4.6 Das Pumping-Lemma für reguläre Sprachen:

Größe: px
Ab Seite anzeigen:

Download "4.6 Das Pumping-Lemma für reguläre Sprachen:"

Transkript

1 Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma Bewes des Pumpng-Lemma Hnwese zum Pumpng-Lemma3 Bespele zum Pumpng-Lemma3 47 Reguläre Grammatken4 Allgemene Grammatken4 Zusammenfassung des bsher behandelten Stoffes 4 Bespel ener allgemenen Grammatk 4 Defnton X 5 Bespele für allgemene Grammatken nach der Defnton X 5 Reguläre Grammatken 6 Defnton Y6 Bespel ener regulären Grammatk nach der Defnton Y 6 Satz Z6 Bewes6 Bewes für 6 Bewes für 7 46 Das Pumpng-Lemma für reguläre Sprachen: Das Pumpng-Lemma st en zentrales Hlfsmttel um zu entscheden bzw um nachzuwesen, dass ene Sprache ncht regulär st Satz W : Es se X en Alphabet, dann exstert zu jeder regulären Sprache R X en n IN, so dass für alle Wörter z R mt z u ene Zerlegung z = uvw mt u, v, w X, v ε und uv n exstert, für de glt: uv w R für alle 0 Formal: R Re g n IN z R, z n uvw X : z = uvw v ε uv n : n IN 0 : uv w R - 1 -

2 Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Zugrundelegende Idee des Pumpng-Lemma : Es exstert ene Pumpstelle n allen regulären Wörter z ab ener gewssen Länge n Endlche Akzeptoren : Um unbeschränkte Wörter zu erkennen, muss en Akzeptor n Zyklen laufen, wobe man dese Zyklen mehrfach durchlaufen kann v (*) Graphsche Veranschaulchung: u w S 0 S j S Reguläre Ausdrücke : En * -Operator ermöglcht enge Methoden ene unendlche Sprache zu beschreben Des ergbt, dass sehr lange Wörter vele Wederholungen desselben Telwortes enthalten w 1 L* w n n IN Bewes des Pumpng-Lemma : Es se R ene reguläre Sprache und zu R exstert en endlcher determnstscher Akzeptor A = (X, S, δ, s 0 ) mt L(A ) = R Nun wähle man n:= s, wobe z R und z n st Dann gbt es mndestens enen Zustand, welcher be der Engabe von z zwemal durchlaufen wrd, also : z = x,,, wobe glt: r n und x X für = 1,, r 1 x r Graphsche Darstellung: x R x 1 x x j x j+1 x j+ x k-1 S 0 S 1 S j = S k S j+1 S k-1 u x k+1 w x k+ S k+1 x r S Nun erkennt man: Für das erste Auftreten enes Zustandes s j = s k glt: v u : = x x j und v : = x j+ 1 xr ε 1 Damt glt für das erste Auftreten : uv = x1 x n Damt st w : = x k 1 xr + Daraus lässt sch nun folgern: δ s n = δ s, uv 0, 0 0 0, 0 Offenbar st ( ) ( ) = δ( s, uv ) mt 0, woraus folgt δ ( s uv w) = δ( s, uvw) = s F uv w R mt 0 - -

3 Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Hnwese zum Pumpng-Lemma : Das Pumpng-Lemma st kene Äquvalenzaussage Es st nur ene Implkaton: Ist ene Sprache L regulär, dann erfüllt L das Pumpng-Lemma Der umgekehrte Weg st ncht möglch Ene Typsche Anwendung des Pumpng-Lemma st um zu zegen, dass ene Sprache L ncht regulär st Aber das Pumpng-Lemma kann oft ncht Angewendet werden, da es Sprachen gbt, welche de Bedngungen des Pumpng-Lemma erfüllen, aber dennoch ncht regulär snd Bespel : m n n Man nehme an es exstert ene ncht reguläre Sprache L mt L { c a b m n 0} { a, } =, b, dann exsteren folgende Pumpmöglchketen für L : L untertelt n uvw: 1) v = c, mt 0 v wrd gepumpt und das Wort blebt Element von L ) v = a b, mt 0 a, b wrd gepumpt und das Wort blebt Element von L Bespele zum Pumpng-Lemma : P 1) Man defnere ene ncht reguläre Sprache L { O p st ene Prmezahl} = Annahme : L st regulär Dann muss L das Pumpng-Lemma erfüllen Daraus folgt dese Bewesführung: Man wähle en n nach dem Satz W und es se r ene Prmezahl mt r > n Des weteren se r z = O L Dann exstert ene Zerlegung z = uvw mt r r t s uv n, u = O, v = O mt s, t 0 Für O glt auch O + L für alle 0 Folglch snd alle Zahlen r + t Prmezahlen Nach spätestens t Zahlen kommt also mmer ene Prmezahl Nun setze man = r, dann st r + r t ene Prmezahl r ( 1+ t) st ene Prmezahl, anderersets snd r und 1 + t Faktoren von r ( + t) L st ncht regulär m ) Es se de Sprache L { O m st Quadratzahl} = ncht regulär Man gehe auch her von der Annahme aus, dass L regulär st De Bewesführung lautet dann folgendermaßen: Unter der Bedngung, dass L regulär st, muss es en n IN t 1 exsteren, so dass sch jedes Wort zu der Form O m mt m n und m Quadratzahl, sch n de Form z = uvw zerlegen lässt, mt den entsprechenden Egenschaften: v ε, uv n, uv w L mt 0 Nun wähle man spezell: z = 0 n und betrachte zuglech de Zerlegung z = uvw Daraus folgt wegen der Bedngung des Pumpng-Lemma : 1 v uv n Ferner st für = : uv ( w) < ( n + 1 ) w L nv L st ncht regulär! L, andersets soll gelten: n = z = uvw < uv w n + n < n + n + 1 = ( n + 1 ) - 3 -

4 Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun Reguläre Grammatken Allgemene Grammatken : Zusammenfassung des bsher behandelten Stoffes : - Prozesse des Erlernen von Sprachen Automaten - Charakterserungen Pumpng-Lemma, Abschlussegenschaften, algebrasch - Beschrebungen reguläre Ausdrücke - Erzeugungprozesse Grammatken Bespel ener allgemenen Grammatk : Produktons- / Abletungsregeln : Es handelt sch herbe um jene Regeln, nach denen de verschedenen Symbole verwendet bzw ersetzt werden dürfen <Satz> <Subjekt> <Prädkat> <Objekt> <Subjekt> Hund <Subjekt> Katze <Objekt> Katze <Objekt> Maus <Prädkat> beßt <Prädkat> jagt Erläuterung der verschedenen Symbolen: <> : Nchttermnalsymbole Hund, Katze, beßt, : Termnalsymbole <Satz> : Startsymbol Abletungsprozess : Bespel ener Anwendung der Produktonsregeln deser Grammatk <Satz> <Subjekt> <Prädkat> <Objekt> Katze <Prädkat> <Objekt> Katze beßt <Objekt> Katze beßt Maus - 4 -

5 Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Defnton X : Ene Grammatk G beschrebt man durch en Quadrupel G = (N, T, P, σ ) wobe folgendes glt: - N st de nchtleere endlche Menge von Nchttermnalsymbolen - T st de nchtleere endlche Menge von Termnalsymbolen - N T =, Es gbt kene Termnalsymbolen de glechzetg Nchttermnalsymbolen snd und umgekehrt - σ N st das Startsymbol { } - P ( α β) α, β ( N T ), st de endlche Menge der Produktonen oder auch Produktons- oder Abletungsregeln Bemerkung : α, β schrebt man auch α G β oder auch α β, wenn der Bezug zur Grammatk endeutg Statt ( ) st Es seen w ( N T ) v, Dann se des weteren v abletbar aus w ( Formal dargestellt: w G v, bzw verenfacht w v oder w v ), wenn Wörter der Art v,, v ; u,, u ; z,, z ; α,, α ; β β ( N T ) 1,, exsteren, dann glt: v 1 k 1 k 1 k 1 k 1 1 k 1 1 = w, vk = v, v = uα z, v+ 1 = uβ z für alle = 1,, k Darstellung: v1 = u1α1z1 u1β1z1 = uα z uβ z = u3α 3 z3 v De von ener Grammatk G erzeugte Sprache L(G ) st defnert durch: L ( G) = { w T a w} G Bespele für allgemene Grammatken nach der Defnton X : n n 1) Man nehme de Sprache L = { a b n IN} 1, für welche de Grammatk G 1 = ( N1, T1, P1, σ1 ) mt 1 = { σ 1 } 1 = { a b} und P 1 = { σ1 aσ1b, σ1 ε} T, In desem Fall seht der Abletungsprozess folgendermaßen aus: n n n n 1 aσ1b aaσ1bb a σ1b a b σ, woraus folgt: ( G 1 ) L1 L = N, ) Man defnere für de korrekte Klammerung durch begn und end n enem Programm folgende Grammatk G = ( N, T, P, σ ) mt N = { σ }, T = { begn, end} und P = { σ begn σ end σ, σ ε} Der Abletungsprozess bestzt folgendes Aussehen: σ begn σ end σ begn σ end begn begn σ end σ end begn begn end σ end begn begn end begn σ begn begn end begn end end end σ end begn begn end begn σ end end begn begn end begn end end - 5 -

6 Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Reguläre Grammatken : De Typserung von Grammatken und der Bezug zu spezellen Sprachklassen erfolgt über de Enschränkung der Form der Produkton Defnton Y : Ene Grammatk G = (N, T, P, σ ) heßt rechtslneare Grammatk, wenn glt Für alle ( α, β) P exstert en α N und en β T oder en β = β' B mt β' T und B N Analog : Be der lnkslnearen Grammatk wrd das β = β' B durch β = B β' ersetzt Bespel ener regulären Grammatk nach der Defnton Y : Man nehme an, zu der Sprache = { a } { } b defnerte st mt = { a, σ' } L ( G) = L L exstert ene reguläre Grammatk G = ( N, T, P, σ) N, T = { a, b} und P = { σ aσ, σ σ', σ' σ' b, σ' ε}, welche Satz Z : Se X en Alphabet, dann exstert zu jeder regulären Sprache L X ene rechtslneare Grammatk G, führ de glt: L ( G) = L und umgekehrt Bewes : Der Bewes st untertelt n zwe Bewese für jewels ene Rchtung, also ener für und ener für Bewes für : Es se de Sprache X L regulär Dann exstert en endlcher determnstscher Akzeptor A = ( X, S, δ, s0, F ) mt der Egenschaft L = L( A) Bewesdee : Man konstruere ene Grammatk aus der Zustandsüberführungsakton δ De Zustandsüberführungsakton δ wrd also zur Grammatk Bewesführung: Es se ene Grammatk G = ( N, T, P, σ) defnert durch: N := S, T := X, σ := s 0 und P s xs' s, s' S : δ( s, x) Nun st zu zegen: L ( G) = L Es se en Wort L( G) w mt w = x1 xk, x X defnert s 0 w s0 x1s1 x1x s x1 x G { = s } { s ε s F} : = ' {,, k 1} : δ( s, x 1 ) s 1 und s F δ ( s, w) = s F w L( A) L 0 + = + k k 0 k = - 6 -

7 Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Bewes für : G = N, T, P, σ ene rechtslneare Grammatk Es se ( ) Bewesdee : Wr konstrueren enen nchtdetermnstschen Akzeptor A ( X S, δ, s, F ) Bewesführung: A X S, δ, s, F Es se = ( ) mt ( G) L( A), 0 L = defnert durch : { } =, 0 σ, α, falls σ ε P S : = N { α} mt α N, s0 := { σ} und F = { α}, falls σ ε P B δ( A, x), falls A xb P Des weteren gelten de folgenden Gesetzmäßgketen : α δ A, x, falls A x Nun soll gelten für n 1: En Wort w = x x mt X 1 n x st Element von ( G) L ( ) P Es exstert ene Folge von Nchttermnalsymbolen A1,, A n 1 für de glt: σ x1 A1 x1x A x1 xn 1An 1 x1 xn = w Es exstert ene Folge von Zuständen A1,, A n 1 mt A δ( σ, x1 ), A δ( A1, x ),, α δ( A n 1, x n ) L( A) w 1-7 -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Übungsblatt 4 - Lösung

Übungsblatt 4 - Lösung Formle Sprchen und Automten Üungsltt 4 - Lösung 26. M 2013 1 Whr oder flsch? Begründe kurz dene Antwort! 1. In enem determnstschen endlchen Automten gt es für jedes Wort w Σ mxml enen kzepterenden Pfd.

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Der Satz von COOK (1971)

Der Satz von COOK (1971) Der Satz von COOK (1971) Voraussetzung: Das Konzept der -Band-Turng-Maschne (TM) 1.) Notatonen: Ene momentane Beschrebung (mb) ener Konfguraton ener TM st en -Tupel ( α1, α2,..., α ) mt α = xqy, falls

Mehr

12 UMPU Tests ( UMP unbiased )

12 UMPU Tests ( UMP unbiased ) 89 1 UMPU Tests ( UMP unbased ) Nach Bemerkung 11.8(b) exstert m Allgemenen ken zwesetger UMP- Test zu enem Nveau α. Deshalb Enschränkung auf unverfälschte Tests: ϕ Φ α heßt unverfälscht (unbased) zum

Mehr

) ergeben die i i. Es gelten folgende allgemeinen Resultate (in informeller Sprache formuliert).

) ergeben die i i. Es gelten folgende allgemeinen Resultate (in informeller Sprache formuliert). V. Kolluson Im olgopolstschen Wettbewerb treffen mtunter mmer weder de glechen Frmen aufenander. Des eröffnet de Möglchket für stlles Zusammenspel, wel abwechendes Verhalten n späteren Zusammentreffen

Mehr

50 Matrixnormen und Eigenwertabschätzungen

50 Matrixnormen und Eigenwertabschätzungen 50 Matrxnormen und Egenwertabschätzungen 501 Motvaton De Berechnung der Egenwerte ener Matrx st aufwändg (vgl Kaptel 45, Kaptel 51) Kann man de Egenwerte ener Matrx mt gerngem Aufwand abschätzen? Des spelt

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt Kaptel 3 Zwe Personen Spele 3.1 Matrxspele 3.2 Matrxspele n gemschten Strategen 3.3 B Matrxspele und quadratsche Programme 3.4 B Matrxspele und lneare Komplementartätsprobleme 3.1 Matrxspele Wr betrachten

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden. Kombnator. Problemstellung Ausgangspunt be ombnatorschen Fragestellungen st mmer ene endlche Menge M, aus deren Elementen man endlche Zusammenstellungen von Elementen aus M bldet. Formal gesprochen bedeutet

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

6. Hilbertraum und lineare Operatoren (mathematische Grundlagen QM)

6. Hilbertraum und lineare Operatoren (mathematische Grundlagen QM) 6. Hlbertraum und lneare Operatoren (mathematsche Grundlagen QM) 6.1 Hlbertraum Raum = mathematsches Konstrukt: Vektorraum a) Der lneare komplexe Raum st de Menge von mathematschen Objekten mt folgenden

Mehr

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen Hefte zur Logstk Prof. Dr. Segfred Jetzke Heft 1 Begrffsdefntonen Jun 2010 Deses Heft st urheberrechtlch geschützt. Wenn Se de Quelle angeben, können Se gerne deses Heft wetergeben, Tele koperen oder aus

Mehr

Online Algorithmen. k-server randomisiert Teil II

Online Algorithmen. k-server randomisiert Teil II Onlne Algorthmen k-server randomsert Tel II Ausarbetung für das Semnar Onlne Algorthmen Prof. Dr. Ro. Klen Anette Ebbers-Baumann Ansgar Grüne Insttut für Informatk Theorethsche Informatk und formale Methoden

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Was erwarten wir als Ergebnis von freien Verhandlungen in einer Gruppe mit Koalitionsmöglichkeiten?

Was erwarten wir als Ergebnis von freien Verhandlungen in einer Gruppe mit Koalitionsmöglichkeiten? Prof. Dr. Fredel Bolle 1 Prof. Dr. Fredel Bolle Vorlesung 1 Defnton: Kooperatves Spel En ooperatves Spel Γ st en Tupel (N,V), wobe der N = {1,...,m} mt m > 1 de Menge der Speler bezechnet und Was erwarten

Mehr

2. Übungsblatt (mit Lösungen) 3.0 VU Formale Modellierung

2. Übungsblatt (mit Lösungen) 3.0 VU Formale Modellierung 2. Übungsblatt (mt en) 3.0 VU Formale Modellerung Maron Scholz, Gernot Salzer November 2014 Aufgabe 1 (0.3 Punkte) Se A der folgende Moore-Automat. 0 0 0 Z 0 0 1 Z 1 0 1 1 Z 2 1 (a) Geben Se de Ausgaben

Mehr

arxiv: v1 [math.nt] 10 Apr 2014

arxiv: v1 [math.nt] 10 Apr 2014 Über de ratonalen Punkte auf der Sphäre von Nkolay Moshchevtn 1 Moskau) arxv:1404.907v1 [math.nt] 10 Apr 014 Wr beschäftgen uns her mt der Approxmaton von Punkten auf der n-dmensonalen Sphäre durch ratonale

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

8. MARKOVKETTEN 127. Abbildung 8.1: Reduzible und periodische Markovkette. p ji IIP[X n 1 = j] = [(IIP[X n 1 = j]) j E P ] i. j=0

8. MARKOVKETTEN 127. Abbildung 8.1: Reduzible und periodische Markovkette. p ji IIP[X n 1 = j] = [(IIP[X n 1 = j]) j E P ] i. j=0 8. MARKOVKETTEN 17 8. Marovetten Abbldung 8.1: Reduzble und perodsche Marovette 8.1. Homogene Marovetten n dsreter Zet En Prozess {X n : n IIN} hesst homogene Marovette (n dsreter Zet) mt (abzählbarem)

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

Algebraische Kombinatorik und Anwendungen in der kommutativen Algebra

Algebraische Kombinatorik und Anwendungen in der kommutativen Algebra Algebrasche Kombnatork und Anwendungen n der kommutatven Algebra Dr. Martna Kubtzke Wntersemester 2012/13 Goethe-Unverstät Frankfurt Inhaltsverzechns 1 Monomale Ideale und smplzale Komplexe 1 1.1 Monomale

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

Physik A VL11 ( )

Physik A VL11 ( ) Physk A VL11 (0.11.01) Dynamk der Rotatonsbewegung I Kresbewegung und Kräfte Drehmoment und räghetsmoment Kresbewegung und Kräfte en Massepunkt (Schwerpunkt) führt nur ene ranslatonsbewegung aus ausgedehnte

Mehr

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013 O. Alaya, S. Demrel M. Fetzer, B. Krnn M. Wed 5. Gruppenübung zur Vorlesung Höhere Mathematk Wntersemester /3 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshnwese zu den Hausaufgaben: Aufgabe H 6. Darstellungen

Mehr

3 g-adische Ziffernentwicklung reeller Zahlen

3 g-adische Ziffernentwicklung reeller Zahlen 1 3 g-adche Zffernentwcklung reeller Zahlen In deem Kaptel e tet 2 g N und Z g = {0, 1, 2, 3,..., g 1} N. Motvaton: Wr wollen jede potve reelle Zahl x > 0 n der Ba g 2 dartellen (g-adche Dartellung von

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung Znsesznsformel (Abschntt 1.2) 3 Investton & Fnanzerung 1. Fnanzmathematk Unv.-Prof. Dr. Dr. Andreas Löffler (AL@wacc.de) t Z t K t Znsesznsformel 0 1.000 K 0 1 100 1.100 K 1 = K 0 + K 0 = K 0 (1 + ) 2

Mehr

Der technische Stand der Antriebstechnik einer Volkswirtschaft läßt sich an ihrem Exportanteil am Gesamtexportvolumen aller Industrieländer messen.

Der technische Stand der Antriebstechnik einer Volkswirtschaft läßt sich an ihrem Exportanteil am Gesamtexportvolumen aller Industrieländer messen. - 14.1 - Antrebstechnk Der technsche Stand der Antrebstechnk ener Volkswrtschaft läßt sch an hrem Exportantel am Gesamtexportvolumen aller Industreländer messen. Mt 27,7 % des gesamten Weltexportvolumens

Mehr

Operations Research II (Netzplantechnik und Projektmanagement)

Operations Research II (Netzplantechnik und Projektmanagement) Operatons Research II (Netzplantechnk und Projektmanagement). Aprl Frank Köller,, Hans-Jörg von Mettenhem & Mchael H. Bretner.. # // ::: Gute Vorlesung:-) Danke! Feedback.. # Netzplantechnk: Überblck Wchtges

Mehr

Lösungen zum 3. Aufgabenblock

Lösungen zum 3. Aufgabenblock Lösungen zum 3. Aufgabenblock 3. Aufgabenblock ewerber haben n enem Test zur sozalen Kompetenz folgende ntervallskalerte Werte erhalten: 96 131 11 1 85 113 91 73 7 a) Zegen Se für desen Datensatz, dass

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

AUFGABEN ZUR INFORMATIONSTHEORIE

AUFGABEN ZUR INFORMATIONSTHEORIE AUFGABEN ZUR INFORMATIONSTHEORIE Aufgabe Wr betrachten das folgende Zufallsexperment: Ene fare Münze wrd so lange geworfen, bs erstmals Kopf erschent. De Zufallsvarable X bezechne de Anzahl der dazu notwendgen

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5

Mehr

Grundlagen der stochastischen Integration

Grundlagen der stochastischen Integration Ruhr-Unverstät Bochum 2. November 29 Glederung Vorbemerkungen Vorberetungen (Fltratonen, Stoppzeten, Martngale) Lévy-Prozesse Stochastsche Integraton Itô-Formel Lteratur R. Cont, P. Tankov (24). Fnancal

Mehr

Dynamik starrer Körper

Dynamik starrer Körper Dynamk starrer Körper Bewegungen starrer Körper können n Translaton und Rotaton zerlegt werden. De Rotaton stellt enen nneren Frehetsgrad des Körpers dar, der be Punktmassen ncht exstert. Der Schwerpunkt

Mehr

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen Darstellunstheore der SO() und SU() Powtschnk Alexander. Defnton Darstellun Ene Darstellun ener Gruppe G st homomorphe Abbldun von deser Gruppe auf ene Gruppe nchtsnulärer lnearer Operatoren auf enem Vektorraum

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de ERP Cloud SFA ECM Backup E-Commerce ERP EDI Prese erfassen www.comarch-cloud.de Inhaltsverzechns 1 Zel des s 3 2 Enführung: Welche Arten von Presen gbt es? 3 3 Beschaffungsprese erfassen 3 3.1 Vordefnerte

Mehr

Kapitel 7: Ensemble Methoden. Maschinelles Lernen und Neural Computation

Kapitel 7: Ensemble Methoden. Maschinelles Lernen und Neural Computation Kaptel 7: Ensemble Methoden 133 Komtees Mehrere Netze haben bessere Performanz als enzelne Enfachstes Bespel: Komtee von Netzen aus der n-fachen Kreuzvalderung (verrngert Varanz) De Computatonal Learnng

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informatonstheore und Coderung Prof. Dr. Lla Lajm März 25 Ostfala Hochschule für angewandte Wssenschaften Hochschule Braunschweg/Wolfenbüttel Postanschrft: Salzdahlumer Str. 46/48 3832

Mehr

Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert

Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert R. Brnkmann http://brnkmann-du.de Sete..8 Zufallsvarable, Wahrschenlchketsvertelungen und Erwartungswert Enführungsbespel: Zwe Würfel (en blauer und en grüner) werden 4 mal zusammen geworfen. De Häufgketen

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Werkstoffmechanik SS11 Baither/Schmitz. 5. Vorlesung

Werkstoffmechanik SS11 Baither/Schmitz. 5. Vorlesung Werkstoffmechank SS11 Bather/Schmtz 5. Vorlesung 0.05.011 4. Mkroskopsche Ursachen der Elastztät 4.1 Energeelastztät wrd bestmmt durch de Wechselwrkungspotentale zwschen den Atomen, oft schon auf der Bass

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Proseminar Spieltheorie SS 2006 Ausarbeitung zum Vortrag Allgemeine Zwei-Personenspiele am Vortragender: Florian Leiner

Proseminar Spieltheorie SS 2006 Ausarbeitung zum Vortrag Allgemeine Zwei-Personenspiele am Vortragender: Florian Leiner Prosemnar Speltheore SS 2006 Ausarbetung zum Vortrag Allgemene Zwe-Personenspele am 06.07.2006 Vortragender: Floran Lener Der Vortrag basert auf dem entsprechenden Kaptel wo-person general-sum games aus

Mehr

Anwendungsmöglichkeiten von Lernverfahren

Anwendungsmöglichkeiten von Lernverfahren Künstlche Neuronale Netze Lernen n neuronalen Netzen 2 / 30 Anwendungsmöglcheten von Lernverfahren Prnzpelle Möglcheten Verbndungsorentert 1 Hnzufügen neuer Verbndungen 2 Löschen bestehender Verbndungen

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

1 - Prüfungsvorbereitungsseminar

1 - Prüfungsvorbereitungsseminar 1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik) Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:

Mehr

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1 Projektmanagement / Netzplantechnk Sommersemester 005 Sete 1 Prüfungs- oder Matrkel-Nr.: Themenstellung für de Kredtpunkte-Klausur m Haupttermn des Sommersemesters 005 zur SBWL-Lehrveranstaltung Projektmanagement

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

1. Runde 2010. Aufgaben und Lösungen. Bundeswettbewerb Mathematik

1. Runde 2010. Aufgaben und Lösungen. Bundeswettbewerb Mathematik Bundeswettbewerb Mathemat Wssenschaftszentrum Postfach 2 14 48 53144 Bonn Fon: 228-9 59 15-2 Fax: 228-9 59 15-29 e-mal: nfo@bundeswettbewerb-mathemat.de www.bundeswettbewerb-mathemat.de Korreturommsson

Mehr

Proof of Knowledge for Factorization & Fair Encryption of ElGamal/RSA Keys

Proof of Knowledge for Factorization & Fair Encryption of ElGamal/RSA Keys R. Fschln/15. Februar 000 Proof of Knowledge for Factorzaton & Far Encrypton of ElGamal/RS Keys G. Poupard und J. Stern [PS99a, PS99b] haben auf dem Lumny-Workshop enen (kurzen) Proof-of-Knowledge für

Mehr

5 Das Lebesgue Integral

5 Das Lebesgue Integral 5 AS LEBESGUE INTEGRAL 5 as Lebesgue Integral er Remann sche Integralbegrff m R n, den wr m ersten (für n = 1) und drtten Kaptel kennengelernt haben, eröffnet uns de Möglchket zur Berechnung ener sehr

Mehr

Kapitel 1. Grundlagen der Fehleranalyse

Kapitel 1. Grundlagen der Fehleranalyse Kaptel Grundlagen der Fehleranalyse B... (Fehlerarten): Von den Fehlerquellen ausgehend unterscheden wr dre unterschedlche Fehlerarten: () Engangsehler Dese entstehen durch a) Modellerungsehler (Z.B. wenn

Mehr

Steuerungsverfahren und ihre Datenstrukturen 09 - Netzplantechnik

Steuerungsverfahren und ihre Datenstrukturen 09 - Netzplantechnik und hre Datenstrukturen 9-9....2 9. Zetplanung...2 9.. CPM... 3 9..2 PERT... 9..3 MPM... 5 9..4 Verglech zwschen CPM und MPM... 22 9.2 Ausblck: Kosten- und Kapaztätsplanung...23 9.3 Entschedungsnetzpläne...24

Mehr

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008 Netzscherhet I, WS 2008/2009 Übung Prof. Dr. Jörg Schwenk 27.10.2008 1 Das GSM Protokoll ufgabe 1 In der Vorlesung haben Se gelernt, we sch de Moble Staton (MS) gegenüber dem Home Envroment (HE) mt Hlfe

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Stochastik - Kapitel 4

Stochastik - Kapitel 4 Aufgaben ab Sete 5 4. Zufallsgrößen / Zufallsvarablen und hre Vertelungen 4. Zufallsgröße / Zufallsvarable Defnton: Ene Zufallsgröße (Zufallsvarable) X ordnet jedem Versuchsergebns ω Ω ene reelle Zahl

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit Enführung n de bednge Wahrschenlchket Laplace-Wahrschenlchket p 0.56??? Zufallsexperment Randwahrschenlchket Überscht Was st Wahrschenlchket? Rechenregeln Der Multplkatonssatz Axomatsche Herletung Unabhänggket

Mehr

Ko- und kontravariante Darstellung

Ko- und kontravariante Darstellung Ko- und kontravarante Darstellung Physkalsche Sachverhalte snd vom verwendeten Koordnatensystem unabhängg. Sehr oft st es snnvoll, se n verschedenen Koordnatensystemen darzustellen. Berets erwähnt wurden

Mehr

Klassische Gatter und Logikelemente. Seminarvortrag zu Ausgewählte Kapitel der Quantentheorie Quantenalgorithmen

Klassische Gatter und Logikelemente. Seminarvortrag zu Ausgewählte Kapitel der Quantentheorie Quantenalgorithmen Klasssche Gatter und Logkelemente Semnarvortrag zu Ausgewählte Kaptel der Quantentheore Quantenalgorthmen Gerd Ch. Krzek WS 2003 I. Grundlagen und Methoden der Logk: Im folgenden soll de Konstrukton und

Mehr

Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind.

Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind. Kresel z y koerperfestes KS z y x raumfestes KS x Starrer Körper: System von Massepunkten m, deren Abstände r r j unterenander konstant snd. Der Zustand läßt sch beschreben durch: Poston des Schwerpunktes,

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Forschungsstatistik I

Forschungsstatistik I Psychologe Prof. Dr. G. Menhardt 2. Stock, Nordflügel R. 02-429 (Perske) R. 02-431 (Menhardt) Sprechstunde jederzet nach Verenbarung Forschungsstatstk I Dr. Malte Perske perske@un-manz.de WS 2008/2009

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Wahl auf Bäumen: FireWire

Wahl auf Bäumen: FireWire Wahl auf Bäumen: FreWre IEEE 94 Hgh Performance Seral Bus (FreWre) Internatonaler Standard Hochgeschwndgketsbus Transport von dgtalen Audo- und Vdeo-Daten 400 Mbps (94b: 800 MBps... 3200 Mbps) Hot-pluggable

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte jean-claude.feltes@educaton.lu 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

Der stöchiometrische Luftbedarf einer Reaktion kann aus dem Sauerstoffbedarf der Reaktion und der Zusammensetzung der Luft berechnet werden.

Der stöchiometrische Luftbedarf einer Reaktion kann aus dem Sauerstoffbedarf der Reaktion und der Zusammensetzung der Luft berechnet werden. Stoffwerte De Stoffwerte für de enzelnen omponenten raftstoff, Luft und Abgas snd den verschedenen Stellen aus den Lteraturhnwesen zu entnehmen, für enge Stoffe sollen jedoch de grundlegenden Zusammenhänge

Mehr

2πσ. e ax2 dx = x exp. 2πσ. 2σ 2. Die Varianz ergibt sich mit Hilfe eines weiteren bestimmten Integrals: x 2 e ax2 dx = 1 π.

2πσ. e ax2 dx = x exp. 2πσ. 2σ 2. Die Varianz ergibt sich mit Hilfe eines weiteren bestimmten Integrals: x 2 e ax2 dx = 1 π. 2.5. NORMALVERTEILUNG 27 2.5 Normalvertelung De n der Statstk am häufgsten benutzte Vertelung st de Gauss- oder Normalvertelung. Wr haben berets gesehen, dass dese Vertelung aus den Bnomal- und Posson-Vertelungen

Mehr

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. .

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. . Neuronale Netze M. Gruber 7.11.015 Begnnen wr mt enem Bespel. Bespel 1 Wr konstrueren enen Klasskator auf der Menge X = [ 1; 1], dessen Wrkung man n Abb.1 rechts sehen kann. Auf der blauen Telmenge soll

Mehr

Mathematik der Finanzmärkte Vorlesungsskript

Mathematik der Finanzmärkte Vorlesungsskript Mathematk der Fnanzmärkte Vorlesungsskrpt Wnter 24/25 Achm Klenke Insttut für Mathematk Johannes Gutenberg-Unverstät Manz Staudngerweg 9 D-5599 Manz 16. Februar 25 korrgert: 11. Aprl 25 2 Inhaltsverzechns

Mehr

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT Smulaton von Hybrdfahrzeugantreben mt optmerter Synchronmaschne 1 SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT OPTIMIERTER SYNCHRONMASCHINE H. Wöhl-Bruhn 1 EINLEITUNG Ene Velzahl von Untersuchungen hat sch

Mehr