 4.2. Kaft und Dehmoment Käfte auf stae Köpe weden duch Kaftvektoen dagestellt. Wie in de Punktmechanik besitzen diese Kaftvektoen einen Betag und eine Richtung. Zusätzlich wid abe

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

Der Lagrange- Formalismus

Der Lagrange- Formalismus Kapitel 8 De Lagange- Fomalismus 8.1 Eule-Lagange-Gleichung In de Quantenmechanik benutzt man oft den Hamilton-Opeato, um ein System zu bescheiben. Es ist abe auch möglich den Lagange- Fomalismus zu vewenden.

Mehr

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften Expeimentiefeld 1 Statik und Dynamik 1. Einfühung Übelegungen im Beeich de Statik und Dynamik beuhen stets auf de physikalischen Göße Kaft F. Betachten wi Käfte und ihe Wikung auf einen ausgedehnten Köpe,

Mehr

1. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Newtonsche Mechanik

1. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Newtonsche Mechanik 1. Übungsblatt zu Theoetischen Physik I im SS16: Mechanik & Spezielle elativitätstheoie Newtonsche Mechanik Aufgabe 1 Abhängigkeit physikalische Gesetze von de Zeitdefinition Eine wesentliche Gundlage

Mehr

I 1. x r 2. PDDr. S.Mertens M. Hummel SS 2009 06.05.2009. Theoretische Physik II Elektrodynamik Blatt 6

I 1. x r 2. PDDr. S.Mertens M. Hummel SS 2009 06.05.2009. Theoretische Physik II Elektrodynamik Blatt 6 PDD. S.Metens M. Hummel Theoetische Physik II Elektodynamik Blatt 6 SS 29 6.5.29 I M 1. Halbunendliche Leiteschleife. Gegeben sei die abgebildete Leiteschleife aus zwei einseitig unendlichen (4Pkt.) Dähten

Mehr

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de lausthal ompute-aphik II Komplexität des Ray-Tacings. Zachmann lausthal Univesity, emany cg.in.tu-clausthal.de Die theoetische Komplexität des Ray-Tacings Definition: das abstakte Ray-Tacing Poblem (ARTP)

Mehr

Vektorrechnung 1. l P= x y = z. Polarkoordinaten eines Vektors Im Polarkoordinatensystem weist der Ortsvektor vom Koordinatenursprung zum Punkt

Vektorrechnung 1. l P= x y = z. Polarkoordinaten eines Vektors Im Polarkoordinatensystem weist der Ortsvektor vom Koordinatenursprung zum Punkt Vektoechnung Vektoen Vektoechnung 1 Otsvekto Feste Otsvektoen sind mit dem Anfangspunkt an den Koodinatenuspung gebunden und weisen im äumlichen, katesischen Koodinatensstem um Punkt P,, ( ) Das katesische

Mehr

1 Lineare Bewegung der Körper

1 Lineare Bewegung der Körper Lineae Bewegung de Köpe.3 Regentopfen und Fallschimspinge (v 0 (t) = g v(t)) In beiden Fällen handelt es sich um Objekte, die aus goßen Höhen fallen und von dem duchfallennen Medium (Luft) gebemst weden.

Mehr

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen 3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen $Id: impliit.tex,v 1.6 2012/10/30 14:00:59 hk Exp $ 1 Umkehfunktionen und impliite Funktionen 1.1 De Umkehsat Am Ende de letten Situng hatten wi alle Vobeeitungen um Beweis des Umkehsates abgeschlossen,

Mehr

Inhalt der Vorlesung Experimentalphysik II

Inhalt der Vorlesung Experimentalphysik II Expeimentalphysik II (Kip SS 29) Inhalt de Volesung Expeimentalphysik II Teil 1: Elektizitätslehe, Elektodynamik 1. Elektische Ladung und elektische Felde 2. Kapazität 3. Elektische Stom 4. Magnetostatik

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

Elektrostatik. Kapitel Problemstellung

Elektrostatik. Kapitel Problemstellung Kapitel 2 Elektostatik 2. Poblemstellung In de Elektostatik inteessieen wi uns fü ein elektische Felde, d.h. B ~ = und ~j =.WiinteessieenundfüdenstatischenFall,d.h.dievebleibenden Vaiablen und E ~ hängen

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

Elektrischer Strom. Strom als Ladungstransport

Elektrischer Strom. Strom als Ladungstransport Elektische Stom 1. Elektische Stom als Ladungstanspot 2. Wikungen des ektischen Stomes 3. Mikoskopische Betachtung des Stoms, ektische Widestand, Ohmsches Gesetz i. Diftgeschwindigkeit und Stomdichte ii.

Mehr

Drei Kreise. Fahrrad r = = = 3 = 3. r r r. n = = = Der Flächeninhalt beträgt 6,34 cm 2.

Drei Kreise. Fahrrad r = = = 3 = 3. r r r. n = = = Der Flächeninhalt beträgt 6,34 cm 2. Dei Keise Bestimmt den Flächeninhalt de schaffieten Fläche. Die schaffiete Figu besteht aus einem gleichseitigen Deieck ( cm) und dei Keisabschnitten (gau gezeichnet). Damit beechnet sich die Gesamtfläche:

Mehr

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en):

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en): Technische Betiebswitschaft Gundlagen de Physik D. Banget Mat.-N.: Mathematische Hilfsmittel de Physik Rechen-Test I Makieen Sie die ichtige(n) Lösung(en):. Geben Sie jeweils den Wahheitswet (w fü wah;

Mehr

Lösung 1: Die größte Schachtel

Lösung 1: Die größte Schachtel Lösung : Die gößte Schachtel Aufgabenstellung: Aus einem DIN-A-Blatt soll eine offene, quadefömige Schachtel hegestellt weden. Welches Füllvolumen ist maximal möglich, ohne dass etwas aus de Schachtel

Mehr

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km 00 0 6. Gavitation Gavitationswechselwikung: eine de vie fundaentalen Käfte (die andeen sind elektoagnetische, schwache und stake Wechselwikung) Ein Köpe it asse i Abstand zu eine Köpe it asse übt auf

Mehr

Grundlagen der Elektrotechnik - Einführung Bachelor Maschinenbau Bachelor Wirtschaftsingenieurwesen Maschinenbau Bachelor Chemieingenieurwesen

Grundlagen der Elektrotechnik - Einführung Bachelor Maschinenbau Bachelor Wirtschaftsingenieurwesen Maschinenbau Bachelor Chemieingenieurwesen Gundlagen de Elektotechnik - Einfühung Bachelo Maschinenbau Bachelo Witschaftsingenieuwesen Maschinenbau Bachelo Chemieingenieuwesen Jun.-Pof. D.-Ing. Katin Temmen Fachgebiet Technikdidaktik Institut fü

Mehr

6 Die Gesetze von Kepler

6 Die Gesetze von Kepler 6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de

Mehr

Von Kepler zu Hamilton und Newton

Von Kepler zu Hamilton und Newton Von Kele zu Hamilton und Newton Eine seh elegante Vaiante von 3 Kele egeben 1 Newton 1. Das este Kele sche Gesetz 2. Das zweite Kele sche Gesetz 3. Die Bahngeschwindigkeit v und de Hodogah 4. Die Beschleunigung

Mehr

Seminar Algebra. LECTURES ON FORMS IN MANY VARIABLES Funktionenkörper. Sommersemester 2005 Steffen Schölch Universität Ulm Stand: 17.

Seminar Algebra. LECTURES ON FORMS IN MANY VARIABLES Funktionenkörper. Sommersemester 2005 Steffen Schölch Universität Ulm Stand: 17. Semina Algeba LECTURES ON FORMS IN MANY VARIABLES Funktionenköpe Sommesemeste 2005 Steffen Schölch Univesität Ulm Stand: 17. Juli 2005 Funktionenköpe Definition 1: Ein Köpe K heißt Funktionenköpe in j

Mehr

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung:

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung: f) Scheinkäfte.f) Scheinkäfte Tägheitskäfte in beschleunigten Systemen, z.b. im anfahenden ode bemsenden Auto ode in de Kuve ( Zentifugalkaft ). In nicht beschleunigten Systemen ( Inetialsysteme ) gibt

Mehr

Teil A: Grundlagen der Elektrodynamik

Teil A: Grundlagen der Elektrodynamik Lfd. N.: Matikeln.: Seite A- Teil A: Gundlagen de Elektodynamik Aufgabe A- Wie lautet de Phaso fü das folgende zeitabhängige Feld mit de Keisfequenz ω? ψ( x, y, t) = A sin( ωt + ax) e by ~ A, a, b: eelle

Mehr

EP WS 2009/10 Dünnweber/Faessler

EP WS 2009/10 Dünnweber/Faessler 6.Volesung 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Wiedeholung): Enegie- und Impulsehaltung c) Stöße 4. Stae Köpe a) Dehmoment b) Schwepunkt Vesuche: Hüpfende Stahlkugel Veküztes

Mehr

r Radius k Kreislinie Welche Bestimmungsstücke benötigst du, um einen Kreis zeichnen zu können? A Radius B Kreissegment C Kreisring D Durchmesser

r Radius k Kreislinie Welche Bestimmungsstücke benötigst du, um einen Kreis zeichnen zu können? A Radius B Kreissegment C Kreisring D Durchmesser ganz kla: Mathematik 4 - Das Feienheft mit Efolgsanzeige Rettungsing Keis De Keis Meke d.. Duchmesse k d Radius k Keislinie Wie heißt die Linie, die den Keis begenzt? Welche Bestimmungsstücke benötigst

Mehr

Abstandsbestimmungen

Abstandsbestimmungen Abstandsbestimmungen A) Vektoechnungsmethoden (mit Skalapodukt): ) Abstand eines Punktes P von eine Ebene IE im Raum (eine Geade g in de Ebene ): Anmekung: fü Geaden im Raum funktioniet diese Vektomethode

Mehr

Wasserstoff mit SO(4)-Symmetrie

Wasserstoff mit SO(4)-Symmetrie Wassestoff mit SO(4)-Symmetie von Eduad Belsch Univesität Hambug 0. Dezembe 0 Inhaltsvezeichnis Einleitung Runge-Lenz-Vekto. klassisch......................................... quantenmechanisch..................................

Mehr

Formelsammlung - Grundlagen der Elektrotechnik II. Elektrische Ladung. F (l) d l = Q U U = Q U. J d A. mit ρ 0 = spez. Widerstand bei T = T 0

Formelsammlung - Grundlagen der Elektrotechnik II. Elektrische Ladung. F (l) d l = Q U U = Q U. J d A. mit ρ 0 = spez. Widerstand bei T = T 0 Fomelsammlung - Glagen de Elektotechnik II Elektische Ladung Coulumbsches Geset F12 = 1 q1 q 2 4π 12 2 ê 12 = 1 q 1 q 2 4π 2 1 2 2 1 2 1 Elektisches Feld d E ( ) = 1 4π dq 2 ê Elektostatische Kaft F =

Mehr

Statische Magnetfelder In der Antike war natürlich vorkommender Magnetstein und seine anziehende Wirkung auf Eisen bekannt.

Statische Magnetfelder In der Antike war natürlich vorkommender Magnetstein und seine anziehende Wirkung auf Eisen bekannt. Statische Magnetfelde In de Antike wa natülich vokommende Magnetstein und seine anziehende Wikung auf Eisen bekannt.. Jahhundet: Vewendung von Magneten in de Navigation. Piee de Maicout 69: Eine Nadel,

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik Elektostatik II Siegfied Pety Fassung vom 18 Janua 13 I n h a l t : 7 Spezielle elektostatische Felde 71 Plattenkondensato 7 Elektische Dipol 73 Elektische Doppelschicht

Mehr

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche:

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche: 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung): Enegie- und Impulsehaltung c) Stöße 4. Stae Köpe a) Dehmoment b) Schwepunkt 6.Volesung Vesuche: Hüpfende Stahlkugel Veküztes

Mehr

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives

Mehr