Agile Analytics Neue Anforderungen an die Systemarchitektur

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Agile Analytics Neue Anforderungen an die Systemarchitektur"

Transkript

1 Agile Analytics Neue Anforderungen an die Systemarchitektur Kassel Thorsten Becker & Bianca Stolz

2 ImmobilienScout24 Teil einer starken Gruppe Scout24 ist der führende Anbieter von Onlinemarktplätzen in Europa Mehr als 1000 Mitarbeiter 8 Mio. Nutzer (Unique Audience) in 18 Ländern aktiv S RUS 100%ige Tochter der Deutschen Telekom B NL D PL Unsere Vision: Entdecken. Entscheiden. Leben. F CH A CZ HR RO UA Quelle: Scout24 E I BG TR

3 Inhaltsverzeichnis 1. Agile Produktentwicklung - Anforderungen an die Organisation 2. Anforderungen an die BI Architektur Produktentwicklung 3. Agile Analytics & Big Data 4. Anforderungen an die BI Architektur - Unternehmen 5. Agilität im Data Warehouse 6. Datenmodellierung mit Data Vault 7. Umsetzung eines Testpiloten 8. Schlussfolgerungen

4 Agile Produktentwicklung Anforderungen an die Organisation 1 Moderne Unternehmen arbeiten mit agilen Methoden Seite 4

5 Agile Produktentwicklung Anforderungen an die Organisation 2 Moderne Unternehmen arbeiten mit agilen Methoden Die Organisationstruktur des Unternehmens unterstützt die agile Produktentwicklung Alle für Entwicklung (und ggf. Betrieb) eines Produkts erforderlichen Personen arbeiten in einem cross-funktionalen und selbstorganisierenden Team. Die Teams agieren unabhängig voneinander wie Start Up s und entscheiden u.a. über die eingesetzten Technologien. Ein Product Owner trägt die Verantwortung für ein Produkt und übernimmt die Priorisierung der Aufgaben in einem Backlog. Teams werden thematisch zusammenhängend in Produktlinien, Service Lines, Tribes o.ä. organisiert. Die Produktentwicklung findet in Iterationen statt. Am Ende jeder Iteration werden nach Lean Startup Prinzipien (z.b. MVP) Features geliefert und am Markt eingesetzt. Seite 5

6 Agile Produktentwicklung Anforderungen an die Organisation 2 SL_Suche SL-Führung Produkt / Organisation Webserver Applikations server Scrum Team Scrum Team Scrum Team Seite 6

7 Anforderungen an die BI Architektur Agile Produktentwicklung Die BI Architektur muss die Anforderungen der agilen Produktentwicklung unterstützen Daten müssen sehr kurzfristig für die Analyse zur Verfügung stehen. Daten liegen in unterschiedlichen Formaten strukturiert oder semistrukturiert vor. Datenstrukturen ändern sich häufig. Nur ein Teil der Daten der Service Lines ist im Unternehmenskontext relevant. Daten sollen historisch nach immer neuen Aspekten ausgewertet werden können. Seite 7

8 Anforderungen an die BI Architektur Agile Produktentwicklung SL_Suche SL_Anbieten SL_Baufi SL_Umzug SL REST API Batch Processing Web Tracking Externe Daten Batch Processing Seite 8

9 Agile Analytics & Big Data Analyse der Rohdaten in der Service Line Company Raw Data Data Node Name Node Data Node Data Node Data Node Hive Meta Store Client Seite 9

10 Agile Analytics & Big Data Analyse der Rohdaten des Unternehmens {"realestatetype":"apartment_rent","searcharea":[["europa"],["deutschland"],["berlin"],["friedrichshain"]]} Seite 10

11 Agile Analytics & Big Data Analyse der Rohdaten mit Hive / Hue Seite 11

12 Agile Analytics & Big Data Analyse der Rohdaten mit einem SQL Client Seite 12

13 Agile Analytics & Big Data Analyse der Rohdaten mit einem BI Tool Seite 13

14 Anforderungen an die BI Architektur Anforderungen der Fachbereiche des Unternehmens Die BI Architektur muss die Anforderungen der Fachbereiche des Unternehmens unterstützen Fachbereiche (z.b. Marketing, Controlling) benötigen eine unternehmensweite konsolidierte und stabile Datenbasis. KPI zur Steuerung des Unternehmens müssen in hoher Qualität berechnet und bereitgestellt werden. Das Datenmodell muss den Einsatz moderner BI Tools unterstützen. Der Zugriff auf die Daten muss durch ein Berechtigungskonzept gesichert werden. Seite 14

15 Agile Analytics & Big Data Hadoop als Data Store Company Raw Data Data Node Name Node Data Node Data Node Data Node Hive Meta Store Client Data Subset to DWH Seite 15

16 Agilität im Data Warehouse Auswirkungen auf das Datenmodell

17 Ein neuer Ansatz für agiles Data Warehousing? In agilen Unternehmen ändern sich Quellsysteme schnell und häufig. Wie kann das DWH Schritt halten? Flexibilität ohne Reengineering Beliebige Erweiterungen des Datenmodells je nach Business Anforderung Keine Migrationen im Core DWH Geringe Komplexität beim Einladen der Daten Automatische Generierung von Mappings Business Rules nur bei Erstellung von Data Marts anwenden Skalierung und Parallelisierung der Ladevorgänge Unabhängiges Laden von mehreren Quellsystemen Parallele Befüllung der Datenobjekte im Core DWH Keine Abhängigkeiten beim Laden Seite 17

18 Datenmodellierung mit Data Vault im Core DWH Zwischen 3NF und Star Schema Hub Sequence Business Key Load Date Record Source Core DWH Neu Link Staging Area Data Marts Sequence Hub Sequence 1 Hub Sequence n Load Date Record Source Neu Neu Neu Satellite Parent Sequence Load Date Load End Date Record Source Attribute 1 Attribute n Metadata Seite 18

19 Bestandteile des Data Vault-Datenmodells Hubs, Links und Satelliten Hubs Enthalten ausschließlich Business Keys Bilden den Startpunkt der Datenmodellierung Werden im ETL-Prozess zuerst geladen Links Setzen die Business Keys zueinander in Beziehung Können als ausgelagerte Foreign Keys angesehen werden Die Granularität ergibt sich aus der Anzahl angebundener Hubs Satelliten Enthalten alle beschreibenden Attribute der Business Keys Lassen sich zur Versionierung von Links einsetzen Aufteilung nach Quellsystem, Änderungshäufigkeit oder Datentypen Seite 19

20 Data Vault an einem konkreten Beispiel gezeigt S_KUNDEN_CRM DWH_KUNDEN_ID DWH_LOAD_DATE S_KUNDEN_LEBENSZYKLEN DWH_KUNDEN_LEBENSZYKLEN_ID DWH_LOAD_DATE H_KUNDEN_TYPEN DWH_KUNDEN_TYPEN_ID KUNDEN_TYP H_KUNDEN DWH_KUNDEN_ID KUNDEN_ID L_KUNDEN_LEBENSZYKLEN DWH_KUNDEN_LEBENSZYKLEN_ID DWH_KUNDEN_ID DWH_KUNDEN_TYPEN_ID DWH_PRODUKT_FAM_ID DWH_KUNDEN_STAT_ID H_PRODUKT_FAMILIEN DWH_PRODUKT_FAM_ID PRODUKT_FAMILIE S_KUNDEN_WEBAPP DWH_KUNDEN_ID DWH_LOAD_DATE SV_KUNDEN_LEBENSZYKLEN DWH_KUNDEN_LEBENSZYKLEN_ID DWH_LOAD_DATE DWH_BEGIN DWH_END H_KUNDEN_STATUS DWH_KUNDEN_STAT_ID STATUS Attribute für die Versionierung Seite 20

21 Was wäre wenn Zwei Szenarien für typische Änderungen Wechsel von Tabellenreferenzen Produkte Verträge Produkte Verträge neue Referenz Preise X Link wird nicht mehr befüllt Preise Adressänderungen Kunden Adr_Arten Adressen Kunden X X Adressen Rech_Adr weitere Adressen pro Kunde Pers_Adr Vertr_Adr Seite 21

22 Schlussfolgerungen Moderne Datenhaltungssysteme ermöglichen es uns, beliebige Daten in fast beliebigen Mengen zu speichern und nach immer neuen Aspekten auszuwerten. Agile Analyseanforderungen der Produktentwicklung müssen sehr zeitnah umgesetzt werden und betreffen meist nur einen Ausschnitt der Datenlandschaft. Die Datenlandschaft eines agilen Unternehmens ändert sich mit hoher Frequenz eine Herausforderung für das klassische DWH, das weiterhin zentrale Bedeutung hat. Data Vault ist ein möglicher Ansatz, das Core DWH sowohl zu stabilisieren als auch Änderungen von Quellsystemen schnell zu integrieren. Die BI Architektur des agilen Unternehmens muss unterschiedlichen Anforderungen gerecht werden, moderne Datenhaltungssysteme und klassische DWH Technologie können sich dabei effektiv ergänzen. Seite 22

23 Vielen Dank für Ihre Aufmerksamkeit! Kontakt: Immobilien Scout GmbH Andreasstraße Berlin Thorsten Becker Bianca Stolz

25.06.2014 TDWI Konferenz DWH Architektur Agilität durch Data Vault Modeling. Twitter: #TDWI #DataVault @DV_Modeling @BLUEFORTE @TDWI_EU

25.06.2014 TDWI Konferenz DWH Architektur Agilität durch Data Vault Modeling. Twitter: #TDWI #DataVault @DV_Modeling @BLUEFORTE @TDWI_EU BLUEFORTE GmbH Dirk Lerner 25.06.2014 TDWI Konferenz DWH Architektur Agilität durch Data Vault Modeling Twitter: #TDWI #DataVault @DV_Modeling @BLUEFORTE @TDWI_EU 1 Elemente des Data Vault (Basic) HUB

Mehr

DWH Automatisierung mit Data Vault 2.0

DWH Automatisierung mit Data Vault 2.0 DWH Automatisierung mit Data Vault 2.0 Andre Dörr Trevisto AG Nürnberg Schlüsselworte Architektur, DWH, Data Vault Einleitung Wenn man die Entwicklung von ETL / ELT Prozessen für eine klassische DWH Architektur

Mehr

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Architektur und Konzepte Josef Kolbitsch Manuela Reinisch Übersicht Mehrstufiges BI-System Architektur eines Data Warehouses Architektur eines Reporting-Systems Benutzerrollen in

Mehr

Modellierung agiler Data Warehouses mit Data Vault Dani Schnider, Trivadis AG DOAG Konferenz 2015

Modellierung agiler Data Warehouses mit Data Vault Dani Schnider, Trivadis AG DOAG Konferenz 2015 Modellierung agiler Data Warehouses mit Data Vault Dani Schnider, Trivadis AG DOAG Konferenz 2015 BASEL BERN BRUGG DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. GENEVA HAMBURG COPENHAGEN LAUSANNE MUNICH STUTTGART

Mehr

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle 40. Congress der Controller, Themenzentrum C, München Steffen Vierkorn, Geschäftsführer Qunis GmbH, Neubeuern Die

Mehr

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Vorstellung der Softwarekomponenten Josef Kolbitsch Manuela Reinisch Übersicht Übersicht über die Systemlandschaft Übersicht über die Werkzeuge Workshop Systemlandschaft 1/8 Klassische

Mehr

Vom Single Point of Truth zur Single Version of the Facts. Data Warehousing zu Beginn des BigData-Zeitalters. inspire IT - Frankfurt 11. 12.05.

Vom Single Point of Truth zur Single Version of the Facts. Data Warehousing zu Beginn des BigData-Zeitalters. inspire IT - Frankfurt 11. 12.05. Vom Single Point of Truth zur Single Version of the Facts Data Warehousing zu Beginn des BigData-Zeitalters inspire IT - Frankfurt 11. 12.05.2015 Fahmi Ouled-Ali Kabel Deutschland Marian Strüby OPITZ CONSULTING

Mehr

RE.one. Self Service Information Management für die Fachabteilung

RE.one. Self Service Information Management für die Fachabteilung RE.one Self Service Information Management für die Fachabteilung Das Ziel Verwertbare Informationen aus Daten gewinnen Unsere Vision Daten Info Data Warehousing radikal vereinfachen in einem Tool Die Aufgabe

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Dani Schnider Principal Consultant Business Intelligence BI Trilogie, Zürich/Basel 25./26. November 2009 Basel Baden Bern Lausanne Zürich

Mehr

Survival Guide für Ihr Business Intelligence-Projekt

Survival Guide für Ihr Business Intelligence-Projekt Survival Guide für Ihr Business Intelligence-Projekt Sven Bosinger Solution Architect BI Survival Guide für Ihr BI-Projekt 1 Agenda Was ist Business Intelligence? Leistungsumfang Prozesse Erfolgsfaktoren

Mehr

DWH Szenarien. www.syntegris.de

DWH Szenarien. www.syntegris.de DWH Szenarien www.syntegris.de Übersicht Syntegris Unser Synhaus. Alles unter einem Dach! Übersicht Data-Warehouse und BI Projekte und Kompetenzen für skalierbare BI-Systeme. Vom Reporting auf operativen

Mehr

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Konrad Linner, solvistas GmbH Nürnberg, 20.November 2012 Inhaltsverzeichnis Vorstellung solvistas

Mehr

Data Vault. Modellierungsmethode für agile Data Warehouse Systeme. Dr. Bodo Hüsemann Informationsfabrik GmbH. DOAG BI, München, 17.04.

Data Vault. Modellierungsmethode für agile Data Warehouse Systeme. Dr. Bodo Hüsemann Informationsfabrik GmbH. DOAG BI, München, 17.04. Data Vault Modellierungsmethode für agile Data Warehouse Systeme Dr. Bodo Hüsemann Informationsfabrik GmbH DOAG BI, München, 17.04.2013 Die Informationsfabrik Die Informationsfabrik macht erfolgreiche

Mehr

Datawarehouse Architekturen. Einheitliche Unternehmenssicht

Datawarehouse Architekturen. Einheitliche Unternehmenssicht Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA

Mehr

ETL in den Zeiten von Big Data

ETL in den Zeiten von Big Data ETL in den Zeiten von Big Data Dr Oliver Adamczak, IBM Analytics 1 1 Review ETL im Datawarehouse 2 Aktuelle Herausforderungen 3 Future of ETL 4 Zusammenfassung 2 2015 IBM Corporation ETL im Datawarehouse

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

Data-Vault-Automation aus dem Datenmodellierungstool. 1. Tagung der DDVUG am 24.Juni2014

Data-Vault-Automation aus dem Datenmodellierungstool. 1. Tagung der DDVUG am 24.Juni2014 Data-Vault-Automation aus dem Datenmodellierungstool 1. Tagung der DDVUG am 24.Juni2014 A G E N D A 1. MID & Innovator 2. Modell & Methode 3. Architektur & Automatisierung 4. Nutzen & Veränderung MID GmbH

Mehr

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics DATA WAREHOUSE Oracle BI&W Referenz Architektur Big Data und High Performance Analytics Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen

Mehr

Welche BI-Architektur braucht Ihr Reporting?

Welche BI-Architektur braucht Ihr Reporting? Welche BI-Architektur braucht Ihr Reporting? Variante 1: Direkter Zugriff Keine redundanten Daten Schnelle Erkenntnisse Echte Daten für PoCs Echtzeit-Reporting ohne Zwischenstufen Belastung der operativen

Mehr

Scrum für Business Intelligence und Data-Warehouse Projekte

Scrum für Business Intelligence und Data-Warehouse Projekte Scrum für Business Intelligence und Data-Warehouse Projekte Thomas Löchte Informationsfabrik GmbH Münster Schlüsselworte Scrum, Agile BI, Agile DWH, Vorgehensmodell, Einleitung Agile Vorgehensweisen sind

Mehr

Fünf Schritte zum erfolgreichen Requirements Management

Fünf Schritte zum erfolgreichen Requirements Management Fünf Schritte zum erfolgreichen Requirements Management REFERENT Webinar Nr. 4 05. November 2015 15 Uhr bis 16 Uhr Bernd Röser Key Account Manager Kurzer Hinweis zu Beginn Fragen stellen während des Webinars

Mehr

Wie modelliere ich mein Core Data Warehouse?

Wie modelliere ich mein Core Data Warehouse? Wie modelliere ich mein Core Data Warehouse? Dani Schnider Trivadis AG Zürich/Glattbrugg, Schweiz Schlüsselworte: Data Warehouse, Datenmodellierung, Historisierung Einleitung Das Core dient im Data Warehouse

Mehr

vinsight BIG DATA Solution

vinsight BIG DATA Solution vinsight BIG DATA Solution München, November 2014 BIG DATA LÖSUNG VINSIGHT Datensilos erschweren eine einheitliche Sicht auf die Daten...... und machen diese teilweise unmöglich einzelne individuelle Konnektoren,

Mehr

Scrum für Business Intelligence Projekte erfolgreich nutzen. Es begrüßt Sie Thomas Löchte

Scrum für Business Intelligence Projekte erfolgreich nutzen. Es begrüßt Sie Thomas Löchte Scrum für Business Intelligence Projekte erfolgreich nutzen Es begrüßt Sie Thomas Löchte Die Informationsfabrik Die Informationsfabrik macht erfolgreiche BI und DWH Projekte und hat zufriedene, referenzierbare

Mehr

Agile BI mit Agile BI Modeler & Agile Scorecard

Agile BI mit Agile BI Modeler & Agile Scorecard Agile BI mit Agile BI Modeler & Agile Scorecard Business Intelligence - so einfach wie möglich - so komplex wie nö7g Jon Nedelmann Darmstadt, 26.10.2012 Agile BI Tools Agile BI Modeler Ist eine Web- Anwendung

Mehr

DWH Best Practices das QUNIS Framework 80 Jahre Erfahrung bei der Modellierung & dem Betrieb von DWH. Referent: Ilona Tag

DWH Best Practices das QUNIS Framework 80 Jahre Erfahrung bei der Modellierung & dem Betrieb von DWH. Referent: Ilona Tag DWH Best Practices das QUNIS Framework 80 Jahre Erfahrung bei der Modellierung & dem Betrieb von DWH Referent: Ilona Tag Agenda 10.00 10.30 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.30 11.00 11.00

Mehr

Mission. TARGIT macht es einfach und bezahlbar für Organisationen datengetrieben zu werden

Mission. TARGIT macht es einfach und bezahlbar für Organisationen datengetrieben zu werden Mission TARGIT macht es einfach und bezahlbar für Organisationen datengetrieben zu werden Der Weg zu einem datengesteuerten Unternehmen # Datenquellen x Größe der Daten Basic BI & Analytics Aufbau eines

Mehr

Modellgetriebene agile BI-Vorgehensweise

Modellgetriebene agile BI-Vorgehensweise Modellgetriebene agile BI-Vorgehensweise Thomas Neuböck Konrad Linner 12.11.2013 Inhalt Anforderungen und Lösungsansatz Agile Vorgehensweise Orientierung nach Fachthemen Architekturrahmen Modellorientierung

Mehr

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

Von Bäumen, Früchten und Gärtnern - warum agile Prinzipien auch im BI Umfeld funktionieren. Es begrüßt Sie Thomas Löchte

Von Bäumen, Früchten und Gärtnern - warum agile Prinzipien auch im BI Umfeld funktionieren. Es begrüßt Sie Thomas Löchte Von Bäumen, Früchten und Gärtnern - warum agile Prinzipien auch im BI Umfeld funktionieren Es begrüßt Sie Thomas Löchte Die Informationsfabrik Die Informationsfabrik macht erfolgreiche BI und DWH Projekte

Mehr

Data Vault Ein Leben zwischen 3NF und Star. Michael Klose, CGI Deutschland Oracle DWH Community, 18.03.2014

Data Vault Ein Leben zwischen 3NF und Star. Michael Klose, CGI Deutschland Oracle DWH Community, 18.03.2014 Data Vault Ein Leben zwischen 3NF und Star Michael Klose, CGI Deutschland Oracle DWH Community, 18.03.2014 CGI Group Inc. 2013 Referent: Michael Klose Manager BI Architektur & Strategie, CGI Deutschland

Mehr

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP AGENDA HADOOP 9:00 09:15 Das datengetriebene Unternehmen: Big Data Analytics mit SAS die digitale Transformation: Handlungsfelder für IT und Fachbereiche Big

Mehr

Warum sich das Management nicht für agile Softwareentwicklung interessieren sollte - aber für Agilität

Warum sich das Management nicht für agile Softwareentwicklung interessieren sollte - aber für Agilität Warum sich das Management nicht für agile Softwareentwicklung interessieren sollte - aber für Agilität Marcus Winteroll oose GmbH Agenda I. Ziele und Zusammenarbeit II. Was wir vom agilen Vorgehen lernen

Mehr

Wie viel Geschäftsprozess verträgt agile Softwareentwicklung?

Wie viel Geschäftsprozess verträgt agile Softwareentwicklung? @LeanAgileScrum #LASZH LAS Conference 2012 Sponsoren Wie viel Geschäftsprozess verträgt agile Softwareentwicklung? Marcus Winteroll 16:15 Auditorium Organisationsteam Patrick Baumgartner (Swiftmind GmbH)

Mehr

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH Lars Priebe Senior Systemberater ORACLE Deutschland GmbH Data Mining als Anwendung des Data Warehouse Konzepte und Beispiele Agenda Data Warehouse Konzept und Data Mining Data Mining Prozesse Anwendungs-Beispiele

Mehr

O-BIEE Einführung mit Beispielen aus der Praxis

O-BIEE Einführung mit Beispielen aus der Praxis O-BIEE Einführung mit Beispielen aus der Praxis Stefan Hess Business Intelligence Trivadis GmbH, Stuttgart 2. Dezember 2008 Basel Baden Bern Lausanne Zürich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg

Mehr

Hybride Vorgehensmodelle für das Projektmanagement

Hybride Vorgehensmodelle für das Projektmanagement für das Projektmanagement Stefan Hilmer 12. Juni 2012, Fürstenfeldbruck Agenda Der Ursprung: Die Herausforderung: Der Unterschied: Die Lösungsidee: Acando Zwei Sichten Vorgehensmodelltypen Hybride Nutzung

Mehr

Erfahrungsbericht Agile Entwicklung einer BI Anwendung für das Meldewesen

Erfahrungsbericht Agile Entwicklung einer BI Anwendung für das Meldewesen Erfahrungsbericht Agile Entwicklung einer BI Anwendung für das Meldewesen Thomas Löchte Geschäftsführer Informationsfabrik GmbH Wir produzieren INFORMATION. Konzeption und Architektur Implementierung [ETL,

Mehr

Solution for Business Intelligence. MID Insight 2013

Solution for Business Intelligence. MID Insight 2013 Solution for Business Intelligence MID Insight 2013 A G E N D A 1. Solution für Business Intelligence (BI) 2. Die Gründe und Hintergründe 3. Die Methode 4. Vorteile MID GmbH 2013 2 Solution für Business

Mehr

Strategie und Self Service BI im Unternehmen. Gegensätze miteinander kombinieren

Strategie und Self Service BI im Unternehmen. Gegensätze miteinander kombinieren Strategie und Self Service BI im Unternehmen Gegensätze miteinander kombinieren Claas Planitzer Düsseldorf Juni 2015 Agenda 5. Herausforderungen 1. Idealbild 2. Realität 3. Self Service 4. BI. Was ist

Mehr

Seminar C02 - Praxisvergleich OLAP Tools

Seminar C02 - Praxisvergleich OLAP Tools C02: Praxisvergleich OLAP Tools Ein Seminar der DWH academy Seminar C02 - Praxisvergleich OLAP Tools Das Seminar "Praxisvergleich OLAP-Tools" bietet den Teilnehmern eine neutrale Einführung in die Technologien

Mehr

Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung

Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung Profil Andy Sydow Persönliche Daten Nationalität Sprachen Abschluss deutsch Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung Profil Herr Sydow verfügt über mehrjährige Erfahrung als DWH/BI

Mehr

Welche Daten gehören ins Data Warehouse?

Welche Daten gehören ins Data Warehouse? Welche Daten gehören ins Warehouse? Dani Schnider Principal Consultant 9. Januar 2012 In vielen DWH-Projekten stellt sich die Frage, welche Daten im Warehouse gespeichert werden sollen und wie dieser Datenumfang

Mehr

Marketing Intelligence Übersicht über Business Intelligence. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Übersicht über Business Intelligence. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Übersicht über Business Intelligence Josef Kolbitsch Manuela Reinisch Übersicht Beispiel: Pantara Holding Der Begriff Business Intelligence Übersicht über ein klassisches BI-System

Mehr

Agile BI Kickstart. Beschreibung des Workshops. Workshopbeschreibung

Agile BI Kickstart. Beschreibung des Workshops. Workshopbeschreibung Bereich: Workshop: Dauer: In-House Workshop Agile BI Kickstart 2 Tage Beschreibung des Workshops Agile Vorgehensweisen werden bei der Entwicklung von BI- und Data Warehouse-Lösungen heutzutage mehr und

Mehr

Kampagnenmanagement mit Siebel Marketing/Oracle BI ein Praxisbericht

Kampagnenmanagement mit Siebel Marketing/Oracle BI ein Praxisbericht Kampagnenmanagement mit Siebel Marketing/Oracle BI ein Praxisbericht Thomas Kreuzer ec4u expert consulting ag Karlsruhe Schlüsselworte: Kampagnenmanagement Praxisbericht Siebel Marketing Oracle BI - ec4u

Mehr

Oktober 2014 PRODUKTENTWICKLUNG. Dr. Ralf Lauterbach

Oktober 2014 PRODUKTENTWICKLUNG. Dr. Ralf Lauterbach PRODUKTENTWICKLUNG Dr. Ralf Lauterbach Produktentwicklung digitaler Produkte - was ist zu tun? - Generelle Aufgaben bei jeder digitalen Produktentwicklung Produktmanagement Marktanalysen Markteingangsstrategie

Mehr

Agile Softwareentwicklung

Agile Softwareentwicklung Agile Softwareentwicklung Werte, Konzepte und Methoden von Wolf-Gideon Bleek, Henning Wolf 2., aktualisierte und erweiterte Auflage Agile Softwareentwicklung Bleek / Wolf schnell und portofrei erhältlich

Mehr

Data Vault. Data Warehouse Agilität nicht nur durch Vorgehensweisen, sondern mit Methode. Dr. Bodo Hüsemann Informationsfabrik GmbH

Data Vault. Data Warehouse Agilität nicht nur durch Vorgehensweisen, sondern mit Methode. Dr. Bodo Hüsemann Informationsfabrik GmbH Data Vault Data Warehouse Agilität nicht nur durch Vorgehensweisen, sondern mit Methode Dr. Bodo Hüsemann Informationsfabrik GmbH Konzeption und Architektur Implementierung [ETL, Reporting, OLAP, Planung]

Mehr

1 Business-Intelligence-Architektur 1

1 Business-Intelligence-Architektur 1 D3kjd3Di38lk323nnm xi 1 Business-Intelligence-Architektur 1 1.1 Data Warehouse....................................... 1 1.2 OLAP und mehrdimensionale Datenbanken.................. 4 1.3 Architekturvarianten....................................

Mehr

Leistungssteuerung beim BASPO

Leistungssteuerung beim BASPO Leistungssteuerung beim BASPO Organisationsstruktur Advellence die Gruppe. Advellence Consulting Advellence Solutions Advellence Products Advellence Services HR-Migrator & albislex powered byadvellence

Mehr

Darüber hinaus wird das Training dazu beitragen, das Verständnis für die neuen Möglichkeiten zu erlangen.

Darüber hinaus wird das Training dazu beitragen, das Verständnis für die neuen Möglichkeiten zu erlangen. Ora Education GmbH www.oraeducation.de info@oraeducation.de Lehrgang: Oracle 11g: New Features für Administratoren Beschreibung: Der Kurs über fünf Tage gibt Ihnen die Möglichkeit die Praxis mit der neuen

Mehr

Big Data Hype und Wirklichkeit Bringtmehrauchmehr?

Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Günther Stürner, Vice President Sales Consulting 1 Copyright 2011, Oracle and/or its affiliates. All rights Überschrift 2 Copyright 2011, Oracle and/or

Mehr

Business Intelligence

Business Intelligence Business Intelligence Anwendungssysteme (BIAS) Lösung Aufgabe 1 Übung WS 2012/13 Business Intelligence Erläutern Sie den Begriff Business Intelligence. Gehen Sie bei der Definition von Business Intelligence

Mehr

ZERO.ONE.DATA Die Bahn, ein agiler Tanker im Digitalisierungszeitalter. Gudio van Husen, Christopher Muth DB Systel GmbH Hanau

ZERO.ONE.DATA Die Bahn, ein agiler Tanker im Digitalisierungszeitalter. Gudio van Husen, Christopher Muth DB Systel GmbH Hanau ZERO.ONE.DATA Die Bahn, ein agiler Tanker im Digitalisierungszeitalter Gudio van Husen, Christopher Muth DB Systel GmbH Hanau 28.02.2018 Foto: DB Systel DB Systel GmbH Die Digitalisierung der Bahn erfolgreich

Mehr

Szenarien zu Hochverfügbarkeit und Skalierung mit und ohne Oracle RAC. Alexander Scholz

Szenarien zu Hochverfügbarkeit und Skalierung mit und ohne Oracle RAC. Alexander Scholz Hochverfügbar und Skalierung mit und ohne RAC Szenarien zu Hochverfügbarkeit und Skalierung mit und ohne Oracle RAC Alexander Scholz Copyright its-people Alexander Scholz 1 Einleitung Hochverfügbarkeit

Mehr

1Ralph Schock RM NEO REPORTING

1Ralph Schock RM NEO REPORTING 1Ralph Schock RM NEO REPORTING Bereit für den Erfolg Business Intelligence Lösungen Bessere Entscheidungen Wir wollen alle Mitarbeiter in die Lage versetzen, bessere Entscheidungen schneller zu treffen

Mehr

Intelligence (BI): Von der. Nürnberg, 29. November 2011

Intelligence (BI): Von der. Nürnberg, 29. November 2011 Modelle für Business Intelligence (BI): Von der Anforderung zum Würfel Nürnberg, 29. November 2011 Warum Modelle für Business Intelligence (BI)? Warum Modelle für Business Intelligence (BI)? Bis zur Auswertung

Mehr

Big Data Herausforderungen und Chancen für Controller. ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC

Big Data Herausforderungen und Chancen für Controller. ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data Herausforderungen und Chancen für Controller ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC BARC: Expertise für datengetriebene Organisationen Beratung Strategie

Mehr

Sven Bosinger solution architect BI. Data Warehouse Architekturen Der Schlüssel zum Erfolg! DOAG 16.11.2007 1

Sven Bosinger solution architect BI. Data Warehouse Architekturen Der Schlüssel zum Erfolg! DOAG 16.11.2007 1 Sven Bosinger solution architect BI Data Warehouse Architekturen Der Schlüssel zum Erfolg! DOAG 16.11.2007 1 Agenda Kurze Vorstellung its-people Architektur als Erfolgsfaktor Verschiedene Architekturansätze

Mehr

Data Warehousing in der Lehre

Data Warehousing in der Lehre Data Warehousing in der Lehre Prof. Dr.-Ing. Tomas Benz Dipl.-Inform. Med. Alexander Roth Agenda Vorstellung Fachhochschule Heilbronn Vorstellung i3g Vorlesungen im DWH-Bereich Seminare Projekte Studien-

Mehr

Die EBCONT Unternehmensgruppe.

Die EBCONT Unternehmensgruppe. 1200 Wien, Handelskai 94-96 Johannes Litschauer, Alex Deles IT-Infrastruktur IT-Betrieb (managed Services) Cloud / Elastizität 1200 Wien, Handelskai 94-96 Johannes Litschauer, Alex Deles Enterprise Solutions

Mehr

BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA

BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA AUFSTELLUNG OPTIMIEREN. ENTWICKELN SIE IHRE SYSTEMLANDSCHAFT WEITER UND VERKAUFEN SIE DIE CHANCEN IHREN ANWENDERN Yu Chen, Thorsten Stossmeister

Mehr

ITGAIN Fach- und Technikspezialist

ITGAIN Fach- und Technikspezialist ITGAIN Fach- und Technikspezialist KOMPETENZ GEWINNBRINGEND EINSETZEN. Copyright 2012 ITGAIN GmbH 1 SPoT Wir bringen Ihre Informationen auf den Punkt. Hamburg, 07.05.2012 FACTORY-ANSATZ FÜR ETL-PROZESSE

Mehr

7. Praxisforum BPM und ERP

7. Praxisforum BPM und ERP 7. Praxisforum BPM und ERP Fokus! - Management der Komplexität im IT-Management Prof. Dr. Andreas Gadatsch Prof. Dr. Ayelt Komus Koblenz: Dienstag, 4.11.2014, 17:00 Uhr - Es gilt das gesprochene Wort -

Mehr

Open Source BI 2009 Flexibilität und volle Excel-Integration von Palo machen OLAP für Endanwender beherrschbar. 24. September 2009

Open Source BI 2009 Flexibilität und volle Excel-Integration von Palo machen OLAP für Endanwender beherrschbar. 24. September 2009 Open Source BI 2009 Flexibilität und volle Excel-Integration von Palo machen OLAP für Endanwender beherrschbar 24. September 2009 Unternehmensdarstellung Burda Digital Systems ist eine eigenständige und

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

The Day in the Life of a Business Manager @ Microsoft

The Day in the Life of a Business Manager @ Microsoft The Day in the Life of a Business Manager @ Microsoft A look at analytics in action inside Microsoft Frank.Stolley@Microsoft.com Daniel.Weinmann@microsoft.com Microsoft Deutschland GmbH Big Data: Die Management-Revolution?

Mehr

Mobile Backend in der

Mobile Backend in der Mobile Backend in der Cloud Azure Mobile Services / Websites / Active Directory / Kontext Auth Back-Office Mobile Users Push Data Website DevOps Social Networks Logic Others TFS online Windows Azure Mobile

Mehr

Von Scrumzu Kanban, von Push zu Pull kein fester Sprint, kein verbindliches Commitment wie kann das funktionieren?

Von Scrumzu Kanban, von Push zu Pull kein fester Sprint, kein verbindliches Commitment wie kann das funktionieren? Von Scrumzu Kanban, von Push zu Pull kein fester Sprint, kein verbindliches Commitment wie kann das funktionieren? www.autoscout24.de Scrum Day 2014 Katrin Grothues Böblingen, 02. Juli 2014 www.autoscout24.de

Mehr

EMC. Data Lake Foundation

EMC. Data Lake Foundation EMC Data Lake Foundation 180 Wachstum unstrukturierter Daten 75% 78% 80% 71 EB 106 EB 133 EB Weltweit gelieferte Gesamtkapazität Unstrukturierte Daten Quelle März 2014, IDC Structured vs. Unstructured

Mehr

Agenda. Clients aus drei verschiedenen Perspektiven: Was ist ein Dialog? Komponentenarchitektur innerhalb eines Dialoges

Agenda. Clients aus drei verschiedenen Perspektiven: Was ist ein Dialog? Komponentenarchitektur innerhalb eines Dialoges Komponentenbasierte Client-Architektur Hamburg, 16.11.2007 Bernd Olleck IT-Beratung Olleck Agenda Clients aus drei verschiedenen Perspektiven: Technische Infrastruktur Fachliche Sicht Aufgaben eines Clients

Mehr

Hannover, 20.03.2015 Halle 5 Stand A36

Hannover, 20.03.2015 Halle 5 Stand A36 Integrierte Unternehmensinformationen als Fundament für die digitale Transformation vor allem eine betriebswirtschaftliche Aufgabe Hannover, 20.03.2015 Halle 5 Stand A36 Business Application Research Center

Mehr

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller Was ist? Hannover, CeBIT 2014 Patrick Keller Business Application Research Center Historie 1994: Beginn der Untersuchung von Business-Intelligence-Software am Lehrstuhl Wirtschaftsinformatik der Universität

Mehr

Big Data: Definition, Einführung und Live Democase [C1] Arne Weitzel Uetliberg, 16.09.2014 www.boak.ch

Big Data: Definition, Einführung und Live Democase [C1] Arne Weitzel Uetliberg, 16.09.2014 www.boak.ch Big Data: Definition, Einführung und Live Democase [C1] Arne Weitzel Uetliberg, 16.09.2014 www.boak.ch Unstrukturierte Daten spielen eine immer bedeutender Rolle in Big Data-Projekten. Zunächst gilt es

Mehr

Modellbasierte Business Intelligence in der Praxis. Nürnberg, 10.11.2009

Modellbasierte Business Intelligence in der Praxis. Nürnberg, 10.11.2009 Modellbasierte Business Intelligence in der Praxis Nürnberg, 10.11.2009 I N H A L T 1. Warum Modelle für Business Intelligence (BI)? 2. Inhalte von Datenmodellen für BI 3. Inhalte von Prozessmodellen 4.

Mehr

Das generierte Data Warehouse

Das generierte Data Warehouse Das generierte Data Warehouse DOAG BI Konferenz 2012 Gregor Zeiler BASEL BERN LAUSANNE ZÜRICH DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. HAMBURG MÜNCHEN STUTTGART WIEN 1 Erwartungshaltungen und Hoffnungen

Mehr

READY-STEADY-DONE! Der Product Owner are you READY for agile?!

READY-STEADY-DONE! Der Product Owner are you READY for agile?! READY-STEADY-DONE! Der Product Owner are you READY for agile?! Susanne Mühlbauer HOOD GmbH Büro München Keltenring 7 82041 Oberhaching Germany Tel: 0049 89 4512 53 0 www.hood-group.com -1- Neue Ideen sind

Mehr

Die perfekte Kombination im Agilen Data Warehouse Oracle Engineered Systems mit Data Vault

Die perfekte Kombination im Agilen Data Warehouse Oracle Engineered Systems mit Data Vault Die perfekte Kombination im Agilen Data Warehouse Oracle Engineered Systems mit Data Vault Herbert Rossgoderer Geschäftsführer Matthias Fuchs DWH Architekt ISE Information Systems Engineering GmbH ISE

Mehr

Willkommen in der IT-Fabrik. Ihr Weg zu mehr Agilität, Effizienz und Erfolg

Willkommen in der IT-Fabrik. Ihr Weg zu mehr Agilität, Effizienz und Erfolg Willkommen in der IT-Fabrik Ihr Weg zu mehr Agilität, Effizienz und Erfolg Wer wir sind. UK DK NL DE CH SE PL CZ SK FI Hamburg Bremen Lüneburg Berlin Wolfsburg Dortmund Dresden Düsseldorf Köln Bad Vilbel

Mehr

ZENITY - Die Software für Ihre Unternehmens-Releaseplanung

ZENITY - Die Software für Ihre Unternehmens-Releaseplanung ZENITY - Die Software für Ihre Unternehmens-Releaseplanung RELEASEPLANUNG HEUTE Heutige Anwendungen in in Grossunternehmen sind sind keine keine alleinstehenden alleinstehenden Insel-Applikationen Insel-Applikationen

Mehr

DW2004. XML-Datenimport in das SAP Business Information Warehouse bei Bayer Material Science. 3. November 2004. Dr. Michael Hahne, cundus AG

DW2004. XML-Datenimport in das SAP Business Information Warehouse bei Bayer Material Science. 3. November 2004. Dr. Michael Hahne, cundus AG DW2004 XML-Datenimport in das SAP Business Information Warehouse bei Bayer Material Science Dr. Michael Hahne, cundus AG 3. November 2004 cundus AG 2004 Gliederung Motivation SAP Business Information Warehouse

Mehr

INDIVIDUELLE SOFTWARELÖSUNGEN CUSTOMSOFT CS GMBH

INDIVIDUELLE SOFTWARELÖSUNGEN CUSTOMSOFT CS GMBH 01 INDIVIDUELLE SOFTWARELÖSUNGEN 02 05 02 GUMMERSBACH MEHRWERT DURCH KOMPETENZ ERIC BARTELS Softwarearchitekt/ Anwendungsentwickler M_+49 (0) 173-30 54 146 F _+49 (0) 22 61-96 96 91 E _eric.bartels@customsoft.de

Mehr

GESCHÄFTSSTELLENERÖFFNUNG HAMBURG, 25. APRIL 2013

GESCHÄFTSSTELLENERÖFFNUNG HAMBURG, 25. APRIL 2013 OPEN SYSTEMS CONSULTING IT-KOMPLETTDIENSTLEISTER IM MITTELSTAND GESCHÄFTSSTELLENERÖFFNUNG HAMBURG, 25. APRIL 2013 Business Analytics Sascha Thielke AGENDA Die Geschichte des Reporting Begriffe im BA Umfeld

Mehr

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS AGENDA VISUAL ANALYTICS 9:00 09:30 Das datengetriebene Unternehmen: Big Data Analytics mit SAS die digitale Transformation: Handlungsfelder für IT

Mehr

Strategische Erfolgsfaktoren für die gelungene Integration von SharePoint 2010 in Unternehmen

Strategische Erfolgsfaktoren für die gelungene Integration von SharePoint 2010 in Unternehmen Strategische Erfolgsfaktoren für die gelungene Integration von SharePoint 2010 in Unternehmen Markus Klemen ENTERPRISE SOFTWARE SOLUTIONS [ 1 ] Überblick 1. Herangehensweise 2. Individualisierungen aus

Mehr

Business Intelligence - Wie passt das zum Mainframe?

Business Intelligence - Wie passt das zum Mainframe? Business Intelligence - Wie passt das zum Mainframe? IBM IM Forum, 15.04.2013 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Ressourcen bei BARC für Ihr Projekt Durchführung von internationalen Umfragen,

Mehr

Agile DWH Modellierung mit Data Vault. Alexander Blech Matthias Wendt 2015-04-15

Agile DWH Modellierung mit Data Vault. Alexander Blech Matthias Wendt 2015-04-15 Agile DWH Modellierung mit Data Vault Alexander Blech Matthias Wendt 2015-04-15 Agile DWH Modellierung mit Data Vault Agenda OSP Dresden und die Ottogroup Data Vault Theorie DV im Einsatz für die Hermes

Mehr

PROZESSE INTEGRIEREN leicht gemacht EFFIZIENTE PROZESSE

PROZESSE INTEGRIEREN leicht gemacht EFFIZIENTE PROZESSE PROZESSE INTEGRIEREN leicht gemacht DURCH TransConnect Geschäftsprozesse ableiten mit der Universal Worklist (UWL) Integrationsszenarien effektiver verwalten und transportieren Optimierte Personalverwaltung

Mehr

tdwi E U R D P E OPEN SOURCE BUSINESS INTELLIGENCE HANSER MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN

tdwi E U R D P E OPEN SOURCE BUSINESS INTELLIGENCE HANSER MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN OPEN SOURCE BUSINESS INTELLIGENCE MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN uwehaneke Stephan TRAHASCH tobias HAGEN tobias LAUER (Hrsg.)' tdwi E U R D P E HANSER Vorwort 9 Einführung

Mehr

Raus aus der Bl-Falle

Raus aus der Bl-Falle Ronald Bachmann, Dr. Guido Kemper Raus aus der Bl-Falle Wie Business Intelligencezum Erfolg wird mitp Die Autoren 13 Vorwort 15 1 Einleitung 21 1.1 Was ist Business Intelligence (BI)? 21 1.2 Motive zur

Mehr

Bessere Daten durch Stammdatenmanagement

Bessere Daten durch Stammdatenmanagement make connections share ideas be inspired Bessere Daten durch Stammdatenmanagement Mit SAS MDM, bessere Stammdaten für operativen Systeme make connections share ideas be inspired Overview Mit SAS MDM bessere

Mehr

Dr. Nick Golovin Koch Media GmbH n.golovin@kochmedia.com. Einsatz von Data Federation für den schnellen Aufbau eines BI-Systems

Dr. Nick Golovin Koch Media GmbH n.golovin@kochmedia.com. Einsatz von Data Federation für den schnellen Aufbau eines BI-Systems Dr. Nick Golovin Koch Media GmbH n.golovin@kochmedia.com Einsatz von Data Federation für den schnellen Aufbau eines BI-Systems Inhalt 1. Unternehmensportrait 2. Ausgangssituation 3. Aufgabenstellung 4.

Mehr

Oracle Big Data Discovery Ein Überblick

Oracle Big Data Discovery Ein Überblick Oracle Big Data Discovery Ein Überblick Hadoop Data Reservoir gewinnt weiter an Bedeutung Data Warehouse Bekannte Datenquellen Data Reservoir Entstehende Datenquellen Hadoop Umsatz und Forecast 49% CAGR,

Mehr

Modellierung agiler Data Warehouses mit Data Vault

Modellierung agiler Data Warehouses mit Data Vault Modellierung agiler Data Warehouses mit Data Vault Dani Schnider Trivadis AG Zürich/Glattbrugg, Schweiz Schlüsselworte: Data Warehouse, Data Vault, Datenmodellierung, Agile Projektentwicklung, Historisierung,

Mehr

EFFEKTIVE TEAM-UND PROJEKTARBEIT MIT

EFFEKTIVE TEAM-UND PROJEKTARBEIT MIT EFFEKTIVE TEAM-UND PROJEKTARBEIT MIT CENIT EIM IT-TAG 13.06.2013 TOBIAS KNOCHE JOACHIM MARTENS AGENDA 1. ÜBERBLICK ALFRESCO 2. ANWENDUNGSFÄLLE 3. LÖSUNG LIVE PRÄSENTIERT 4. AUSBLICK PROJEKT COPYRIGHT CENIT

Mehr

Maximo/SCCD Integration Framework Spielplatz oder Minenfeld? Johann Rumpl, Geschäftsführer EAM Swiss GmbH 13.06.2013 Hotel Dolce Bad Nauheim, DE

Maximo/SCCD Integration Framework Spielplatz oder Minenfeld? Johann Rumpl, Geschäftsführer EAM Swiss GmbH 13.06.2013 Hotel Dolce Bad Nauheim, DE Maximo/SCCD Integration Framework Spielplatz oder Minenfeld? Johann Rumpl, Geschäftsführer EAM Swiss GmbH 13.06.2013 Hotel Dolce Bad Nauheim, DE EAM Swiss GmbH Eigenständiges Schweizer Unternehmen Tätig

Mehr

Erfolgreiches Zusammenarbeiten von IT und Marketing am Beispiel von Meta Daten Management

Erfolgreiches Zusammenarbeiten von IT und Marketing am Beispiel von Meta Daten Management Erfolgreiches Zusammenarbeiten von IT und Marketing am Beispiel von Meta Daten Management Sprecher: Uwe Nadler, Senior Managing Consultant 1 Marketing braucht unterschiedliche Informationen, um entsprechende

Mehr

Agile Entwicklung nach Scrum

Agile Entwicklung nach Scrum comsolit AG Hauptstrasse 78 CH-8280 Kreuzlingen Tel. +41 71 222 17 06 Fax +41 71 222 17 80 info@comsolit.com www.comsolit.com Agile Entwicklung nach Scrum Seite 1 / 6 Scrum V 1.0 1. Wieso Scrum Die Entwicklung

Mehr