Radioaktivität in der Schule

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Radioaktivität in der Schule"

Transkript

1 Wissenschaftliche Arbeit für das Staatsexamen im Fach Physik Radioaktivität in der Schule Experimente im Physikunterricht vorgelegt von Alina Renner Angefertigt bei Prof. Dr. Horst Fischer 7. Dezember 2012 Physikalisches Institut Albert-Ludwigs-Universität Freiburg

2

3 Inhaltsverzeichnis 1 Einleitung 1 2 Physikalische Grundlagen Radioaktivität Radioaktive Stoffe Künstliche und natürliche Quellen Zerfälle radioaktiver Stoffe Das Zerfallsgesetz Zerfalls- bzw. Strahlungsarten Unterscheidung der Zerfallsarten in der Praxis Reichweite und Absorption von Strahlung α-strahlung β-strahlung γ-strahlung Anwendung radioaktiver Elemente Ionisierende Strahlung und ihre Wirkung - Strahlenschutz Strahlenbelastung des Menschen Dosimetrie - Dosismessgrößen Schäden im Körper Strahlenschutzverordnung Statistische Streuung Wichtige Begriffe aus der Statistik Gaußsche Normalverteilung Poisson-Verteilung als Grenzwert der Binomialverteilung Gaußsche Normalverteilung als Grenzfall der Poissonverteilung Der Versuchsaufbau Das Geiger-Müller-Zählrohr, 45 mm Der Digitalzähler Sensor-Cassy Die GM-Box Erster Versuchsaufbau Zweiter Versuchsaufbau Versuchsvorbereitung Proben Zimmerwände

4 3.8.2 Zigarettentabak Glasscheibe Radon im Keller Messungen und Auswertungen Untergrundmessung Messungen mit dem ersten Versuchsaufbau Zimmerwand Glasscheibe Zigarettentabak Radon im Keller Berücksichtigung der Totzeit Messungen mit dem zweiten Versuchsaufbau Statistische Streuung Absorption von Strahlung Zusammenfassung der Ergebnisse Die Einbindung in den Schulunterricht 81 6 Versuchsanleitung für das Demonstrationspraktikum 85 7 Schlusswort 101 Literaturverzeichnis 103 Anhang 107 Betriebsanleitung des Geiger-Müller-Zählrohrs Gebrauchsanweisung der GM-Box

5 1 Einleitung In Schulen und schulähnlichen Einrichtungen gilt beim Umgang mit radioaktiven Stoffen 1 die aktuelle Strahlenschutzverordnung vom Jahr 2001, die vom Bundesministerium erlassen wurde [1]. Danach braucht jede Schule für den Betrieb bzw. Weiterbetrieb von Vorrichtungen, die für Unterrichtszwecke und für den Umgang mit radioaktiven Stoffen gedacht sind, einen Strahlenschutzbeauftragten, welcher eine Lehrkraft der Schule sein muss und vom Schulleiterfür diesen Zweck entpflichtet wird. Der Strahlenschutzbeauftragte hat unter anderem dafür Sorge zu tragen, dass Schüler 2 unter 16 Jahren keinen Umgang mit genehmigungsbedürftigen radioaktiven Stoffen pflegen und Schüler über 16 nur in Anwesenheit des Strahlenschutzbeauftragten beim Umgang mit genehmigungsbedürftigen radioaktiven Stoffen mitwirken dürfen. Lehrkräfte, die keine Strahlenschutzbeauftragte sind, dürfen im Unterricht nur dann radioaktive Stoffe verwenden, wenn sie zuvor von einem Strahlenschutzbeauftragten unterwiesen worden sind. Die Mitwirkung von Schülern ist im Unterricht dieser Lehrkräfte allerdings nicht zulässig. Zum einen sind diese Maßnahmen selbstverständlich notwendig, um die Risiken für die Schüler aufgrund falscher oder unvorsichtiger Handhabung von radioaktiven Präparaten zu minimieren. Zum anderen wird die Gestaltung des Unterrichts zum Thema Radioaktivität durch diese Maßnahmen erheblich eingeschränkt. Denn die Schüler erhalten keine Möglichkeit zu diesem Thema selbstständig Erkenntnisse zu gewinnen oder das in der Theorie erarbeitete in der Praxis 3 eigenständig, etwa an Hand von Experimenten und Messungen, nachzuvollziehen. Aber gerade Experimente sind ein wichtiger Bestandteil des Physikunterrichts und dienen dazu, dass das theoretisch erworbene Wissen bei den Schülern gefestigt wird. Hinzu kommt, dass zum einen die Lagerung und Sicherung radioaktiver Stoffe durch die Strahlenschutzverordnung streng geregelt sind und zum anderen, die Umhüllung bei umschlossenen radioaktiven Stoffen mindestens einmal jährlich von einer dafür zuständigen Behörde gewartet und auf Unversehrtheit und Dichtheit überprüft werden muss. All das führt dazu, dass an den meisten Schulen keine radioaktiven Stoffe mehr vorhanden sind. Die Regelung, dass Lehramtstudierende des Faches Physik laut Prüfungsordnung während ihres Studiums einen Kurs zur Durchführung von Demonstrationsversuchen absolvieren müssen, gibt es bereits seit dem Jahr 2003 [2]. Diese Regelung wurde 1 Mit Radioaktiven Stoffen sind alle radioaktiven Materialien gemeint, die wegen ihrer Radioaktivität für Unterrichtszwecke verwendet werden, unabhängig von ihrer Aktivität und Form. 2 Aus sprachlichen Gründen wird im Folgenden nur die männliche Form verwendet. Die weiblichen Leser werden dafür um Verständnis gebeten. 3 Damit sind beispielsweise Praktika oder Unterrichtseinheiten gemeint, in denen die Schüler selbstständig arbeiten/forschen dürfen. 1

6 1 Einleitung notwendig als das Referendariat aufgrund des eingeführten Schulpraxissemester von 24 auf 18 Monate gekürzt wurde und die Demonstrationsexperimente, die bisher Teil der Begleitveranstaltungen während des Referendariats waren, entfielen. Da solche Experimente jedoch für einen zeitgemäßen und abwechslungsreichen Unterricht wichtig sind und diesen interessant und lebendig machen, wurden die Demonstrationsversuche im Wintersemester 2004/05 zunächst im Rahmen der Vorlesung Einführung in die Physik mit Experimenten für Mediziner und Pharmazeuten von Prof. Dr. Fischer angeboten und durchgeführt. Im Wintersemester 2006/07 und 2007/08 wurde diese Vorlesung ebenfalls von Prof. Dr. Fischer und Dr. Salm an der Pädagogischen Hochschule Freiburg als Experimentalpraktikum für Lehramtstudierende angeboten. Für das Wintersemester 2008/09 wurde mit Hilfe von Frau Schmid, Herr Schneider und Frau Patzner (Lehramtstudenten des Faches Physik) im Rahmen der Wissenschaftlichen Arbeit zur Zulassung zum 1. Staatsexamen in Zusammenarbeit mit Prof. Dr. Fischer und Dr. Salm das Demonstrationspraktikum eingerichtet. Dieses wird in dieser Form jedes Wintersemester angeboten und genügt den Anforderungen an eine qualitativ hochwertige Lehrerausbildung. In diesem Praktikum sollen die Studierenden die Bedienung der unterschiedlichen Experimentiergeräte und den methodisch sinnvollen Einsatz von verschiedenen Medien einüben, sowie lernen schulübliche Experimente zu verschiedenen Bereichen der Physik selbstständig aufzubauen und durchzuführen. Diese Arbeit soll das Angebot an Versuchen des Demonstrationspraktikums zum Thema Radioaktivität im Bereich der Kernphysik erweitern, mit dem Ziel, dass die Lehramtstudenten als angehende Lehrer den Schülern dieses Thema näher bringen und sie für radioaktive Strahlung im eigenen Umfeld sensibilisieren können ohne dabei von radioaktiven Präparaten Gebrauch zu machen, die nach der aktuellen Strahlenschutzverordnung genehmigungsbedürftig sind und, wie oben beschrieben, die Gestaltung des Unterrichts einschränken. 2

7 2 Physikalische Grundlagen 2.1 Radioaktivität Im Jahre 1896 stellte Antoine Henry Becquerel 1 fest, dass Uransalze Strahlen aussenden, die den von Wilhelm C. Röntgen 2 kürzlich entdeckten Röntgenstrahlen sehr ähnelten [3]. Fasziniert von der Entdeckung Becquerels erforschte Marie Curie 3 zusammen mit ihrem Mann Pierre Curie 4 diese bislang noch nicht bekannte Strahlung. Marie Curie war die Erste, die den Begriff radioaktiv (lat. radius, Strahl) verwendete, um Elemente zu beschreiben, deren Atomkerne instabil sind und die unter Abgabe ionisierender Strahlung spontan zerfallen oder in energetisch günstigere Zustände übergehen. A. H. Becquerel erhielt 1903 zusammen mit Pierre und Marie Curie für die Endeckung des Elements Radium und für ihre Forschungen über radioaktive Stoffe den Nobelpreis für Physik [4]. Abb. 2.1: Henry Becquerel, Marie und Pierre Curie [5]. 1 Antoine Henry Becquerel ( ) war ein französischer Physiker. 2 Wilhelm C. Röntgen ( ) war ein deutscher Physiker. 3 Marie Curie ( ) erhielt Nobelpreise für Physik, Chemie und weitere Forschungen. 4 Pierre Curie ( ) war ein französcher Physiker. 3

8 2 Physikalische Grundlagen Was sind radioaktive Stoffe? Ein Atomkern setzt sich aus sogenannten Nukleonen (Kernbausteine; lat. nukleus, Kern) zusammen. Diese werden unterteilt in Z positiv geladene Protonen und N neutrale Neutronen, die nahezu gleiche Masse haben. Die Anzahl der Protonen Z im Atomkern wird Kernladungszahl genannt und bestimmt die Eigenschaften und das chemische Verhalten des Elements. Im Periodensystem heißt Z Ordnungszahl und die Summe der Protonen und Neutronen (Z+N) eines Kerns, also die Gesamtzahl der Nukleonen im Kern, wird Massenzahl A genannt. Durch die Angabe von zwei der drei Zahlen Z, A und N ist ein Nuklid (wird weiter unten erklärt) eindeutig bestimmt. Elemente mit gleicher Kernladungszahl Z, aber unterschiedlicher Massenzahl A, bezeichnet man als Isotope, solche mit verschiedener Ordnungszahl Z, aber gleicher Massenzahl Isobare. Isotope und Isobare werden zusammenfassend als Nuklid (Kernart) bezeichnet. Es gibt mehr als tausend verschiedene Kerne, da im Allgemeinen zu jeder Kernladungszahl mehrere Isotope existieren. Dabei wird unterschieden zwischen stabilen und instabilen Kernen [6]. Ein Isotop gilt als stabil, wenn seine Lebensdauer wesentlich größer ist als das Alter unseres Sonnensystems. Atomkerne, die spontan, also ohne äußeren Anlass zerfallen, werden als instabil bezeichnet und radioaktiv genannt. Bei diesen findet eine Kernumwandlung statt, bei der ionisierende Strahlung in Form von Teilchen (siehe Kapitel 2.2) emittiert wird, deren Energie von der bei der Kernumwandlung freiwerdenden Bindungsenergie der Nukleonen herrührt [7]. Radioaktive Stoffe können natürlichen oder künstlichen Ursprungs sein Was sind natürliche, was künstliche radioaktive Quellen? Radioaktive Elemente, also instabile Nuklide, können in der Natur vorkommen oder künstlich erzeugt werden [8]. Künstliche Radionuklide können im Wesentlichen auf zwei Arten erzeugt werden, durch Kernreaktionen oder induzierte Kernspaltungen, wie etwa bei der Energiegewinnung in Kernreaktoren. Während bei Kernreaktion in der Regel die Neutronen- oder die Protonenzahl der Mutterkerne erhöht wird, wird bei der Kernspaltung, wie der Begriff schon sagt, eine Spaltung des Kerns, meist durch Neutronenzufuhr, ausgelöst. Mittels Beschuss durch schwere Ionen können auch überschwere Elemente, sogenannte Transurane, erzeugt werden, die bevorzugt spontan spalten. Die aus der Kernspaltung entstehenden Spaltprodukte (Fragmente) werden nach Aufarbeitung als Strahler für Medizin und Technik eingesetzt. Natürliche Radionuklide werden in zwei Gruppen unterteilt, die primordialen (lat. uranfänglich, aus der Urzeit stammend) und die kosmogenen. Die primordialen Radionuklide haben sehr lange Lebensdauern und sind bereits seit der Erdentstehung vorhanden, also seit etwa 4,5 Milliarden Jahren. Ihre Massenzahlen liegen zwischen A = 40 und etwa A = 240, wobei die meisten schwerer als Blei (A = 206) sind. Bei den schweren Nukliden handelt es sich vor allem um Isotope von Uran sowie seine Zerfallsprodukte (siehe Abbildung 2.2), die überwiegend an Bleilagerstätten zu finden sind. 4

9 2.2 Zerfälle radioaktiver Stoffe Das leichte Radionuklid Kalium K-40 hat eine vergleichsweise kurze Lebensdauer 5 ist aber sehr bedeutsam, da es am menschlichen Stoffwechsel beteiligt ist. Kosmogenen Radionuklide sind, wie die Bezeichnung schon sagt, kosmischen Ursprungs und entstehen immer wieder neu in den oberen Schichten der Erdatmosphäre. Ihre Lebensdauer ist wesentlich kürzer als die der primordialen Radionuklide. Der wichtigste Vertreter dieser Gruppe ist das Kohlenstoffisotop C-14, das eine Halbwertszeit von 5730 Jahren hat und in das stabile Tochternuklid N-14 zerfällt. Da der radioaktive Kohlenstoff von allen lebenden Organismen aufgenommen wird, spielt es vor allem bei der Altersbestimmung durch die Radiokarbonmethode(siehe Kapitel 2.4) eine große Rolle. Abb. 2.2: Nuklidkarte der Uran-Radium-Zerfallsreihe mit Endprodukt Blei [9]. 2.2 Zerfälle radioaktiver Stoffe Der Zerfall eines radioaktiven Kerns tritt stochastisch auf. Folglich kann man nicht genau vorhersagen zu welchem genauen Zeitpunkt dieser Kern zerfallen, sich also in einen anderen Kern umwandeln, wird. Betrachtet man aber eine große Anzahl von Teilchen, so lässt sich beobachten, dass radioaktive Prozesse einem Exponentialgesetz, dem sogenannten Zerfallsgesetz folgen, welches für den α-, β- und γ-zerfall (Kapitel 2.2.2) gleichermaßen gilt. 5 Die Halbwertszeit von Kalium K-40 beträgt T 1/2 = 1, a. Das ist die Zeit, nach der die Hälfte aller vorhandenen Mutterkerne zerfallen ist. (vergleiche Kapitel 2.2) 5

10 2 Physikalische Grundlagen Das Zerfallsgesetz Bei Zerfallsprozessen geht ein instabiler Mutterkern unter Emission von Teilchen in einen Tochterkern über [3]. Betrachtet man eine Gruppe von N instabilen Mutterkernen, so ist die Wahrscheinlichkeit λ, dass ein Kern diese Gruppe pro Zeiteinheit verlässt, für alle Kerne gleich groß. Nämlich λ = dp dt. (2.1) λ wird Zerfallskonstante oder Zerfallswahrscheinlichkeit pro Sekunde genannt. Die Anzahl (-dn) der Kerne, die pro Zeitschritt dt zerfallen, ist proportional zu der Anzahl der in der Gruppe zur Zeit t noch vorhandenen Mutterkerne N: Die Größe dn dt dn dt N. (2.2) wird Aktivität A(t) des radioaktiven Materials genannt. Also: A(t) N. (2.3) Die Proportionalitätskonstante dieser Beziehung ist gerade die Zerfallskonstante λ. Folglich gilt: dn = λn. (2.4) dt Das bedeutet, dass je größer die Zerfallswahrscheinlichkeit eines Kerns pro s und die Anzahl der nicht zerfallenen Kerne ist, umso größer die Aktivität. Die Einheit der Aktivität, also der Zerfall pro Sekunde, wird in Becquerel (Bq) gemessen: [A(t)] = 1 s 1 = 1 Bq. (2.5) Früher war die Angabe der Aktivität in Curie 6 (Ci) üblich, wobei die Umrechnung gilt. Durch Integration der Differentialgleichung (2.4) 1 Ci = 3, Bq (2.6) N(t) N 0 dn N = t 0 λdt (2.7) lässt sich die Anzahl der Mutterkerne N(t), die zur Zeit t noch nicht zerfallen sind, berechnen. Das Zerfallsgesetz radioaktiver Kerne lautet nun: N(t) = N 0 e λt = N 0 e t τ (2.8) 6 Curie war bis 1985 die Einheit der Aktivität, und gab die Anzahl der Zerfälle in 1 g Radium an. 6

11 2.2 Zerfälle radioaktiver Stoffe Mit N 0 : Anzahl der Mutterkerne zum Zeitpunkt t = 0 N(t) : Anzahl der Mutterkerne zum Zeitpunkt t τ = 1 λ : mittlere Lebensdauer der Kerne Die mittlere Lebensdauer τ ergibt sich aus t = 0 t N(t)dt 0 N(t)dt = = [ tτe t/τ τ 2 e t/τ] [ τe t/τ ] 0 0 = τ. (2.9) Ist also gerade der gewichtete Mittelwert t aller tatsächlichen Lebensdauern t der Mutterkerne. Um eine radioaktive Substanz zu charakterisieren, wird die Halbwertszeit T 1/2 angegeben, die sich mit Hilfe des Zerfallsgesetzes zu T 1/2 = ln2 λ = τ ln2 (2.10) ergibt. Nach Ablauf dieser Zeit ist die Hälfte aller anfangs vorhandenen Mutterkerne zerfallen Zerfalls- bzw. Strahlungsarten Radioaktive Elemente können drei Arten von Kernstrahlung, die sogenannten Zerfallsarten, aufweisen, welche nach den ersten drei Buchstaben α, β und γ des griechischen Alphabets benannt wurden. Über diese drei Strahlenarten, welche sich aufgrund ihrer Ablenkungen im Magnetfeld (siehe Kaptitel 2.2.3) unterscheiden lassen, gehen instabile Kerne in stabilere Kerne oder energetisch günstigere Zustände über. Der α-zerfall Abb. 2.3: Emission eines α-teilchens [10] (rot: Protonen; grau: Neutronen). 7

12 2 Physikalische Grundlagen α-teilchen sind zweifach positiv geladene Heliumkerne 4 2He und werden beim α-zerfall emittiert (siehe Abbildung 2.3). Die allgemeine Reaktionsgleichung für einen Kern K 1 (Mutterkern), der in einen Kern K 2 (Tochterkern) unter Abstrahlung eines α-teilchens zerfällt, lautet [3]: A ZK 1 A 4 Z 2 K He + E. (2.11) Aus der Nuklidkarte in der Abbildung 2.2 lässt sich zum Beispiel folgende Reaktion für den Zerfall des Uranisotops U-234 (T 1/2 = 2, a) in das Thoriumnuklid Th-230 ablesen: U Th He + E. (2.12) Dabei stellt E die beim Zerfall frei werdende Bindungsenergie dar, mit der das α-teilchen in den Mutterkern eingebunden war [7]. E ist positiv, da sonst keine Reaktion möglich wäre. Die kinetische Energie des α-teilchens E kin,α ist jedoch kleiner als E, da ein Teil der Bindungsenergie als kinetische Energie an den Tochterkern abgegeben wird und von dem Anfangs- und Endzustand des Mutterkerns abhängt. Mutterkern und Tochterkern können angeregte oder nicht angeregte Zustände besitzen [6]. Zerfällt beispielsweise der Mutterkern, der sich in einem angeregten Zustand befindet, in einen Tochterkern in einem nicht angeregten Zustand, so ist die kinetische Energie E α des α-teilchens größer als beim Übergang von einem nicht angeregten in einen angeregten Zustand (vergleiche Abbildung 2.4: Zerfall des Astat-Isotops). Energiespektrum des α-zerfalls In jedem Fall besitzt E α einen diskreten Wert. Das bedeutet, dass die Energieanalyse des α-teilchens ein diskretes Linienspektrum liefert, wie das Beispiel des Astatisotops At in der Abbildung 2.4 zeigt. In dieser Abbildung ist zu sehen, dass das Astatisotop unter Abstrahlung eines α-teilchens in unterschiedlich angeregte Zustände des Bismutisotops Bi übergeht. Die Linien der abgestrahlten α-teilchen (α 1, α 2, α 3, α 4 ) unterschiedlicher Energie sind scharf 7. Die Energien der α-teilchen sind diskret und haben stets den gleichen Energiewert. Bei dem Zerfall in Gleichung (2.12) beispielsweise beträgt die Energie des α-teilchens stets 4,774 MeV [11]. Solche scharfe Linien im Energiespektrum sind für Zwei-Teilchen-Zerfälle charakteristisch. 7 Das bedeutet, dass die Linien im Energiespektrum (Spektrallinien) eindeutig und deutlich von einander getrennt sind, sodass ihnen auch eindeutige Energien zugeordnet werden können. 8

13 2.2 Zerfälle radioaktiver Stoffe Abb. 2.4: Termschema und Linienspektrum der α-teilchen des Astat-Isotops 208 Bi, das zu 99,5 % durch Elektroneneinfang zerfällt und nur zu 0,5 % durch α-zerfall [6]. Warum werden α-teilchen und nicht Protonen oder Neutronen emittiert? Es werden α-teilchen emittiert, weil diese eine besonders hohe Bindungsenergie von ungefähr 7 MeV/Nukleon aufweisen und außerordentlich stark gebunden sind [12]. Folglich steht einem α-teilchen eine Bindungsenergie von insgesamt rund 28 MeV zur Verfügung, da dieses aus zwei Neutronen und zwei Protonen besteht. Ein Proton, Neutron oder Deuteron D ( 2 1H + ) sind zwar auch in schwereren Kernen mit bis zu 7 MeV beziehungsweise 14 MeV gebunden, können aber im allgemeinen nicht aus dem Kern entweichen, da die ihnen zur Verfügung stehende Energie geringer ist. Weil die Wahrscheinlichkeit, dass sich ein System von Nukleonen im Kern formiert, mit der Zahl der benötigten Nukleonen drastisch abnimmt, ist vor allem die Emission eines Heliumkerns von praktischer Bedeutung. Die Theorie zum α-zerfall lieferte bereits 1928 George A. Gamow 8 mit dem Potentialtopfmodell [6]. Diese besagt, dass sich in einem Kern mit einer gewissen Wahrscheinlichkeit ein α-teilchen bilden kann. Dieses befindet sich nun im Potentialtopf, der durch die Überlagerung von negativer Kernbindungsenergie und positiver Coulomb- Abstoßungsenergie entsteht. Das ganze Kernpotential setzt sich folglich zusammen aus anziehendem Kernpotential und abstoßendem Coulomb-Potential. Da die Bindungsenergie eines einzelnen Nukleons in einem schweren Kern meist kleiner ist als 7 MeV und die Bindungsenergie eines α-teilchens mit 28,3 MeV größer ist als die Bindungsenergie zweier einzelner Protonen und Neutronen, steht dem α-teilchen eine positive Gesamtenergie E ges mehr zur Verfügung. Diese positive Gesamtenergie regt 8 George Anthony Gamow ( ) war ein russischer Physiker. 9

14 2 Physikalische Grundlagen Abb. 2.5: Modellpotential für ein α-teilchen [13]. das Teilchen auf ein höheres Energieniveau 9 E α an, das aber unterhalb des Potentialmaximums E max liegt, welches für die meisten α-strahler etwa 10 MeV beträgt. Die gesamte Potentialtiefe liegt bei ungefähr 30 MeV. Das α-teilchen befindet sich folglich nicht mehr im gebundenen Zustand, sondern im Bereich des quasi-gebundenen Zustands (siehe Abbildung 2.5). Im klassischen Modell wäre eine Emission ausgeschloßen, da das α-teilchen dafür bis zur Energie E max angeregt werden müsste, um aus dem Kern entweichen zu können. Daher ist das Verlassen des Kerns nur auf Grund des sogenannten Tunneleffekts möglich. Dieser besagt, dass das α-teilchen, welches eine De-Broglie 10 -Wellenlänge 11 λ db besitzt, mit einer Wahrscheinlichkeit T die Potentialbarriere passieren kann. Diese Wahrscheinlichkeit hängt von der Höhe E max E α ab und von der Breite d des Potentials, auch Potentialwall genannt, bei der Energie E α (vergleiche Abbildung 2.5). Für die Transmissionswahrscheinlichkeit T gilt: T = e 2G, (2.13) 9 Damit ist die diskrete Energie eines quantenmechanischen Zustands gemeint. 10 Louis-Victor Pierre Raymond de Broglie ( ) war der 7. Herzog de Broglie und ein französischer Physiker. 11 Laut Louis de Broglie weist nicht nur Licht Teilchen- und Wellenaspekte auf, sondern auch Elektronen und andere Teilchen bzw. Objekte, die eine von Null verschiedene Ruhemasse besitzen. Diesen wird eine De-Broglie-Frequenz und eine De-Broglie-Wellenlänge zugeordnet. 10

15 2.2 Zerfälle radioaktiver Stoffe wobei G der Gamow-Faktor ist, der sich näherungsweise durch Integration über die Breite d berechnen lässt und von der Energiedifferenz E max E α abhängt: G = 1 2m Emax E α dr. (2.14) Breite d Warum haben die α-teilchen einer spezifischen Substanz die gleiche Energie? Durchtunnelt ein α-teilchen, welches das Energieniveau E α besitzt, den Potentialwall, so erhält es nach elektrischer Abstoßung (durch den positiv geladenen Kern) eben diese Energie E α als kinetische Energie. Folglich ist die Lage der Energieniveaus E α für den Kern charakteristisch und alle α-teilchen, die von diesem spezifischen Kern emittiert werden, erhalten stets die gleiche Energie. Kerne, deren α-spektrum aus mehreren Linien besteht (vergleiche Abbildung 2.4), besitzen mehrere dieser charakteristischen Energien. Die Energie E α eines α-teilchens liegt meist zwischen 2 und 12 MeV [14]. Woher kommt die große Diskrepanz zwischen den Halbwertzeiten? Die Wahrscheinlichkeit pro Zeiteinheit, dass ein α-teilchen aus dem Kern entweicht, also die Zerfallswahrscheinlichkeit λ, ist gleich dem Produkt aus der Wahrscheinlichkeit w(α) ein α-teilchen im Kern zu finden, der Anzahl der Stöße ( v ) der α-teilchen an R die Barriere und der Transmission T (Gleichung (2.13)) [12]. Das bedeutet, dass für die Zerfallswahrscheinlichkeit gilt: λ = w(α) v R e 2G. (2.15) Dabei ist v die Geschwindigkeit der α-teilchen im Kern und liegt typischerweise bei 0,1 c (c: Lichtgeschwindigkeit). Die große Diskrepanz der Lebensdauern kann durch das Auftreten des Gamow-Faktors im Exponenten erklärt werden. Die Abhängigkeit G 1 hat zur Folge, dass kleine E Unterschiede in der Energie des α-teilchens sich stark auf die Lebensdauer auswirken. Die Halbwertszeiten T 1/2 von α-strahlern lassen sich durch T 1/2 = 1 berechnen und λ liegen zwischen 10 ns und a. Zwei Beispiele sollen verdeutlichen, wie stark die Abhängigkeit tatsächlich ist [3]: 232 Th : E α = 4,01 MeV T 1/2 = 1, a = 4, s, 212 Po : E α = 8,62 MeV T 1/2 = s. Die mittlere Lebensdauer τ wird aus der Halbwertszeit mit Hilfe der Gleichung (2.10) berechnet. 11

16 2 Physikalische Grundlagen Der β-zerfall Abb. 2.6: β -Zerfall [15] (rot: Protonen, grau: Neutronen, schwarz: Elektron, farblos: Anti-Elektron-Neutrino). Wie bereits in Kapitel erwähnt, sind meist schwere Atomkerne, deren Neutronenzahl meist größer ist als die Protonenzahl (N > Z), instabil und zerfallen. Erfolgt der Zerfall, wie in Abbildung 2.6 zu sehen ist, unter Aussendung eines Elektrons e, so wird die Zerfallsart β -Zerfall genannt und das emittierte Elektron β -Teilchen [7]. Künstlich erzeugte Nuklide, die sehr protonenarm sind, wie etwa das Heliumisotop 7 2He, emittieren ein Neutron n. Auch im Fall N < Z (nur bei künstlich erzeugten Nukliden möglich) sind die Atomkerne meist instabil. Diese emittieren ein Positron e +, welches auch β + -Teilchen genannt wird, oder sogar ein Proton p, falls der Kern sehr neutronenarm ist. Elektronen und Positronen haben dieselbe Masse (Energie) und den selben Spin 12 (I = 1/2), jedoch mit entgegengesetzten Vorzeichen bei der Ladung und dem magnetischen Moment 13 µ. Ein Beispiel für den β -Zerfall zeigt die Abbildung 2.7: Abb. 2.7: Termschema eines β -Zerfalls des Cäsiumisotops Cs [8]. 12 engl. spin, Drehung. Der Spin ist eine quantenmechanische Eigenschaft von Teilchen und wird auch Eigendrehimpuls genannt. 13 Auch magnetisches Dipolmoment genannt. 12

17 2.2 Zerfälle radioaktiver Stoffe Hier führt der β -Zerfall des Cäsiumisotops Cs zunächst in einen angeregten Zustand des Bariumisotops Ba, welches dann unter Abstrahlung eines γ-quants in den Grundzustand übergeht. Mit einer Wahrscheinlichkeit von 5,6 % ist jedoch auch ein direkter Zerfall des Isotops Cs-137 in das Bariumisotop Ba-137 möglich. Energiespektrum des β-zerfalls Ein charakteristisches Merkmal dieser Strahlungsart ist die Tatsache, dass die Elektronen (bzw. Positronen) ein kontinuierliches Energiespektrum besitzen, ihre kinetischen Energien folglich kontinuierlich über einen Bereich von 0 bis E max verteilt sind. Die Abbildung 2.8 stellt die Energieverteilung schematisch dar: Abb. 2.8: Schematisch Darstellung von β-energieverteilungen [16]. Die charakteristische Größe des Zerfalls ist die Maximalenergie E max eines β-spektrums, die für die meisten radioaktiven Nuklide im Bereich von 3 kev bis 18 MeV liegen [14]. Bei der Energieverteilung fällt auf, dass die β + - und β -Spektren sich gerade im niedriegen Energiebereich deutlich von einander unterscheiden, in höheren Bereichen jedoch gleich sind [16]. Das liegt daran, dass sich bei niedrigen Energien die positive Ladung des Atomkerns stark bemerkbar macht. Das Coulombfeld des Kerns beschleunigt die emittierenden β + -Teilchen niedriger Energie, was dazu führt, dass in der Energieverteilung die kleinen Energien fehlen. Im Gegensatz dazu sind im β - Spektrum zahlreiche kleine Energien vorzufinden. Die Neutrino-Hypothese Experimente, wie die Nebelkammeraufnahmen von ruhenden β-aktiven Kernen haben gezeigt, dass Energie- und Impulserhaltung keine Gültigkeit haben, wenn man bei dieser Zerfallsart von einem Zwei-Körper-Zerfall (ZKZ) ausgeht, wie etwa beim α-zerfall. 13

18 2 Physikalische Grundlagen Auch das kontinuierliche Energiespektrum ist nicht mit einem ZKZ verträglich. Messungen von Doppelzerfällen, bei denen ein Mutterkern auf zwei verschiedenen Wegen in den gleichen Tochterkern übergeht, belegen allerdings, dass der Energieerhaltungssatz gelten muss. Aus dem Wunsch heraus die experimentellen Ergebnisse zu erklären und den Widerspruch zum Energie- und Impulssatz zu beseitigen, schlug Wolfgang Pauli 14 im Jahre 1930 vor, dass neben dem Positron e + beim β + -Zerfall noch ein weiteres, elektrisch neutrales und sehr leichtes (um mehrere Größenordnungen leichter als ein Elektron) Teilchen emittiert wird. Dieses Teilchen hat den Namen Neutrino ν (kleines Neutron) erhalten. Die Zerfallsenergie wird folglich von drei, statt von zwei, Teilchen aufgenommen, womit eine kontinuierliche Energieverteilung erlaubt ist. Wie bei allen Elementarteilchen 15 muss es aus Symmetriegründen ein entsprechendes Antiteilchen geben. Dieses ist beim β -Zerfall erforderlich und wird Antineutrino ν genannt [6, 7]. β und β + -Zerfall Der β -Zerfall eines Mutterkerns K 1 in einen Tochterkern K 2 wird durch die Reaktion in Gleichung (2.16) beschrieben, der β + -Zerfall durch die Reaktion in Gleichung (2.17): A ZK 1 Z+1 A K 2 + e + ν + E oder n p + e + ν (+ E np ). (2.16) A ZK 1 Z 1 A K 2 + e + + ν + E oder p n + e + + ν (+ E pn ). (2.17) In der Gleichung (2.16) entspricht E der bei der Reaktion freigesetzten Energie, welche beim β -Zerfall positiv ist [7]. Der Grund hierfür ist der Massenunterschied von Neutron und Proton. Denn die Masse des Neutrons (939,6 MeV/c 2 ) ist größer als die Summe aus der Masse des Protons (938,3 MeV/c 2 ) und des Elektrons (0,5 MeV/c 2 ). 16 Nach diesem Schema kann ein freies Neutron auch spontan zerfallen. Seine mittlere Lebensdauer τ beträgt (896 ± 10) s, also ungefähr 15 Minuten. Anders ist es beim β + -Zerfall in Gleichung (2.17). Hier ist E negativ, was bedeutet, dass dem System Energie zugeführt werden muss, damit dieser Zerfall stattfinden kann. Das wiederum heißt, dass die Umwandlung eines Protons in ein Neutron nur in einem Atomkern möglich ist, der die dafür benötigte Energie aus dem Bestand seiner Bindungsenergie abgibt. Der Energieunterschied zwischen diesen beiden β-zerfällen ist auch der Grund, warum Wasserstoff 17 im Weltall häufig anzutreffen ist, während freie Neutronen fehlen. Ein Beispiel für die β -Umwandlung ist der Zerfall von Gold Au in Quecksilber 14 Wolfgang Ernst Pauli ( ) war bedeutender Physiker und Nobelpreisträger des 20. Jahrhunderts. 15 Damit sind die kleinsten bekannten Bausteine der Materie gemeint. Die Quarks (u,d,c,s,t,b), die Leptonen (ν e, ν µ, ν τ,e,µ,τ), die Eichbosonen (Austauschteilchen) und das Higgs-Boson. 16 Die Antineutrinomasse wird vernachlässigt, da diese mit < 2,2 MeV/c 2 sehr viel kleiner ist als die Elektronenmasse. 17 Denn Wasserstoff 1 1H besteht aus einem Proton und einem Elektron. 14

19 2.2 Zerfälle radioaktiver Stoffe Hg (Gleichung (2.18)) und für die β + -Umwandlung der Zerfall des Kaliumisotops 40 19K in Argon 40 18Ag (Gleichung (2.19)): Au Hg + e + ν, (2.18) Lebensdauer β-instabiler Kerne 40 19K Ag + e + + ν. (2.19) Die Lebensdauer τ β-instabiler Kerne ist stark abhängig von der freiwerdenden Energie E ( 1 τ E5 ) und den Kerneigenschaften von Mutter- und Tochterkern. τ kann Werte zwischen wenigen ms und a annehmen [7]. Zum Beispiel lässt sich für den Zerfall des freien Neutrons (Gleichung (2.16)), welches eine Lebensdauer von (896 ± 10)s hat, mit Hilfe der Energie-Lebensdauer-Beziehung ( 1 τ E5 ) berechnen, dass eine Energie von +0,78 MeV frei wird. Elektroneneinfang / K-Einfang Ein Proton kann sich auch durch einen sogenannten Elektroneneinfang in ein Neutron umwandeln. Dies ist bei Prozessen möglich, bei denen die Energiebilanz positiv ist, also E pn > 0 gilt, und sich ein neutrales Atom wieder in ein neutrales Atom umwandelt. Bei dieser Umwandlung wird ein Elektron aus der Elektronenhülle eines Atoms von einem Proton aus dem Kern absorbiert ( eingefangen ), das sich anschließend, nach der Reaktionsgleichung (2.20), in ein Neutron umwandelt: e + p n + ν. (2.20) Da alle Elektronen eine gewisse Aufenthaltswahrscheinlichkeit im Kern besitzen und diese für die Elektronen der K-Schale 18 am größten ist, werden meistens K-Elektronen eingefangen, sodass man vom K-Einfang spricht [3]. Das durch den K-Einfang entstandene Loch in der K-Schale wird durch ein Elektron aus einer anderen Schale aufgefüllt, wobei charakteristische Röntgenstrahlen 19 emittiert werden. Ein Beispiel ist der Elektroneneinfang beim Berylliumisotop 7 4Be, welches dadurch in Lithium 7 3Li übergeht: 7 4Be + e 7 3 Li + ν. (2.21) Ein weiteres Beispiel für den Elektroneneinfang (11%) ist das Kaliumisotop 40 19K, welches außerdem durch β + - (0, 001%) als auch durch β -Zerfall (89%) in andere stabile Isobare übergehen kann (siehe Abbildung 2.9). Dieses Nuklid trägt wesentlich zur Strahlenbelastung der Menschen und anderer biologischer Systeme bei. In der Abbildung 2.9 ist das Zerfallsschema des Kaliumisotops K-40 zu sehen: 18 Die K-Schale ist im Schalenmodell des Atoms die innerste Schale, die vollbesetzt 2 Elektronen enthält. Weitere Schalen sind die L-Schale mit 8 Elektronen, die M-Schale, und viele weitere. 19 Entstehen bei Übergängen zwischen Energieniveaus der inneren Elektronenhülle. 15

20 2 Physikalische Grundlagen Abb. 2.9: Zerfall von 40 K. Bei dieser Kernumwandlung konkurrieren der β -, β + - und der Elektroneneinfangprozess miteinander [17]. Der γ-zerfall Abb. 2.10: Abstrahlung eines γ-quants [18]. Bei der γ-strahlung handelt es sich um die Emission hochenergetischer Photonen, den sogenannten γ-quanten. Dies wird durch die Abbildung 2.10 veranschaulicht. Man findet γ-quanten ebenfalls bei den in der Natur vorkommenden radioaktiven Substanzen, allerdings nur in Verbindung mit der α- oder β-strahlung. Kerne im energetisch angeregten Zustand E k (z.b. nach einem α- oder β-zerfall) können in energetisch niedrigere Zustände E i übergehen, indem sie γ-quanten emittieren. Dieser Vorgang wird durch folgende Reaktionsgleichung beschrieben: A ZK A ZK + E oder A ZK A ZK + γ. (2.22) Dabei wird durch * der angeregte Zustand des Kerns K, mit Massenzahl A und Ordnungszahl Z, angezeigt. Diese Gleichung zeigt bereits, dass bei diesem Prozess die Zahlen A und Z erhalten bleiben. E ist die Reaktionsenergie, die gerade vom Photon γ mitgenommen wird. Für diese gilt 16

21 2.2 Zerfälle radioaktiver Stoffe E = h f = E i E k (2.23) wobei h das Plancksche Wirkungsquantum und f die Frequenz des Photons ist. Ein Beispiel für diesen Zerfall sind die γ-übergänge beim Nickelnuklid 60 28Ni, der direkt dem β -Zerfall des Nuklids 60 27Co folgt: Abb. 2.11: γ-übergänge bei Nuklid 60 28Ni [19]. Dieser Vorgang ist analog zu Übergängen zwischen diskreten Energiezuständen in der Elektronenhülle. Während jedoch dort Photonen im Energiebereich von 10 ev emittiert werden, haben die vom Kern abgestrahlten Photonen Energien, die um mehrere Größenordnungen höher liegen [3, 6]. Diese befinden sich bei der Gammastrahlung im Bereich von 70 ev bis 11 MeV [14]. Energiespektrum eines γ-strahlers Das Energiespektrum des γ-zerfalls ist, wie beim α-zerfall, ein Linienspektrum. Denn bei dieser Strahlungsart handelt es sich ebenfalls um einen Zweikörperzerfall. In der nachfolgenden Abbildung 2.12 ist das γ-spektrum von 22 10Ne zu sehen, in der das Neonnuklid sowohl im angeregten Zustand als auch im nicht angeregten Grundzustand aus 22 10Na durch β + -Zerfall entsteht [6]. Außer der einzig erwarteten γ 2 -Linie bei 1,280 MeV sind in diesem Spektrum wesentlich mehr Peaks zu sehen. Die Linie bei 0,511 MeV rührt von den Elektronen-Quanten γ 1. Die Elektronen stoßen mit Positronen, welche im Präparat durch den positiv geladenen Kern abgebremst werden, zusammen und emittieren Vernichtungsstrahlen (Gleichung (2.24)): e + + e 2γ 1. (2.24) 17

22 2 Physikalische Grundlagen Abb. 2.12: Gammaspektrum des Neonnuklids 22 11Ne, das durch β + -Zerfall aus 22 11Na entsteht [6]. Man spricht hier von Annihilation (lat. annihilatio, Vernichtung, das Zunichtemachen), die der Linie bei 1,020 MeV entspricht. Da die Vernichtungsstrahlen in entgegengesetzter Richtung abgestrahlt werden, sind auch Überlagerungen der einzelnen Quanten als Linien im Spektrum zu sehen. Lebensdauer eines γ-strahlers Wie groß die Lebensdauer der angeregten Zustände eines Nuklids gegen die Lebensdauer ist, hängt in der Regel von der Höhe der Anregung ab [3]. Beispeilsweise beträgt die mittlere Lebensdauer τ ungefähr 10 9 s für E 0,1 MeV und s für E 1 MeV. Diese lässt sich aus der Zerfallsbreite bzw. Linienbreite δe eines Peaks bestimmter Energie im Gammspektrum nach der Heisenbergschen 20 Unschärferelation berechnen: δe τ (2.25) Dabei enspricht die Zerfallsbreite δe in dieser Relation der Energieunschärfe und wird als volle Breite der Kurve bzw. des Peaks auf halber Höhe vermessen. Der Beziehung in Gleichung (2.25) lässt sich entnehmen, dass die mittlere Lebensdauer umso kürzer 20 Werner Heisenberg ( ) war der Begründer der Quantenmechanik. 18

23 2.2 Zerfälle radioaktiver Stoffe ist, je grösser die Zerfallsbreite ist. Zum Beispiel entspricht einem Peak mit der Zerfallsbereite δe 0,66 MeV eine mittlere Lebensdauer τ s Wie lassen sich einzelne Zerfallsarten in der Praxis unterscheiden? Abb. 2.13: Ablenkung radioaktiver Strahlung im Magnetfeld einer Nebelkammer [20]. Wie in Kapitel 2.2 bereits erwähnt, lassen sich die Kernstrahlungen durch ihre unterschiedlichen Ablenkungen im Magnetfeld unterscheiden [3]. γ-quanten als Lichtquanten erfahren keine Ablenkung, können aber durch ihre Wechselwirkung mit Materie nachgewiesen werden, wie etwa in einem Geiger-Müller-Zählrohr. Physikalisch sind diese nicht von Röntgenquanten zu unterscheiden. Der einzige Unterschied besteht in der Art ihrer Entstehung. Während γ-quanten im Atomkern entstehen, entstehen Röntgenquanten in der Atomhülle. Neutronen 21 als neutrale Teilchen werden in magnetischen Feldern ebenfalls nicht abgelenkt. Die Teilchen α, p (Proton) und e + (β + - Zerfall) werden in entgegengesetzter Richtung wie e (β -Zerfall) abgelenkt und haben je nach Impuls und Ladung unterschiedliche Krümmungen im Magnetfeld. Abbildung (2.13) zeigt die unterschiedlichen Ablenkungskurven verschiedener Strahlungsteilchen, die beispielsweise in einer Nebelkammer sichtbar gemacht werden können. 21 Diese entstehen beispielsweise beim Elektroneneinfang oder werden von neutronenreichen Kernen emittiert. 19

24 2 Physikalische Grundlagen 2.3 Reichweite und Absorption von Strahlung Durchdringt Kernstrahlung Materie, kommt es zu Stößen, zwischen den Strahlungsteilchen und den Materiebausteinen (meist Hüllenelektronen), und anderen Prozessen [3]. Man sagt auch kurz, es kommt zur Wechselwirkung der Strahlenarten mit Materie. Bei den Stoßprozessen wird, ähnlich wie in der Mechanik starrer Körper, unterschieden zwischen elastischen 22 und inelastischen 23 Stößen. Während nicht geladene Teilchen, wie etwa Neutronen, ihre Energie durch Stoßprozesse mit Kernen verlieren, geben geladene Teilchen ihre Energie beim Durchdringen von Materie fast aussschließlich durch Ionisation 24 und Anregung ab α-strahlung α-teilchen sind wesentlich schwerer als die Hüllenelektronen der Atome (m α 7500m e ). Aus diesem Grund werden diese durch die Stöße mit den Hüllenelektronen kaum abgelenkt. 25 Das bedeutet, dass sie ihre Flugrichtung beibehalten und ihre Energie portionsweise verlieren. Je nach Bindungsenergie der Elektronen und Energie der α- Teilchen (siehe Kapitel 2.2.2) können mehrere Ionenpaare gebildet werden, bis das Teilchen zur Ruhe kommt. Da die α-teilchen einer spezifischen radioaktiven Substanz stets die gleiche Energie besitzen, lässt sich ihnen eine eindeutige Reichweite Rα A im absorbierenden Material zuordnen. Diese berechnet sich für α-teilchen in einem Absorbermaterial der Dichte ρ und mit der Massenzahl A durch die empirischen Formeln: R A α 0, 56 1 ρ A 1 3 R Luft α mit R Luft α 3, E 3 2 α. (2.26) Dabei ist E α die Energie des α-teilchens in MeV und R Luft α die Reichweite des α- Teilchens in der Luft in Meter (m). Somit beträgt die Reichweite in der Luft für ein α-teilchen der Energie E α = 3 MeV ungefähr 1,6 cm, für E α = 9 MeV ungefähr 8 m. Folglich zählt der α-zerfall zur kurzreichweitigen Strahlung, welche zum Beispiel bereits durch ein kräftigeres Blatt Papier absorbiert wird. 22 Bei elastischen Stoß- und Streuprozessen bleibt die kinetische Gesamtenergie erhalten. 23 Bei inelastischen Stoß- und Streuprozessen kann ein Stoßpartner in einen angeregten Zustand übergehen und die Anregungsenergie anschließend abstrahlen. Bei diesen Prozessen bleibt die mechanische Energie der Stoßpartner nicht erhalten. Zu diesen Reaktionen gehören, neben vielen anderen, die Spaltung und die Elementumwandlung. 24 Bei Ionisationsprozessen entstehen Ionenpaare, bestehend aus positiven Ionen und negativen Elektronen. 25 In seltenen Fällen kann es vorkommen, dass das α-teilchen mit einem Atomkern des Absorbers direkt zusammenstößt. Dann erhält die Teilchenbahn einen deutlichen Knick, der zum Beispiel in einer Nebelkammer sichtbar gemacht werden kann. 20

25 2.3 Reichweite und Absorption von Strahlung β-strahlung β-teilchen, also Elektronen und Positronen, haben die gleiche Masse wie die Hüllenelektronen der Atome (0,511 MeV/c 2 ), mit denen diese wechselwirken. Das hat zur Folge, dass β-strahlen von Anfang an auf ihrer Flugbahn stark abgelenkt werden und längs der Strahlrichtung an Intensität verlieren [3]. Dabei kann es auch vorkommen, dass die gesamte Energie eines β-teilchens in einem einzigen Stoß auf ein Hüllenelektronen übertragen wird. Die Teilchenzahl nimmt kontinuierlich ab und der Verlauf der Intensität bzw. der Intesitätsabnahme entspricht in etwa einer Exponentialfunktion ( e αx, α: Absorbtionskoeffizient, x: Weglänge). Ab einer gewissen Absorberdicke des Materials nimmt die Intensität allerdings stärker ab, als es einer Exponentialfunktion entspricht. Als Reichweite dieser Strahlungsart wurde die Absorberdicke definiert, die nur noch 1 % der Teilchenstromdichte durchlässt. Die Bleuler 26 -Formel in Gleichung (2.27) ist eine empirische Formel, welche die Reichweite von β-teilchen in Meter angibt: R β 1 ρ (5,71 E β,max 1,61). (2.27) Dabei gibt E β,max die Maximalenergie der β-teilchen aus einem radioaktiven Zerfall in MeV an und ρ die Absorberdichte in kg/m 3. Somit beträgt die Reichweite für β-teilchen der Energie 1 MeV in Luft etwa 3,4 m (ρ Luft 1,2041 kg/m 3 auf Meeresspiegelhöhe) und in Wasser etwa 4 mm (ρ W asser 998 kg/m 3 bei 20 C). β-strahlen haben also eine wesentlich größere Reichweite als α-strahlen und werden umso besser absorbiert je niedriger die Energie E β,max oder je größer die Teilchendichte ρ des Absorbers ist γ-strahlung Auch γ-teilchen verlieren ihre Energie durch Stöße mit den Hüllenelektronen und werden auf diese Weise beim Durchgang durch Materie absorbiert. Hier werden dreierlei Effekte wirksam: Der Photoeffekt Trifft ein γ-quant der Energie E γ auf ein Hüllenelektron (siehe Abbildung 2.14), welches in der Atomhülle des Kerns im Absorbermaterial mit der Energie E B gebunden ist, 27 so überträgt er seine gesamte Energie auf eben dieses Hüllenelektron und verschwindet : E γ = h f = E B + E kin,e. (2.28) 26 Hans Konrad Bleuler ( ) war ein schweizer Physiker, der Beiträge zur Teilchenphysik und Quantenfeldtheorie leistete. 27 Die Bindungsenergie von Hüllenelektronen beträgt einige ev. Beim Wasserstoffatom z. B. beträgt diese 13,6 ev. 21

26 2 Physikalische Grundlagen Abb. 2.14: Veranschlaulichung des Photoeffekts [21]. Dabei enspricht E kin,e gerade der Differenz zwischen E γ und E B, die dem Elektron als kinetische Energie zur Verfügung steht. Diese Energie verliert das Elektron anschließend im Medium durch Sekundärionisationsprozesse. Bei diesem Prozess spricht man vom sogenannten Photoeffekt [3]. Wie in der Abbildung 2.17 zu sehen ist, dominiert der Photoeffekt für γ-quantenergien E γ bis etwa 100 kev [14] und ist umso wirksamer, je näher E γ bei der Bindungsenergie E B des Elektrons ist. Der Compton-Effekt Befindet sich die Energie E γ des γ-quants im MeV-Bereich, so kann die Bindungsenergie E B des Elektrons vernachlässigt und die Elektronen im Atom können als quasi frei angesehen werden. In diesem Bereich dominiert als Absorptionsprozess bei Energien E γ von 100 kev bis etwa 10 MeV [14] (siehe Abb. 2.17) der sogenannte Compton- Effekt 28, der als Stoß eines γ-quants mit einem freien Elektron zu verstehen ist (Abbildung 2.15). Auch hier verschwindet das einfallende γ-quant der Energie E γ. Allerdings wird bei diesem Prozess ein anderes γ-quant geringerer Energie E γ = h f < E γ gebildet. Dabei wird die maximale Energie E max, die an das Elektron mit der Ruheenergie m 0 (0,511 MeV/c 2 ) bei einem zentralen Stoß (θ = 180 ) übertragen wird, wie folgt berechnet: E max = E γ 2E γ /m 0 c E γ /m 0 c 2. (2.29) Das bedeutet, dass ein γ-quant der Energie E γ = 1 MeV höchstens eine Energie von etwa E max 0, 8 MeV an das Elektron überträgt. Das Elektron verliert anschließend 28 Arthur Holly Compton ( ) war ein US-amerikanischer Physiker und Nobelpreisträger. 22

27 2.3 Reichweite und Absorption von Strahlung Abb. 2.15: Veranschlaulichung des Compton-Effekts [22]. seine Energie, wie oben bereits erwähnt, durch Sekundärionisationsprozesse und das neu entstandene γ-quant wird mit erhöhter Wahrscheinlichkeit durch den Photoeffekt absorbiert 29 Somit handelt es sich beim Compton-Effekt ebenfalls um einen sehr wirksamen Energieabsorptionsprozess [3]. Die Paarbildung Ab einer Energie des γ-quants von etwa 1 MeV, genauer ab der doppelten Ruheenergie des Elektrons (also E γ > 2 E 0 = 2 0,511 MeV 1 MeV), kann es im elektrischen Feld des Atomkerns zur Elektron-Positron-Paarbildung kommen, bei der das γ-quant, wie beim Photo- und Compton-Effekt, verschwindet (siehe Abbildung 2.16).Die, nach Abzug der Ruheenergien, verbleibende Energie des γ-quants wird auf das Elektron und Positron als kinetische Energie übertragen (nicht notwendigerweise zu gleichen Teilen), welche wie in Abschnitt beschrieben verloren geht. Allerdings kann das Positron als Antiteilchen nur eine begrenzte zeitlang existieren. Je geringer seine kinetische Energie, desto größer wird die Wahrscheinlichkeit für eine Zerstrahlung 30. Die dadurch ausgesandten Quanten werden wiederum durch die drei beschriebenen Prozesse absorbiert. 29 Ansonsten, wenn die Energie des neuen γ-quants zu groß ist, erfolgt die Absorption durch nochmaligen Compton- und anschließenden Photoeffekt. 30 Das Positron vereinigt sich mit einem Elektron und zerstrahlt in zwei γ-quanten aufgrund der Impulserhaltung. 23

28 2 Physikalische Grundlagen Abb. 2.16: Veranschaulichung des Effekts der Paarbildung [23]. Wie die Abbildung 2.17 zeigt, ist die Paarbildung ab einer Energie von E γ > 10 MeV der dominierende Absorptionsprozess für γ-strahlung. Zur Gesamtabsorption σ tot (Abbildung 2.17) tragen hauptsächlich die Absorptionsprozesse Photoeffekt (σ p.e. ), Compton-Effekt (σ Compton ) und Paarbildung (κ nuc + κ e ) bei [24]. Den Gesamtabsorptionskoeffizienten σ tot findet man im Absorptionsgesetz (Gleichung (2.30)) wieder, welchem man entnehmen kann, dass die Intensität I, bzw. die Zahl N der γ-quanten im Strahl, exponentiell mit der im Absorbermaterial zurückgelegten Strecke x abnimmt [3]. I = I 0 e σtot x. (2.30) Im Gegensatz zu α- und β-strahlen, lässt sich für γ-strahlen keine Reichweite angeben. Nur ihre Intensität lässt sich unter einen gewünschten Wert drücken, indem man das Absorbermaterial und seine Dicke geeignet wählt. 24

29 2.4 Anwendung radioaktiver Elemente Abb. 2.17: Abhängigkeit des Gesamtabsorptionskoeffizienten σ tot beziehungsweise der γ-absorption von der Energie des γ-quants in Blei (engl. lead) [24]. (σ p.e. : Photoeffekt; σ Compton : Comptoneffekt; κ nuc : Paarbildung durch Wechselwirkung des Photons mit dem Atomkern; κ e : Paarbildung durch Wechselwirkung des Photons mit einem Elektron; σ Rayleigh : Rayleigh-Streuung; σ g.d.r : Wechselwirkung von Kern und Photon, vor allem die Dipolresonanz (Giant Dipole Resonance)) 2.4 Anwendung radioaktiver Elemente - Radiokarbon-Methode Das Zerfallsgesetz radioaktiver Kerne wird bei der radiometrischen Altersbestimmung organischer Fundstücke verwendet, wie bei der sogenannten C-14 Methode [7]. Das C-14-Isotop ist ein kleiner Anteil des Kohlenstoffs im Kohlenstoffdioxid der Luft und bleibt durch Neubildung in seiner Konzentration gleich. Denn ein geringer Teil des Stickstoffs aus der Atmosphäre wird durch den Einfang von Neutronen aus der Höhenstrahlung in das radioaktive Kohlenstoffisotop 14 6 C umgewandelt (siehe Gleichung (2.31)), welches eine Halbwertszeit von 5715 Jahren hat N + n 14 6 C + p. (2.31) Ein Teil dieses Isotops verbindet sich mit dem Sauerstoff der Atmospäre und reagiert zu CO 2. Dieses radioaktive CO 2 wird wiederum von allen Organismen bis zu ihrem Absterben aufgenommen, sodass das Mengenverhältnis von C-14 zu C-12 im Organismus dasselbe ist wie in der Atmosphäre. Sobald der Organismus abstirbt, kann er 25

30 2 Physikalische Grundlagen kein C-14 mehr aufnehmen und das Mengenverhältnis C-14/C-12 nimmt exponentiell (nach Gleichung (2.32)) mit der Halbwertszeit ab. mit N = N 0 e λt, (2.32) N: Anzahl der Atome zur Zeit t N 0 : Anzahl der noch nicht zerfallenen Atome zur Zeit t λ : Zerfallskonstante, abhänging von der Halbwertszeit T = ln2/λ Das Alter organischer Fundstücke lässt sich somit durch Messen ihrer verbliebenen Aktivität bestimmen, sodass mit dieser Methode Altersbestimmungen in einem Bereich von etwa Jahren möglich sind. Außer der Radiokarbonmethode gibt es noch weitere Methoden der radiometrischen Altersbestimmung, wie z.b. die Kalium- Argon-Methode, mit welcher Datierungen Millionen Jahren möglich sind, die Kalium-Calcium-Methode (1-2 Milliarden Jahre) und Methoden mit Blei. 26

31 2.5 Ionisierende Strahlung und ihre Wirkung - Strahlenschutz 2.5 Ionisierende Strahlung und ihre Wirkung - Strahlenschutz Im Gegensatz zu früher, als Henry Becquerel im Jahre 1901 noch ein nicht abgeschirmtes Radiumpräparat in der Westentasche trug und nach zwei Wochen verwundert Verbrennungen auf seiner Haut feststellte, die nur schwer heilten, weiß man heute sehr viel mehr über die Wirkung ionisierender Strahlung auf den lebenden Organismus. Es ist bekannt, dass eine Strahlenexposition 31 zu einem biologischen Schaden 32 führen kann, aber nicht muss, da unser Organismus über wirksame Abwehrmechanismen verfügt, mit denen er Schäden reparieren oder durch das Immunsystem erkennen und beseitigen kann. Folglich kommt es erst dann zum Strahlenschaden, wenn diese Abwehrsysteme versagen. Da jedoch ein Strahlenschaden umso wahrscheinlicher auftritt, je mehr Moleküle im Körper ionisiert oder angeregt werden, steht jeder in der Verpflichtung, sich selbst und der Umwelt gegenüber, bei der Arbeit mit radioaktiven Substanzen vorsichtig zu sein und die vier Grundregeln der Strahlenschutzverordnung (siehe Kapitel 2.5.4) gewissenhaft zu befolgen [4] Strahlenbelastung des Menschen Menschen sind ionisierender Strahlung überall ausgesetzt (Untergrundstrahlung). Diese wird verursacht von natürlichen Strahlenquellen, die vom Menschen unabhängig entstanden sind. Dazu gehören radioaktive Nuklide, die bereits bei der Entstehung der Erde gebildet wurden, wie U-238 (Uran), Th-232 (Thorium) und K-40 (Kalium). Sie sind einschließlich der Zerfallsprodukte von Uran und Thorium in unterschiedlicher Konzentration in Böden und Gesteinen vorhanden und tragen zur natürlichen Strahlenbelastung des Menschen wesentlich bei, welche sich aus folgenden vier Komponenten zusammensetzt [4]: Das gasförmige Radonisotop Rn-222 (T 1/2 = 3,8 d) aus der Uran-238-Zerfallsreihe und Rn-220 (T 1/2 = 55,6 s) aus der Thorium-232-Zerfallsreihe nehmen unter den natürlichen radioaktiven Nukliden eine besondere Stellung ein. Radon strömt aus dem Erdboden und den Gesteinen in die Luft und ist praktisch überall in unserer Lebenssphäre vorhanden. Im Freien liegt der Mittelwert der Radonaktivität bei 15 Bq/m 3 und in Wohn- und Arbeitsräumen bei etwa 50 Bq/m 3. Rn-222 und Rn-220 sowie seine Zerfallsprodukte Po-218 und Po-216 (Polonium) sind α-strahler, die sich als Metallionen an die Staubpartikel und Aerosole 33 der Luft niederschlagen und mit der Luft eingeatmet werden, sodass sie 31 Als Strahlenexposition wird der Vorgang bezeichnet, bei dem ionisierende Strahlung einen Menschen trifft. 32 Das ist das letzte Glied in der strahlenbiologischen Wirkungskette die aus physikalischen, chemischen und biologischen Reaktionsprozessen besteht. Denn die im Zellkern enthaltetenen DNS- Moleküle, welche die Zellfunktionen steuern und regeln, reagieren besonders sensibel auf Strahlung. 33 Ein Aerosol ist eine Dispersion (Gemisch) von festen oder flüssigen Schwebeteilchen und einem Gas. 27

32 2 Physikalische Grundlagen den Atemtrakt durch ihre Strahlung belasten. Die Inhalation von Radon macht etwa 58 % der natürlichen Strahlenbelastung aus (1,4 msv/a). Die terrestrische Strahlung ist eine weitere Komponente der Untergrundstrahlung, welche von den γ-strahlenden Nukliden in Böden und Gesteinen herrührt und in ihrer Intensität je nach Zusammensetzung des Bodens schwankt. Diese führt zu einer zusätzlichen jährlichen Strahlenbelastung von 0,4 msv/a, welches einem Anteil von etwa 16% entspricht. Die kosmische Strahlung aus dem Weltraum setzt sich aus hochenergetischen Teilchenstrahlen und γ-strahlung zusammen. Diese wird durch die Lufthülle der Erde teilweise absorbiert, was bedeutet, dass die Dosisleistung (in Kapitel erklärt) mit der Höhe steigt. Die kosmische Strahlung verursacht eine zusätzliche Strahlenbelastung von etwa 0,3 msv/a in Bodennähe 34. Dies entspricht einem Anteil von etwa 12 %. Die natürlichen radioaktiven Nuklide gelangen aus dem Boden auch in Wasser, werden von Pflanzen und Tieren und somit mit der Nahrung von uns in den Körper aufgenommen (ca. 100 Bq/kg Nahrung), wo sie eine zeitlang verbleiben. Die Gesamtaktivität eines Erwachsenen beträgt etwa Bq. Den größten Anteil macht dabei K-40 (Kalium) aus. Die Ingestion 35 führt zu einer zusätzlichen effektiven Dosis von etwa 0,3 msv/a, welche etwa 12% der gesamten effektiven Dosis entspricht. Die übrigen 2% (<0,05 msv/a) rühren von weiteren Strahlenexpositionen nicht natürlichen Ursprungs, wie etwa von Kerntechnischen Anlagen, Forschung, dem Reaktorunfall in Tschernobyl, Technik und Haushalt. Somit beträgt die gesamte durchschnittliche effektive Dosis durch natürliche Strahlenbelastung etwa 2,4 msv/a. Die Streubreite liegt zwischen 1 msv/a und 5 msv/a. Vereinzelt treten sogar Werte von etwa 10 msv/a auf. Die Anwendung radioaktiver Stoffe und ionisierender Strahlung in der Medizin liefert einen Anteil von etwa 1,6 msv/a zusätzlich zur natürlichen Strahlenbelastung. Dabei ist zu berücksichtigen, dass dieser Wert über alle Einwohner der Bundesrepublik Deutschland gemittelt wurde. In der nachfolgenden Tabelle (Tab. 2.1) sind einige Strahlenexpositionen bei verschiedenen Röntgenuntersuchungen dargestellt. Dabei wurden die effektiven Dosen aus Messungen an einem menschenähnlichen Röntgen-Phantom berechnet [8]: 34 Piloten haben eine höhere mittlere effektive Dosis. 35 Mit Ingestion ist die Aufnahme radioaktiver Nuklide mit der Nahrung gemeint. 28

33 2.5 Ionisierende Strahlung und ihre Wirkung - Strahlenschutz Untersuchungsart/Körperbereich Effektive Dosis [µsv] Urethrographie 574 (= Darstellung der Harnröhre mit Kontrastmittel) Becken 575 (stehende Aufnahme) Lendenwirbelsäule 554 Abdomen 474 Brustwirbelsäule 366 (stehende Aufnahme) Magen 349 (stehende Aufnahme) Rippen 224 (liegende Aufnahme) Halswirbelsäule 144 (stehende Aufnahme) Hysterographie 108 (= Darstellung der Gebärmutter mit Kontrastmittel) Hüftgelenk 96 (stehende Aufnahme) Lunge 73 (liegende Aufnahme) Speiseröhre 35 (stehende Aufnahme) Schädel 26 (liegende Aufnahme) Ellenbogen < 1 Knie < 1 Frontzähne Ober-/Unterkiefer 2 Backenzähne Oberkiefer 3 Backenzähne Unterkiefer 2 Bite-wing-Aufnahmen 3 (= Bissflügelaufnahmen) Occlusal Aufnahme Oberkiefer 17 (Intraorale Röntgenaufnahme der Kaufläche des Oberkiefers) Dentale Röntgenaufnahme 7 Tabelle 2.1: Strahlenbelastung durch Röntgenuntersuchungen diverser Körperbereiche. 29

34 2 Physikalische Grundlagen Dosimetrie - Dosismessgrößen Die ICRP ( International Commission on Radiological Protection ) ist dafür zuständig Empfehlungen herauszugeben, die der Strahlenschutzverordnung als Grundlage dienen. Dazu gehört zum Beispiel die Definition der Dosisbegriffe [4]: Als Energiedosis D bezeichnet man den Quotient D = W m mit [D] = 1 Gray = 1 Gy = 1 J/kg (2.33) Dabei entspricht W der Energie der Bestrahlung und m der Masse des Körpergewebes, das diese Strahlung absorbiert. Die Energiedosisleistung Ḋ ist die pro Sekunde absorbierte Energiedosis: Ḋ = D t mit [Ḋ] = 1 Gy/s = 1 W/kg (2.34) Die sogenannte Äquivalentdosis H ist das Produkt aus der Energiedosis D und einem dimensionslosen Strahlungs-Wichtunsfaktor w R : H = w R D mit [H] = 1 Sievert = 1 Sv = 1 J/kg (2.35) Sie wurde eingeführt, um die unterschiedliche biologische Wirkung (siehe Kapitel 2.5.3) ionisierender Strahlen 36 in demselben organischen Gewebe miteinander quantitativ vergleichen zu können. Dabei sind die Wichtungs-Faktoren w R ein Maß für die biologische Wirksamkeit bei niedrigen Dosen. Für Röntgen-, γ- und β-strahlung wurde willkürlich der Wert w R = 1 festgelegt. Will man die gesamte schädliche Wirkung auf ein Gewebe berechnen, das von mehreren Strahlenarten getroffen wurde, so muss man die Summe der entsprechenden Äquivalentdosen, also der gewichteten Energiedosen jeder einzelnen Strahlungsart, bilden. Die effektive Dosis E wurde für die Zwecke des Strahlenschutzes eingeführt, um das Strahlenrisiko 37 für das Auftreten einer stochastischen Strahlenwirkung (siehe Kapitel 2.5.3) richtig abschätzen zu können. Denn für verschiedene Gewebe oder Organe ist die stochastische Wirkung im niederen Dosisbereich bei 36 Verschiedene Strahlenarten haben unterschiedliche biologische Wirkungen, je nachdem ob ihre Energie auf kurzen oder langen Wegstrecken absorbiert wird. Während α-teilchen in einer Zelle 10 4 bis 10 5 Ionenpaare erzeugen, also eine sehr hohe Ionisationsdichte haben, erzeugen β-teilchen nur 10 bis 100 Ionenpaare in einer Zelle. Das bedeutet, dass bei gleicher Strahlenenergie W im ersten Fall viel weniger Zellen betroffen sind, als im zweiten. Allerdings werden im ersten Fall auch mehr Zellen zerstört, da bei geringer Ionisationsdichte die Wahrscheinlichkeit für die Selbstheilung wesentlich höher ist (siehe auch Kapitel und über Reichweite und Absorption von Strahlung ). 37 Der Begriff Strahlenrisiko steht für die Wahrscheinlichkeit, dass durch eine Strahlenbelastung eine nachteilige Wirkung bei einem Individuum eingetreten ist. 30

35 2.5 Ionisierende Strahlung und ihre Wirkung - Strahlenschutz gleicher Äquivalentdosis unterschiedlich. Um dies zu berücksichtigen wurde der dimensionslose Gewebe-Wichtungsfaktor w T eingeführt, der multipliziert mit der Äquivalentdosis H die effektive Energiedosis E (auch effektive Äquivalentdosis genannt) für das betroffene Gewebe bzw. Organ liefert: E = w T H mit [E] = 1Sievert = 1Sv (2.36) Soll das Schadensrisiko nicht nur für ein bestimmtes Organ, sondern für alle betroffenen Organe abgeschätzt werden, so muss die gesamte effektive Dosis E ges als Summe über die einzelnen effektiven Dosen berechnet werden. Die effektive Energiedosis berücksichtigt also die Empfindlichkeit der Organe mit den Gewebe- Wichtungsfaktoren w T Zu welchen Schäden kann es im Körper durch Strahleneinwirkung kommen? Wie bereits in Kapitel erwähnt sind die biologischen Wirkungen ionisierender Strahlung verschieden. Diese werden unterteilt in stochastische und deterministische Wirkungen [4]: Erstere treten meist nach einigen Jahren auf (z.b. Krebs), wobei die Wahrscheinlichkeit dafür von der Energiedosis abhängt. Die deterministischen Wirkungen der Strahlung treten nach relativ kurzer Zeit auf, wobei der Schweregrad auch hier von der Energiedosis abhängt, die ein Vielfaches der Dosis für stochastischen Strahlenwirkung betragen kann. Für den Strahlenschutz (siehe Kapitel 2.5.4) sind vor allem die stochastischen Strahlenwirkungen von Interesse, weil Menschen meist einer Strahlung geringer Dosis (unterhalb der Dosisschwelle für deterministische Strahlenwirkungen) ausgesetzt werden. Die Schäden, die ionisierende Strahlen im Körper verursachen können, sind je nach Wirkung und Energiedosis unterschiedlich: Der Schwellenwert der deterministischen Strahlenwirkung liegt bei etwa 0,2 Gy bei einer Ganzkörperexposition. Das bedeutet, dass ein Schaden beim Menschen, der einer Ganzkörperbestrahlung ausgesetzt war, erst dann auftritt, wenn dieser Wert überschritten wird. Je größer die Energiedosis als der Schwellenwert ist, desto schwerer die Erkrankung, die innerhalb kürzester Zeit (sofort oder innerhalb weniger Wochen) auftritt. Als erstes werden meist jene Zellverbände geschädigt, die relativ rasch erneuert werden, also Schleimhäute in Mund, Magen und Darm sowie die Blutbildungsorgane. Die Symptome gehen über Erbrechen (0,2-3 Gy), Kopfschmerzen (1-3 Gy), Haarausfall (1-3 Gy), Fieber (3-6 Gy), Enzündungen im Mund und Rachen (3-6 Gy) sowie blutige Durchfälle mit 50%-iger Todeswahrscheinlichkeit (3-6 Gy) bis hin zum Tod innerhalb kürzester Zeit (>6 Gy). Schäden, welche durch stochastische Strahlenwirkung verursacht werden, sind beispielsweise Leukämie, Krebs und Veränderung der Erbanlagen. Die Wahrscheinlichkeit dafür, dass der Schaden auftritt, hängt auch in diesem Fall von der Energiedosis (<0,2 Gy) ab. Der Schweregrad der Erkrankung oder genetischen Veränderung ist allerdings von der Energiedosis unabhängig. Folglich steigt 31

36 2 Physikalische Grundlagen bei einer stochastischen Strahleneinwirkung nur die Wahrscheinlichkeit für eine Erkrankung, die man bekommen kann, aber nicht muss Strahlenschutzverordnung Der Strahlenschutz gilt weltweit und geht nach dem sogenannten ALARA-Prinzip vor. ALARA steht für As low as reasonably achievable. Der Zweck dieser Verordnung ist es, zum Schutz des Menschen und der Umwelt vor der schädlichen Wirkung ionisierender Strahlung Grundsätze und Anforderungen für Vorsorge- und Schutzmaßnahmen zu regeln, die bei der Nutzung und Einwirkung radioaktiver Stoffe und ionisierender Strahlung zivilisatorischen und natürlichen Ursprungs Anwendung finden. [25] Dabei müssen diese Maßnahmen, nach dem ALARA-Prinzip, unter Berücksichtigung wirtschaftlicher und sozialer Faktoren vernünftig und sinnvoll sein. Zur praktischen Umsetzung der Strahlenschutzverordnung gelten folgende fünf Grundregeln [1, 4]: Die verwendete Quelle soll eine möglichst geringe Aktivität aufweisen. Die Strahlung muss durch geeignete Materialien abgeschirmt werden. Die Aufenthaltsdauer in einem Strahlenfeld muss auf das Minimum beschränkt werden. Zur Strahlungsquelle muss ein größtmöglicher Abstand eingehalten werden. Strikte Abstinenz, d. h. nicht essen, trinken und rauchen während des Umgangs mit radioaktiven Präparaten. Der Umgang mit radioaktiven Stoffen und Röntgengeräten ist durch gesetzliche Vorschriften streng geregelt und die Wirksamkeit von Strahlenschutzmaßnahmen wird durch die Einhaltung von Dosisgrenzwerten gesichert. Die Vorschriften sowie die Dosisgrenzwerte können der Strahlenschutzverordnung [25] oder speziell für Schulen [1] sowie der Röntgenverordnung [26] entnommen werden. 32

37 2.6 Statistische Streuung 2.6 Statistische Streuung Das oberste Ziel einer Messung in einem Experiment ist, den wahren Wert einer physikalischen Größe möglichst genau zu bestimmen und die Unsicherheit beziehungsweise Streuung der Messwerte um diesen einen wahren Wert herauszufinden. Jedoch liefert jeder Messvorgang nur ein Ergebnis aus einer unendlich großen Gesamtheit von möglichen Ergebnissen. Man kann allenfalls einige Messungen durchführen, sogenannte Stichproben machen, und versuchen verlässliche Rückschlüsse auf die Eigenschaften der Gesamtheit anhand der Eigenschaften der wenigen Messergebnisse zu ziehen. Das Ziel sollte also sein aus einer Stichprobe den tatsächlichen Wert einer Messgröße oder die tatsächliche Streuung der Messwerte möglichst genau vorherzusagen oder zumindest eine Wahrscheinlichkeit dafür anzugeben, dass der tatsächliche Wert beispielsweise nicht weiter als einen bestimmten Betrag vom gemessenen Wert (oder Mittelwert) entfernt liegt. Hierfür werden die herkömmlichen Methoden der Statistik (bzw. Wahrscheinlichkeitstheorie) verwendet [27, 28] Wichtige Begriffe aus der Statistik Wahrscheinlichkeitsdichte Die Statistik arbeitet mit Zufallsvariablen. Diese können kontinuierlich (xɛr) oder diskret (x i ɛr, iɛn) verteilt sein. Will man zufällige Zählraten oder zufällige Fehler mathematisch erfassen, benötigt man sogenannte Wahrscheinlichkeitverteilungen p(x) oder p(x i ), 38 welche diese Daten beschreiben (siehe Kapitel 2.6.2). Als Wahrscheinlichkeitsdichte wird p(x) genau dann bezeichnet, wenn das Integral über die kontinuierliche Wahrscheinlichkeitverteilung auf 1 normiert ist [28]. Wenn also gilt: x + P (x) = p(x )dx mit p(x) = δp und p(x)dx = 1. δx (2.37) Dabei gibt p(x)dx die Wahrscheinlichkeit P an, den Wert x im Intervall [x, x + dx] zu finden. Das wiederum bedeutet, dass sich, bei Kenntnis der Wahrscheinlichkeitsdichte für eine bestimmte Variable, jederzeit Wahrscheinlichkeiten für beliebige Intervalle durch Integration berechnen lassen (siehe Vertrauensbereiche). Diskrete Wahrscheinlichkeitsdichten sind formal mathematisch eine Reihe von δ-funktionen, sodass sich die Integrale in diesem Fall wieder als Summen schreiben lassen und die Wahrscheinlichkeitsfunktion P eine Treppenfunktion ist. Integriert man also über nur eine Stufe x, so bleibt ein einfaches Produkt übrig: P (x i ) = p(x i ) x. (2.38) 38 Wahrscheinlichkeitverteilungen werden auch (Wahrscheinlichkeits-)Verteilungsfunktionen genannt. 33

38 2 Physikalische Grundlagen Wahrscheinlichkeiten nehmen stets dimensionslose, reelle Werte zwischen 0 und 1 an. Wogegen Wahrscheinlichkeitsdichten Größen der Dimension des Kehrwerts der Zufallsvariablen sind. Erwartungswert µ Da der wahre Wert einer Größe meist nicht bekannt ist, kann er nur durch eine Messung auf einen bestimmten Bereich eingegrenzt und näherungsweise berechnet werden. Für zufällige Messwerte, die durch eine Wahrscheinlichkeitverteilung beschrieben werden, wird daher als bestmögliche Nährerung für den wahren Wert der sogenannte Erwartunswert µ angegeben, welcher sich wie folgt berechnet: µ = E[x] = µ = E[x] = n x i P (x i ) für diskrete Verteilungen, (2.39) i=1 + x p(x)dx für kontinuierliche Verteilungen. (2.40) Bei einer Stichprobe von n Messungen gilt für die Wahrscheinlichkeit P (x i ) = 1 n und somit für den Erwartungswert der diskreten Verteilung: µ = E[x] = 1 n n x i = x (arithmetisches Mittel). (2.41) i=1 Der Erwartungswert ist der Wert, um den alle anderen gemessenen Werte streuen. Somit macht der Erwartungswert zwar genaue Vorhersagen über das Verhalten der Messergebnisse im statistischen Mittel, gestattet aber keine Vorhersage eines einzelnen Ergebnisses. Varianz (s 2 und σ 2 ) und Standardabweichung Für jede Einzelmessung x lässt sich die mittlere quadratische Abweichung (x µ) 2 der Einzelmessung vom Erwartungswert µ, um den alle gemessenen Werte streuen, berechnen. Für endlich viele Einzelmessungen (diskrete Verteilung) berechnet sich die Varianz s 2 als Summe über alle mittleren quadratischen Abweichungen (x i µ) 2 jeweils gewichtet mit der Wahrscheinlichkeit P (x i ): s 2 = E[(x i µ) 2 ] = s 2 = 1 n 1 n (x i µ) 2 P (x i ) oder (2.42) i=1 n (x i x) 2 für n Messergebnisse. (2.43) i=1 Für wachsende Datenmengen (n, also ersetze P (x i ) durch p(x i ) x mit x 0) geht die Summe in ein Integral über, so dass sich die theoretische Varianz σ 2 für kontinuierliche Verteilungen wie folgt errechnet: 34

39 2.6 Statistische Streuung σ 2 = E[(x µ) 2 ] = + (x µ) 2 p(x)dx. (2.44) Folglich ist die Varianz ein Maß für die Streuung der Messwerte um den Erwartungswert. Die Standardabweichung s bzw. σ wird gegeben durch die positive Wurzel aus der Varianz: s = s 2 = + n (x i µ) 2 P (x i ) (diskret), (2.45) + i=1 σ = σ 2 = + Vertrauensbereiche (x µ) 2 p(x)dx (kontinuierlich). (2.46) Wie schon erwähnt gestattet der Erwartungswert keine Vorhersage eines einzelnen Ergebnisses. Dennoch kann eine Aussage über die Wahrscheinlichkeit für das Auftreten von Messwerten in bestimmten Bereichen getroffen werden, wenn die Wahrscheinlichkeitsdichte bekannt ist [27]. Denn dann lassen sich die Wahrscheinlichkeiten wie in Gleichung (2.37) durch Integration der Wahrscheinlichkeitsdichte über den gewünschten Bereich berechnen. Beispielsweise würde sich die Wahrscheinlichkeit P dafür, einen Messwert x im Intervall I = [x a, x b ] vorzufinden, berechnen lassen durch: xb P (x a x x b ) = p(x)dx = P (x; xɛi) = P (x x b x a ). (2.47) x a In der Regel untersucht man Bereiche, sogenannte Vertrauensbereiche, die ein ganzzahliges Vielfaches der Standardabweichung σ darstellen und um den Erwartungswert µ zentriert sind. σ ist ein sinnvolles Maß für die Spezifizierung von Messunsicherheiten und soll als Fehlerspanne angesehen werden. Die Wahrscheinlichkeiten P werden meistens für folgende Bereiche berechnet: P (µ σ x µ + σ), (2.48) P (µ 2σ x µ + 2σ), (2.49) P (µ 3σ x µ + 3σ). (2.50) So bedeutet bespielsweise P (µ σ x µ + σ) = 65 %, dass man darauf vertrauen kann, dass der Messwert x mit einer 65 %-gen Wahrscheinlichkeit nicht mehr als 1 Standardabweichung vom Erwartungswert entfernt liegt. Dabei ist die Wahrscheinlichkeit umso größer, je größer der Vertrauensbereich gewählt wird, und umso kleiner, je präziser das Ergebnis durch den Vertrauensbereich festgelegt werden soll. 35

40 2 Physikalische Grundlagen Gaußsche Normalverteilung Zufällige Messergebnisse mit zufälligen Messfehlern (statistischen Fehlern) führen dazu, dass die Messdaten um den Mittelwert (Erwartungswert) verteilt sind und zu beiden Seiten hin symmetrisch abfallen. 39 Dies ist in sehr vielen natürlichen Prozessen (wie beispielsweise bei radioaktiven Zerfällen) der Fall [27, 28]. Die Verteilung der Messwerte hat dann die Form einer Glockenkurve (Gaußschen-Glockenkurve) und wird durch die Gaußsche 40 Normalverteilung beschrieben.die Gaußfunktion ist gerade die Wahrscheinlichkeitsdichtefunktion p(x), welche die Wahrscheinlichkeitverteilung der Messdaten beschreibt. In ihrer Normalform lautet diese: p(x) = 1 2πσ e x2 2σ 2 (xɛr). (2.51) Bei dieser Darstellung (Gleichung (2.51)) beschreibt die Zufallsvariable x die Abweichung eines Messwerts von seinem Erwartungswert µ. Folglich ist die Funktion p(x) um Null zentriert. Will man eine Funktion, welche die Verteilung der Messwerte selbst um den Erwartungswert beschreibt (also um den Erwartungswert zentriert ist), muss eine Variablentransformation x x µ durchgeführt werden. Die Funktion hat dann folgende Form: p(x) = 1 2πσ e (x µ)2 2σ 2 (xɛr). (2.52) Die Verteilungsfunktion wird somit durch genau zwei Parameter festgelegt: Dem Erwartungswert (bzw. Mittelwert) µ und der Standardabweichung σ. Eigenschaften der Gaußverteilung Die Wahrscheinlichkeitsdichtefunktion p(x) ist auf 1 normiert. Der Erwartungswert (Mittelwert) µ genügt folgender Gleichung (vgl. Gleichung (2.40)): µ = + x p(x)dx = 1 + 2πσ e (x µ)2 2σ 2 xdx. (2.53) Die Varianz σ 2 wird durch folgende Formel berechnet (vgl. Gleichung (2.44)): σ 2 = + (x µ) 2 p(x)dx = 1 + 2πσ e (x µ)2 2σ 2 (x µ) 2 dx. (2.54) Die Wendepunkte der Gaußfunktion befinden sich genau an den Stellen x = µ ± σ. 39 Dies wird auch statistische Streuung der Messwerte (um den Erwartungswert) genannt. 40 Johann Carl Friedrich Gauß ( ), deutscher Mathematiker, Astronom und Physiker 36

41 2.6 Statistische Streuung Vertrauensbereiche: Für die Bereiche bzw. Intervalle I = [µ hσ, µ+hσ] (h = 1, 2, 3) errechnet sich die Wahrscheinlichkeit P dafür einen Messwert x im entsprechenden Intervall vorzufinden zu: P ( x µ σ) 68, 3%, (2.55) P ( x µ 2σ) 95, 4%, (2.56) P ( x µ 3σ) 99, 7%. (2.57) Gleichung (2.55) bedeutet, dass zwei Drittel aller Werte im Bereich von ±1σ um den Erwartungswert herum streuen (sollten). Weiterhin sollten nur knapp 5% außerhalb des Bereiches von ±2σ liegen (Gleichung (2.56)) und nur 3 von 1000 außerhalb des Bereiches von ±3σ (Gleichung (2.57)) Poisson-Verteilung als Grenzwert der Binomialverteilung Stichproben von n Einzelmessungen, von denen jede einzelne nur 2 Werte annehmen kann, also entweder ein Erfolg (Ereignis) oder ein Misserfolg ist, werden durch die Binomialverteilung charakterisiert [27, 28]. Diese gibt die Wahrscheinlichkeit P n,p dafür an, dass unter den n Einzelmessungen x (gezählte) Ereignisse mit der Wahrscheinlichkeit p einen Erfolg und (n x) Ereignisse mit der Wahrscheinlichkeit q = (1 p) einen Misserfolg verzeichnen. P n,p berechnet sich dann wie folgt: P n,p (x) = ( ) n p x q n x (x, nɛn) mit µ = np und σ = npq. (2.58) x Die Binomialverteilungsfunktion ist diskret, da sie nur für ganze Zahlenwerte definiert ist, und besitzt genau zwei Parameter, nämlich n und p. Betrachtet man nun den Grenzfall n (also den Fall, dass die Anzahl n der Versuche bzw. Messungen sehr groß wird), benötigt man eine Näherungsformel, um die Wahrscheinlichkeit P n,p berechnen zu können, da Ausdrücke wie n! (im Binomialkoeffizient der Binomialverteilungsfunktion enthalten) sich nicht mehr schnell auswerten lassen. Dabei sollte man sicherstellen, dass der Erwartungswert µ relativ klein bleibt und q 1 (Wahrscheinlichkeit für einen Misserfolg). Unter diesen Voraussetzungen lässt sich die Formel der Binomialverteilung (nach einigem Rechenaufwand) umformen und die Poissonverteilung 41 herleiten. Diese Wahrscheinlichkeitverteilung P µ (x) hängt nur noch von einem Parameter ab, nämlich dem Erwartungswert µ, und lautet: P µ (x) = µx x! e µ (xɛn). (2.59) 41 Simon Denis Poisson ( ), französischer Physiker und Mathematiker 37

42 2 Physikalische Grundlagen Durch die Poissonverteilung werden Zählexperimente mit großer Anzahl an Einzelversuchen bzw. -messungen n beschrieben, wobei aber die Wahrscheinlichkeit p für jedes Erfolgs -Ereignis so klein ist, dass der Erwartungswert µ bei Zahlen der Größenordnung 1 liegt (siehe Gleichung (2.58)). Auch diese Wahrscheinlichkeitverteilung ist diskret, besitzt aber im Gegensatz zur Gaußverteilung nur einen einzigen Parameter, nämlich den Erwartungswert µ. Eigenschaften der Poissonverteilung Die Wahrscheinlichkeitsdichtefunktion P µ (x) ist auf 1 normiert. Der Erwartungswert µ ist gleich dem Produkt aus der Wahrscheinlichkeit p und der Anzahl der Einzelmessungen n: µ = n p. (2.60) Die Varianz, welche bei der Binomialverteilung durch npq = σ 2 berechnet wird, berechnet sich folglich bei der Poissonverteilung, mit q 1, zu: Damit wird die Standardabweichung σ σ 2 = npq np = µ. (2.61) σ = µ. (2.62) Somit ist die Varianz gleich dem Erwartungswert des Messwerts und eines der wichtigsten Ergebnisse für die Poissonverteilung. Denn dieses Ergebnis bedeutet, dass Vorhersagen über das Maß der Streuung der Messwerte getroffen werden können, wenn in einer Stichprobe der Mittelwert bestimmt und als Schätzwert für den Erwartungswert benutzt wird. Es lässt sich also vorhersagen wie groß die Standardabweichung einer einzelnen Messung sein sollte. Werden z.b. im Mittel 10 γ-quanten (innerhalb einer festgelegten Messzeit/-dauer) registriert, so hat dieses Ergebnis eine relative Genauigkeit von 10 3 = 30 %. Registriert man etwa 100 Ereignisse, so beträgt die relative Genauigkeit bereits 10 %. Anwendungsbeispiel für die Poissonverteilung Wie bereits erwähnt, kommt die Poissonverteilung bei kleinen zu erwartenden Zählraten zum Einsatz [27]. Der Erwartungswert µ liegt hier meist bei Zählraten von 0 bis 30 (in 1 ). Dies ist beispielsweise bei der Untergrundstrahlung, die aus γ-quanten s besteht, der Fall (Kapitel 2.5.1). 38

43 2.6.4 Gaußsche Normalverteilung als Grenzfall der Poissonverteilung 2.6 Statistische Streuung Wie in Kapitel erwähnt wurde, lässt sich aus der Binomialverteilung mit Hilfe der Forderungen n, q = 1 p 1, µ relativ klein (2.63) die Poissonverteilung herleiten [27, 28]. Durch diese Forderungen wurden sehr große mögliche Messwerte x (x µ) ignoriert und x sichergestellt. Ist aber die Anzahl n an Einzelmessungen wesentlich größer als der Erwartungswert µ, so kann auch dieser (bisher ausgeschlossene) Messbereich dazugenommen und µ 1 gefordert werden. Das heißt, dass zu n und q = 1 p 1 (p 0) zusätzlich n µ = x 1 gefordert wird. Nach längerer Rechnung (kann in [27] nachvollzogen werden) erhält man mit diesen Bedingungen folgende Wahrscheinlichkeitsverteilung P µ : P µ = 1 2πσ e (x µ)2 2σ 2 = p(x) (xɛr) mit der Randbedingung µ = σ 2. (2.64) Dieser Ausdruck ist mit der Gaußverteilung identisch. Dies ist nicht sehr verwunderlich, denn ist die Poissonverteilung für Werte von µ kleiner 10 noch asymmetrisch 42, so wird sie umso symmetrischer, je größer der Erwartungswert ist. Dieser Übergang ist in der Abbildung 2.18 zu erkennen. Abb. 2.18: blau: µ = 1; grün: µ = 5; rot: µ = D. h. das Maximum der Verteilung stimmt nicht exakt mit dem Mittelwert überein und die Verteilung erstreckt sich mehr nach rechts als nach links. 39

44 2 Physikalische Grundlagen Demnach hat der Ausdruck in Gleichung (2.64) zwei entscheidende Unterschiede zur Gaußschen-Normalverteilung. Zum einen ist die Wahrscheinlichkeitsfunktion diskret und der Wertebereich umfasst nur die nicht-negativen ganzen Zahlen. Zum anderen besitzt die Wahrscheinlichkeitsfunktion nur einen einzigen Parameter µ σ 2, was bedeutet, dass die Streuung der Ergebnisse streng an den Erwartungswert der Ergebnisse gekoppelt ist. Anwendungsbeispiel Ein typisches Beispiel für diese Gaußverteilung ist der radioaktive Zerfall [27]. Denn hier sind die wichtigsten Randbedingungen für ihre Anwendung gegeben: Die Anzahl n der radioaktiven Kerne ist sehr groß. (n ) Die Wahrscheinlichkeit p, dass ein einzelner Kern in einer vorgegebenen Messzeit zerfällt, ist sehr klein. (p 0) Die Anzahl der registrierten Ereignisse x ist ausreichend groß. (µ 1) Beispielsweise beträgt die Wahrscheinlichkeit dafür, dass ein Radiumkern (Ra-226, t T 1/2 = 1600a) in einer Minute zerfällt nur p = λ t = ln2 T 1/2 = 0, (p 0). Ein Präparat der Masse 1 µg hat aber (= n) Kerne, sodass erwartet werden kann etwa 2, (n p = µ 1) Zerfälle in dieser Minute zu registrieren. Das entspricht einer Aktivität von etwa 40 kbq. 40

45 3 Der Versuchsaufbau Die Experimente zum Thema Radioaktivität in der Schule sollen das Angebot im Bereich der Radioaktivität im physikalischen Demonstrationspraktikum erweitern, mit dem Ziel die Lehramtstudierenden, sowie auch zukünftig die Schüler, für Radioaktivität bzw. radioaktive Strahlung in ihrem eigenen Umfeld zu sensibilisieren. Denn zum einen ist radioaktive Strahlung etwas Natürliches, was den Menschen ständig umgibt und mit dem der menschliche Organismus gelernt hat umzugehen. Zum anderen können erhöhte Strahlenbelastungen zu Krankheiten sowie zu irreparablen Schäden bis hin zum Tod führen. Da immer mehr Schulen auf radioaktive Präparate, wie bereits in der Einleitung beschrieben verzichten oder verzichten wollen, werden im Rahmen dieser Arbeit Experimente und Messungen durchgeführt, die den Lehramtstudierenden und den Schülern auch ohne den Einsatz von genehmigungsbedürftigen radioaktiven Präparaten einen guten Einblick in das Themengebiet Radioaktivität ermöglichen. Im Folgenden werden die Versuchsaufbauten, die Messungen bzw. Aufnahmen, sowie die Auswertungen dargestellt. Bei den nachfolgend aufgeführten Experimenten und Messungen werden zwei verschiedene Versuchsaufbauten verwendet. Bevor die Bestandteile des jeweiligen Aufbaus genannt werden, sollen zunächst die einzelnen verwendeten Geräte in ihrer Funktionsweise kurz erklärt werden. 3.1 Das Geiger-Müller-Zählrohr, 45 mm Abb. 3.1: Geiger-Müller-Zählrohr, 45 mm [29]. 41

46 3 Der Versuchsaufbau Das Geiger-Müller-Zählrohr 1 mit einem Durchmesser von 45 mm (siehe Abbildung 3.1) dient dem Nachweis von α-, β- und γ-strahlung.das eigentliche Zählrohr ist in einen Metallzylinder mit festem BNC-Anschlusskabel montiert und besitzt einen dünnwandigen Metallmantel. Es besteht aus zwei Elektroden, zwischen die eine Spannung 2 angelegt wird, in einer mit Gas (meist ein Halogengas, wie z. B. Argon) gefüllten Kammer. In die Kammer einfallende Teilchen (ionisierender Strahlung) erzeugen durch Stöße mit den Gasatomen bzw. -molekülen Ionen und Elektronen, die zu den Elektroden hin beschleunigt werden. Die anliegende Spannung wirkt beschleunigend, sodass die Ionen und Elektronen noch mehr an kinetischer Energie gewinnen und durch weitere Ionisation des Gases (Gasverstärkung) zusätzliche Ionen und Elektronen erzeugen. Diese werden im Inneren der Gaskammer durch das von der Anode und Kathode erzeugte elektrische Feld getrennt und zu den Elektroden hin beschleunigt. Dies hat zur Folge, dass eine Lawine von Elektronen die Anode erreicht und es zwischen Anode und Kathode zu kurzzeitigem Stromfluss kommt. Dieser kurzzeitige Stromfluss führt zu einem kurzzeitigen Spannungsabfall an dem Arbeitswiderstand 3 bzw. zu einem kurzzeitigen Spannungspuls, der auf einen Zähler gegeben wird. Über einen Digital- Analog-Wandler kann die Pulsrate in ein Analogsignal umgewandelt werden und die Zählrate als analoges Stromsignal gesendet oder in digitaler Form angezeigt werden. Abb. 3.2: Schematischer Aufbau eines Zählrohrs [30]. Die Abbildung 3.2 zeigt einen schematischen Aufbau eines solchen Zählrohrs. Das Geiger-Müller-Zählrohr 45 mm ist ein selbstlöschendes 4 Halogenzählrohr. Der dünnwandige Metallmantel ist für γ-strahlung durchlässig. Das Glimmerfenster (Endfenster) an der Stirnseite des Zählrohrs, welches aufgrund seiner Empfindlichkeit gegen 1 Johannes Wilhelm Geiger ( ) und Walther Müller ( entwickelten gemeinsam 1928 ein Zählrohr zur Messung der Radioaktivität, welches damals nach ihnen benannt wurde und auch heute noch so heißt. 2 Damit ist die zum Betrieb erforderliche Gleichspannung (Arbeitsspannung) gemeint, die bei diesem GM-Zählrohr 500 V beträgt. 3 Dieser Widerstand berägt beim GMZ 45mm 10Ω. Über ihn sind der axiale Zähldraht des Zählrohrs mit dem zentralen Leiter verbunden. 4 Durch Sekundärelektronen, welche durch die bei der Entladung entstehenden Ionen aus der Zählrohrwand austreten können, kann die Entladung unabhängig von der ionisierenden Strahlung aufrechterhalten werden. Aus diesem Grund werden in der Gaskammer weitere Zusätze wie etwa Jod- oder Bromdampf (Löschgas) benötigt, um die Zählrohrentladung zu löschen. 42

47 3.2 Der Digitalzähler mechanische Beanspruchung durch ein Schutzgitter geschützt ist, dient dazu, dass auch die energiearmen α- und β-teilchen von diesem Geiger-Müller-Zählrohr registriert werden können. Bei hohen Zählraten (d.h. die zu registierenden Teilchen treffen innerhalb kürzester Zeit nacheinander ein) muss die Totzeit (siehe Kapitel 4.3) des Zählrohrs berücksichtigt werden. Diese beträgt etwa 100 µs [29, 30]. 3.2 Der Digitalzähler Abb. 3.3: Digitalzähler. Der Digitalzähler ist ein elektronischer Zähler zur Messung von Zeiten, Frequenzen, Raten, Periodendauern und zum Zählen von Ereignissen sowie Zählrohrimpulsen und wird zur Ereignismessung über das fest am Geiger-Müller-Zählrohr montierte BNC- Kabel an der BNC-Eingangsbuchse mit dem Zählrohr verbunden. Die Torzeiten zur Ereigniszählung lassen sich bei diesem Zähler in einem Bereich von s einstellen. Der Zählvorgang kann mittels Schalter (Start/Stopp) manuell oder durch ein Signal an den Ausgangsbuchsen ausgelöst werden und endet nach Ablauf der eingestellten Torzeit [31]. 3.3 Sensor-Cassy 2 Das Sensor-Cassy 2 ist ein kaskadierbares Interface zur Messdatenaufnahme, das sich an den USB-Port eines Computers anschließen lässt und eine automatische Sensorboxerkennung durch Cassy Lab 2 besitzt. 5 Weiterhin wird es über einen Hohlstecker mit 5 Das Cassy Lab 2 ist eine freigeschaltete Software, welche nur vom Käufer und ausschließlich für den von der Schule oder Instution erteilten Unterricht verwendet werden darf. 43

48 3 Der Versuchsaufbau Abb. 3.4: Sensor Cassy 2 einer Spannung von 12 V versorgt und ist variabel als Tisch-, Pult- oder Demonstrationsgerät aufstellbar [32]. 3.4 Die GM-Box Abb. 3.5: GM-Box [33] 44

49 3.5 Erster Versuchsaufbau Die GM-Box wird zusammen mit dem computerunterstützten Messsystem CASSY R (beispielsweise Sensor Cassy 2 in Verbindung mit Cassy Lab 2) eingesetzt und dient in Verbindung mit einem Zählrohr zur Messung radioaktiver Strahlung. Dabei wird die für das Zählrohr benötigte Arbeitsspannung von 500 V in der GM-Box erzeugt [34]. 3.5 Erster Versuchsaufbau Abb. 3.6: Erster Versuchsaufbau In der Abbildung 3.6 ist der erste Versuchsaufbau zu sehen. Dieser besteht lediglich aus dem Geiger-Müller-Zählrohr und dem daran über das BNC-Kabel angeschlossenen Digitalzähler. Mit diesem Versuchsaufbau können verschiedene Proben, die jedem Schüler und Studenten auch im Alltag zugänglich sind, auf erhöhte Radioaktivität untersucht werden. Hierzu werden die gemessenen Zählraten unter Berücksichtigung der Fehler mit dem Wert aus der Untergrundmessung verglichen. 3.6 Zweiter Versuchsaufbau Der zweite Versuchsaufbau (Abbildung 3.7) besteht aus dem Geiger-Müller-Zählrohr 45 mm, der GM-Box, dem Sensor-Cassy 2 und einem Computer mit installierter Cassy Lab 2 Software zur Auswertung der Messergebnisse. Dabei ist das GM-Zählrohr mit der GM-Box über ein Kabel 6 verbunden. Die GM-Box ist auf das dafür vorge- 6 Das Kabel hat an einem Ende als Anschluss eine BNC-Buchse und am anderen eine Koaxialbuchse, und wurde in der Werkstatt des Physkialischen Instituts in Freiburg eigens gefertigt werden. Dieses 45

50 3 Der Versuchsaufbau Abb. 3.7: Zweiter Versuchsaufbau sehene Cassy-Modul am Sensor-Cassy 2 aufgesteckt, während das Sensor-Cassy 2 an den USB-Port des Computers angeschlossen ist und über einen Hohlstecker mit 12 V Spannung versorgt wird. In Verbindung mit der Cassy Lab 2 Software lässt sich mit dieser Anordnung das Absorptionsgesetz für die γ-strahlung nachprüfen sowie die statistische Streuung von zufälligen Ereignissen beobachten. 3.7 Versuchsvorbereitung Die Versuchsvorbereitung bestand in erster Linie aus der Suche nach Proben messbarer Radioaktivität. Das bedeutet, dass die Proben eine messbar und vergleichbar höhere Aktivität als die Untergrundstrahlung aufweisen sollen und jedermann zugänglich sein sollen, also nicht erst nach der aktuellen Strahlenschutzverordnung zugelassen werden müssen. Nach eingehender Recherche wurde die Auswahl der Proben getroffen. Nicht bei allen Proben ließ sich eine erhöhte Aktivität verzeichnen, sodass nur die besten ausgewählt wurden. Im Laufe der Messungen und Auswertungen kamen noch Ideen und somit Proben hinzu, sodass die endgültige Auswahl vier Proben messbarer Radioaktivität umfasst (Kapitel 3.8). Anschließend ging es die Anordnung der Geräte für die Versuchsdurchführungen sowie ihre Bedienung. Beide Versuchsanordnungen wurden zunächst in ihrer Funktionsweise an radioaktiven Präparaten, welche nach der aktuellen Strahlenschutzverordnung zugelassenen sind und im Demonstrationspraktikum für Lehramtstudierende verwendet werden, getestet. Vor Inbetriebnahme des zweiten Versuchsaufbaus musste allerdings zuerst die GM-Box und die aktuelle Cassy Lab 2 Software bei der Firma LD Didaktic Kabel kann jedoch bei Bedarf auch zusammen mit der GM-Box bestellt werden. 46

51 3.8 Proben GmbH bestellt werden. Sobald alles vollständig und miteinander verbunden war, konnten auch hier die Testmessungen beginnen. Diese benötigten einigen Zeitaufwand, da die Software und die damit verbundenen Möglichkeiten bei der Versuchsdurchführung und -auswertung noch nicht bekannt waren. 3.8 Proben Zimmerwände Wie in Kapitel 2.5 bereits beschrieben, sind Menschen überall ionisierender Strahlung natürlichen Ursprungs ausgesetzt. Die effektive Äquivalentdosisleistung von außen, welche der pro Sekunde absorbierten effektiven Äquivalentdosis entspricht, ist jedoch im Freien geringer als in Wohnungen. Sie beträgt im Freien im Mittel etwa 0,43 msv/a und in Wohnungen etwa 0,57 msv/a. Diese erhöhte Dosisleistung in Wohnungen stammt hauptsächlich von der Strahlung der Baumaterialien 7, welche beispielsweise in den Haus- und Zimmerwänden verarbeitet werden und zur zusätzlichen Strahlenexposition führen [35] Zigarettentabak Rauchen führt zur radioaktiven Belastung der Lunge. Denn das in der Natur vorhandene Poloniumisotop Po-210, welches ein α-strahler ist, lagert sich an den Blatthärchen der Tabakpflanze ab und gelangt beim Rauchen in die Lunge. Dort wird das Polonium aufgenommen und zurückgehalten. Unter Abstrahlung von α-teilchen zerfällt das Polonium im Lungengewebe in Blei Pb-106 (Gleichung (3.1)), wo die gesamte Energie der α-teilchen wegen ihrer geringen Reichweite absorbiert und dieses geschädigt wird P o P b He (3.1) In Raucherlungen konnte gegenüber Nichtraucherlungen etwa die drei- bis vierfache Poloniumkonzentration nachgewiesen werden ([36, 37]). Für die Messungen wurde handelsüblicher loser Tabak im Wert von etwa vier Euro verwendet Glasscheibe Gläser sind amorphe 8 Feststoffe und bestehen meist aus Siliciumoxid. Um bestimmte Eigenschaften, wie die Glasfärbung oder -entfärbung, zu beeinflussen, werden die meisten Glassorten mit Zusatzstoffenproduziert. Bis in die Mitte des 20. Jahrhunderts 7 Die zusätzliche Strahlenbelastung in msv/a bezogen auf den Aufenthalt im Freien beträgt für (Kalk-)Sandstein 0-0,1 msv/a, Ziegel und Beton 0,1-0,2 msv/a, Naturstein und technisch erzeugter Gips 0,2-0,4 msv/a, Schlackenstein und Granit 0,4-2,0 msv/a. 8 Amorph bedeutet, dass die Atome des Feststoffes keine geordnete Struktur besitzen, sondern unregelmäßige Muster bilden. 47

52 3 Der Versuchsaufbau wurden für eine leichte Grün- oder Gelbfärbung Uranoxide (schwarzes, kristallines Pulver) beigemischt. Uran ist ein sehr schweres Metall, dessen Isotope allesamt radioaktiv und hauptsächlich α-strahlend sind. Als Probe wird bei der Messung ein alter Glasboden eines kleinen Kühlschranks verwendet. Dieser besitzt im Tageslicht keine nennenswerte Färbung, hat sich aber als Probe bewährt [38] Radon im Keller Wie bereits in den Physikalischen Grundlagen in Kapitel erklärt, lagern sich die gasförmigen Radonnuklide Rn-222 und Rn-220 als Metallionen an die Aerosole und Staubpartikel der Luft an und gelangen mit der Atmung in den Körper (bzw. werden beim Atmen inkorporiert). Radon sowie seine Zerfallsprodukte sind α-, β- und γ-strahlend und führen zur Belastung der Bronchien. Die mittlere Teilkörperdosisleistung beträgt etwa 10 msv/a, was einer effektive Dosis (bei einem Wichtungsfaktor von 0,12) von etwa 1,2 msv/a entspricht. Diese effektive Dosis kann in schlecht belüfteten Räumen, wie z. B. Kellerräumen bis auf 3 msv/a (mittlere Teilkörperdosisleistung: 25 msv/a; Wichtungsfaktor: 0,12) ansteigen [35]. Die Inhalation von Radon macht etwa 58% der natürlichen Strahlenbelastung des Menschen aus. Da Radon ein Gas ist, steht es als zu messende Probe nicht unmittelbar zur Verfügung. Will man aber die Belastung der Raumluft mit radioaktiven Substanzen untersuchen, müssen die im Raum verteilten zahlreichen radioaktiven Partikel (Zerfallsprodukte von Radon, die fest und nicht gasförmig sind) auf einen möglichst kleinen Bereich konzentrieren werden. Hierfür bieten sich zwei Methoden an: Die Filtermethode und die Hochspannungsmethode. Die mit Hilfe dieser beiden Methoden erhaltene radioaktive Probe, wird im Folgenden als Radon-Probe bezeichnet. Die Hochspannungsmethode Bei dieser Methode wird quer durch den Raum ein Kupferdraht von einigen Metern Länge gespannt und mit den Anschlüssen einer Hochspannungsversorgung (wenige kv) verbunden, wobei der Draht mit dem Minus-Pol verbunden und der Plus-Pol geerdet wird. Mit dieser Anordnung können die radioaktiven Partikel zusammen mit Staub und positiv geladenen Aerosolen von der Kathode aus der Luft eingefangen werden. Dabei wird ausgenutzt, dass beim α-zerfall der Radonisotope sowie seiner Zerfallsprodukte (beispielsweise Polonium) der abgestrahlte, zweifach positiv geladanene Heliumkern beim Verlassen des betreffenden Isotops Elektronen aus der Hülle mitreißt, sodass das beim Zerfall entstandene Tochternuklid, positiv geladen ist [39]. Nach einer Expositionszeit von mehreren Stunden hat sich genügend radioaktives Material auf dem Draht gesammelt und kann mit einem Taschentuch vom Draht sorgfältig abgewischt oder einfach auf ein Stück Pappe aufgewickelt werden. Das Taschentuch oder der aufgewickelte Draht bilden die Probe. Auf dem Bild 3.8 ist die Anordnung zu sehen, wie sie in einem Kellerraum des Physik- Hochhauses des Physkialischen Instituts aufgebaut wurde. Hier wurde ein 2 m langer Kupferdraht (d = 0, 6mm) mit 5 kv Spannung versorgt. 48

53 3.8 Proben Abb. 3.8: Aufbau fu r die Anwendung der Hochspannungsmethode Die Filtermethode Abb. 3.9: Eine mo gliche Umsetzung der Filtermethode. 49

54 3 Der Versuchsaufbau Bei der Filtermethode werden größere Luftmengen durch einen feinen Gewebefilter gesaugt. Auch mit dieser Methode wird nicht etwa Radon gesammelt, da dieses Element gasförmig ist, sondern seine Zerfallsprodukte, welche fest sind und sich als Ionen an Staub- und Aerosolpartikel der Luft anlagern. So lässt sich indirekt durch das Sammeln der Folgeprodukte auf Radon schließen. Auf dem Bild 3.9 ist der für die Filtermethode verwendete Staubsauger zu sehen. Als Filter wurde ein handelsüblicher Kaffeefilter 9 verwendet, welcher aufgetrennt und mit einem Gummi an dem Saugrohr befestigt wurde. Das Filterstück auf dem Saugrohr ist nach dem Saugvorgang gerade die für die Messungen benötigte Probe. 9 Hier wurde die Marke Brigitta No.4 benutzt. 50

55 4 Messungen und Auswertungen Im Folgenden werden die Durchführungen der Messungen mit dem ersten und zweiten Versuchsaufbau beschrieben und die Messergebnisse analysiert. Sämtliche Messungen wurden im siebten Stock des Physikhochhauses des Physikalischen Instituts in Freiburg durchgeführt. Bei beiden Versuchsanordnungen werden die Proben vor dem Geiger-Müller-Zählrohr angebracht. Mit dem ersten Aufbau (Abbildung 3.6) wird die Anzahl der gezählten Ereignisse direkt vom angeschlossenen Digitalzähler abgelesen und mit der Untergrundstrahlung verglichen, um Aussagen über die von der Probe ausgehende radioaktive Strahlung sowie die daraus resutierende Mehrbelastung machen zu können. Der zweite Aufbau (Abbildung 3.7) wird für Experimente mit der Radon-Probe benötigt und wird zur Vesuchsdurchführung im Demonstrationspraktikum verwendet werden. Denn die Messungen sowie ihre Analyse verschaffen den Lehramtstudenten und Schülern einen guten Einblick in verschiedene Themengebiete der Radioaktivität wie statistische Streuung von Messdaten, natürliche Strahlenbelastung sowie Absorption von Strahlung. Als Vorbereitung auf die Untersuchung der Proben musste jedoch zuerst der Untergrund gemessen und die bei den Versuchen benötigten Hilfsmittel auf Radioaktivität geprüft werden. 4.1 Untergrundmessung Da das Geiger-Müller-Zählrohr nicht nur die Aktivität der Probe misst, sondern auch die natürliche Strahlung, die aus γ-quanten besteht und uns umgibt, muss diese in der Auswertung der Messergebnisse der Proben berücksichtigt werden.für die Untergrundmessung wurde das GMZ an den Digitalzähler angeschlossen (erster Versuchsaufbau) und eine Messdauer von 20 h manuell eingestellt. Die Messdauer wurde möglichst groß gewählt, um den Messfehler zu minimieren, sodass der relative Fehler klein genug ist, dass er bei der Fehlerrechnung nicht berücksichtigt werden muss. In dieser zwanzigstündigen Messung wurden in Abwesenheit eines radioaktiven Präparats (= N U,20h ) Ereignisse vom GMZ registiert. Bezogen auf das Zeitintervall von einer Stunde ergibt sich daraus ein Nullrate R U20h,h von R U20h,h = (2355,40 ± 10,85) 1 h, (4.1) bezogen auf das Zeitintervall von einer Minute eine Nullrate R U20h,min von R U20h,min = (39,26 ± 0,18) 1 min, (4.2) 51

56 4 Messungen und Auswertungen wobei der Fehler durch σ U20h,h = N U,20h /20 h und σ U20h,min = N U,20h /(20 60) min berechnet wurde. Die mittlere Zählrate pro Sekunde (R U20h,s) errechnet sich somit zu R U20h,s = (0,654 ± 0,003) 1 s mit σ U20h,s = N U20h,min/60 s. (4.3) Vergleichsweise wurde eine kürzere, einstündige Untergrundmessung gemacht, da für Messungen und Experimente im Demonstrationspraktikum etwa anderthalb Stunden vorgesehen sind. Hier ergab sich, resultierend aus den 2473 (= N U1h,h) während einer Stunde registrierten Ereignissen, eine Nullrate pro Minute R U1h,min von 1 R U1h,min = (41,22 ± 0,83) (4.4) min Die Fehler wurden analog, aus der Standardabweichung, berechnet. Der Vergleich der Nullraten pro Minute R U20h,min und R U1h,min zeigt, dass der genauere Wert R U20h,min in der 2,4-fachen Standardabweichung von R U1h,min liegt und die kürzere Messung somit eine recht gute Näherung der natürlichen Strahlbelastung liefert. Bei beiden Messungen wurde die Totzeit des GMZ (τ = 100 µs) nicht berücksichtigt, weil die Ereignisrate pro Sekunde sehr gering ist und die Totzeit erst bei höheren Ereignisraten relevant wird (Kapitel 4.2). Da der Digitalzähler nur die vom GMZ registrierte Ereignisse zählt und die Ereignisanzahl digital wiedergibt, wird die angezeigte Ereignisanzahl gleich der vom GMZ registrierte angenommen, sodass der Digitalzähler als nicht fehlerbehaftet angesehen wird. Zusätzlich zu den systematischen Fehlern können zufällige Fehler auftreten. 1 Denn, wird der Start/Stopp -Knopf zufällig, unmittelbar nach einem Ereignis gedrückt, so werden vom GMZ in der vorgegebenen Zeit eventuell einige Ereignisse zu wenig oder sogar zu viel als zu einem anderen Zeitpunkt registriert. Diese zufälligen Fehler werden in der Berechnung der Standardabweichung jedoch bereits berücksichtigt, da Zerfälle selbst nicht vorhersagbar sind. 4.2 Messungen mit dem ersten Versuchsaufbau Nach ausreichender Recherche, Testmessungen und Auswahl der Proben, geht es nun um die Haupt -Messungen mit dem ersten Versuchsaufbau und Auswertung der Messergebnisse: Zimmerwand Zur Messung der Radioaktivität der Zimmerwand, die zwei Büroräume im siebten Stock des Physikhochhauses trennt, wurde das Geiger-Müller-Zählrohr 45 mm auf einem Stativfuß zusammen mit dem Digitalzähler auf einem Tisch neben der Wand aufgestellt und zur Wand hin gerichtet, sodass der Abstand zwische dem GMZ und der 1 Bei der Fehlerrechnung wird zwischen sogenannten systematischen und zufälligen Fehlern unterschieden. Eine ausführliche Beschreibung und Erläuterung der Fehler findet man u. a. in [27]. 52

57 4.2 Messungen mit dem ersten Versuchsaufbau Wand nur noch etwa 2 cm betrug. Nach Aufstellung der Geräte wurde eine einstündige Messung vorgenommen. In dieser Zeit wurden von GMZ 2980 Ereignisse (= N W,h ) registriert. Das entspricht, bezogen auf das Zeitintervall von einer Minute beziehungsweise einer Sekunde, einer Rate R W,min bzw. R W,s von bzw. R W,min = (49,67 ± 0,91) 1 min, (4.5) R W,s = (0,83 ± 0,02) 1 s. (4.6) Die Fehler σ W,min bzw. σ W,s wurden durch σ W,min = N W,h /60 min und σ W,s = NW,h /3600 s berechnet. Verglichen mit den Ergebnissen der Untergrundmessung wurden bei der Radioaktivitätsmessung der Zimmerwand etwa 10 ( 49,67 3,26 = R W,min R U20h,min) Ereignisse pro Minute, also rund 27 %, mehr gezählt. Dies entspricht einer Mehrereignisrate R (W U),min von R (W U),min = (10,41 ± 0,91) 1 min. (4.7) Der Fehler auf die Mehrereignisrate wurde mit dem Gaußschen Fehlerfortpflanzungsgesetz (GFG) berechnet, wobei der Fehler σ U20h,min vernachlässigt wurde, da er lediglich etwa 1/5 des Fehlers σ W,min beträgt. 2 Somit wurde der Fehler σ (W U),min wie folgt berechnet: σ (W U),min = σ 2W,min + σ2u20h,min σw,min 2 = σ W,min. (4.8) Bei einer Entfernung des GMZ von 0,8 Meter betrug die während einer einstündigen Messdauer registrierte Ereigniszahl N W ;hin;0,8 = 2710, wobei der GMZ der Wand zugewandt war. Bei derselben Entfernung aber der Wand abgewandtem GMZ betrug die Ereigniszahl N W ;weg;0,8 = Vergleicht man diese Werte mit dem der Ereigniszahl N W,1h = 2980, die in unmittelbarer Wandnähe gemessen wurde, und der Nullrate N U1h,h = 2473 der einstündigen Messung, so sieht man schnell, dass die Wände tatsächlich strahlen, also ionisierende Strahlung aussenden. Dabei scheinen die Wände nicht nur γ-quanten zu emittierten, die unter anderem auch im Untergrund gemessen werden, sondern auch β-strahlung, da die Zählrate zum einen mit dem Abstand abnimmt und zum anderen bei abgewendetem GMZ mit der Nullrate innerhalb einer Standardabweichung (σ U1h,h = N U1h,h 50) übereinstimmt, denn der dünnwandige Metallmantel des GMZ ist vor allem für γ-strahlen durchlässig. Da die natürliche Strahlenexposition in Deutschland eine mittlere Dosisleitung von etwa 2,4 msv/a, also 0,27 µsv/h, verursacht, hätte die Erhöhung der Ereignisrate für eine Person, die 46 Wochen fünf Tage die Woche acht Stunden lang unmittelbar neben dieser Wand arbeitet (das entspricht einer jährlichen Arbeitszeit von 1840 h), eine zusätzliche jährliche Strahlenbelastung von 0,02 msv/a zur Folge, wobei bei dieser 2 Man kann einen Fehler s 1 bereits unberücksichtigt lassen, wenn er zu den anderen Fehlern im Verhältnis 1:3 steht [27]. 53

58 4 Messungen und Auswertungen Beispielrechnung nur die terrestrische Komponente von 16 % eine Rolle spielt. 3 Soll allgemein die Strahlenbelastung berechnet werden, die von Wänden ausgeht, muss berücksicht werden, dass die Menschen wesentlich mehr Zeit neben den Wänden verbringen. Denn bei den meisten steht das Bett, in dem sie schlafen, neben der Wand. Dieser Wert liegt deutlich unter dem Dosisgrenzwert für Strahlenzusatzbelastung der Normalbevölkerung 4, der von der Strahlenschutzverordnung je nach von der Strahlenexposition betroffenen Körperteilen auf 0,3-0,9 msv/a festgesetzt wurde [35]. Somit ist die gemessene Strahlung der Zimmerwand für die im Zimmer befindlichen Personen ungefährlich Glasscheibe Um den Glasboden des Kühlschranks auf Radioaktivität zu überprüfen, wurde die erste Versuchsanordnung wie bei der Untergrundmessung in der Mitte des Zimmers auf einem Tisch angebracht und die Glasscheibe direkt vor das GMZ gestellt. Bei dem Digitalzähler wurde eine einstündige Messdauer einprogrammiert. Während der Messung wurden vom GMZ 2587 (= N G,1h ) Ereignisse registriert, sodass sich folgende Minutenrate R G,min ergab: R G,min = (43,12 ± 0,85) 1 min. (4.9) Der Fehler σ G,min wurde wie schon zuvor bei der Zimmerwandmessung durch σ G,min = NG,1h /60 s berechnet. Nach Abzug des Untergrunds lässt sich folglich eine Mehrereignisrate R (G U),min von R (G U),min = (3,86 ± 0,85) 1 min (4.10) angeben. Der Fehler σ (G U),min auf die Mehrereignisrate wurde wieder mit dem GFG berechnet, wobei auch hier der Fehler der Untergrundmessung nicht berücksichtigt wurde, da er wieder etwa 1/5 des Fehlers σ G,min beträgt. Das Ergebnis entspricht, verglichen mit der Untergrundstrahlung, einer etwa 10 % höheren Radioaktivität der Glasscheibe. Das bedeutet, dass auch die auf Radioaktivität überprüfte Glasscheibe strahlt, aber die Strahlung bei uns zu keiner wesentlichen Zusatzbelastung führt und somit ungefährlich ist Zigarettentabak Als Tabakprobe für die Messung wurde Pueblo 30g Fine Cut Tobacco verwendet. Der Tabak wurde in einen Kaffeefilter umgefüllt, um ihn möglichst nah an das GMZ 3 Bei diesem Beispiel geht es nur um die Wand, welche die Büros im Physikhochhaus trennt. 4 Damit sind beruflich nicht strahlenexponierte Personen gemeint. 5 Man möge nochmal die Beispielrechnung bei der Wandmessung betrachten, bei der die Radioaktivität um etwa 27 % erhöht war. 54

59 4.2 Messungen mit dem ersten Versuchsaufbau anbringen zu können, damit er die gesamte vergitterte Öffnung des GMZ abdeckt. 6 Bevor jedoch alles für die Messung vorbereitet wurde, musste der Kaffeefilter seinerseits auf Radioaktivität überprüft werden, um auszuschließen, das dieser den Untergrund beeinflusst. Die einstündige Messung des Kaffeefilters ergab eine Minutenrate R K,min von R K,min = (39,08 ± 0,81) 1 min. (4.11) Da dieses Ergebnis mit dem der Untergrundmessung (R U20h,min = 39, 26 ± 0, 18 1 min ) konsistent 7 ist, wird der Kaffeefilter bei den noch folgenden Messungen nicht berücksichtigt. Im Anschluss an die Kaffeefiltermessung wurde die Tabakprobe in einer einstündigen Messung auf radioaktive Strahlung überprüft. In dieser Zeit wurden (N T,h = 3001) Ereignisse registriert. Dies entspricht einer Minutenrate R T,min von R T,min = (50,02 ± 0,91) 1 min. (4.12) Dabei wurde der Fehler σ T,min auf die Rate, analog zu den vorangehenden Berechnungen, wie folgt bestimmt: σ T,min = N T,1h /60 s. (4.13) Unter Berücksichtigung des Untergrunds ergibt sich eine Mehrereignisrate R (T U),min von R (T U),min = (10,76 ± 0,91) 1 min. (4.14) Der Fehler wurde wie bei den vorangegangenen Messungen durch das GFG berechnet, wobei der Untergrundfehler nicht berücksichtigt wurde. Aus diesem Ergebnis lässt sich folgern, dass die Strahlung, die vom Tabak ausgeht, im Vergleich zum Untergrund um etwa 27 % höher liegt. Aus Interesse, ob es sich hier tatsächlich um α-strahlung handelt, wurde zusätzlich eine einstündige Messung mit einem zwischen den Tabak und das GMZ geschobenen Druckerpapierblatt, das die α-strahlung absorbieren soll, durchgeführt. Während dieser Messdauer wurden 2850 Ereignisse registriert. Also nur noch etwa 70 % der Mehrereignisrate. 8 Das bedeutet, dass der Zigarettentabak tatsächlich unter anderem ein α-strahler ist, der zu einer Belastung der Lunge führen kann beziehungsweise führt. 6 Auch hier wurde die erste Versuchsanordnung wie bei der Untergrundmessung in der Mitte des Zimmers auf einem Tisch aufgebaut. 7 Zwei Ergebnisse sind konsistent, wenn ihre Diskrepanz geringer oder gleich ist als die kleinere der beiden Messunsicherheiten [27]. 8 Zur Erinnerung: Bei der einstündigen Untergrundmessunge wurden 2473 (= N U1h,h) Ereignisse registriert. 55

60 4 Messungen und Auswertungen Radon im Keller Will man die Belastung der Raumluft mit radioaktiven Substanzen untersuchen, müssen die im Raum verteilten zahlreichen radioaktiven Partikel, wie bereits in Kapitel 3.8 beschrieben, auf einen möglichst kleinen Bereich konzentrieren werden. Hierfür wurde sowohl die Hochspannungsmethode also auch die Filtermethode angewandt. Anschließend wurde die auf diese Weise beschaffte Probe auf messbar erhöhte Radioaktivität untersucht. Dazu wurde einmal das Taschentuch, mit dem der für die Hochspannungsmethode angebrachte Kupferdraht abgewischt wurde, mit der betroffenen Stelle vor das GMZ mit Hilfe eines Gummis angebracht, und das andere Mal der Filter, durch den bei der Filtermethode die Raumluft von einem Staubsauger angesaugt wurde. Um auszuschließen, dass das Taschentuch oder der Kaffeefilter den Untergrund beeinflussen und somit eine zusätzliche Auswirkung auf Messergebnisse haben, wurde beides jeweils vor dem Beginn der Radioaktivitätsmessung der Probe auf ionisierende Strahlung untersucht. Da die Kaffeefilter bereits im Rahmen der Zigarettentabak- Messung auf Radioaktivität geprüft wurden und das Ergebnis mit dem Ergebnis der Untergrundmessung konsistent war, wurde keine zusätzliche Messung durchgeführt, sondern das Ergebnis für die Radonmessung übernommen. Das bei der Messung verwendete handelsübliche Taschentuch 9 wurde in einer einstündigen Messung seinerseits auf erhöhte Radioaktivität untersucht. Die während dieser Messdauer vom GMZ registrierte Ereignisanzahl von N T uch,h = 2366) Ereignissen ergibt eine Minutenrate R T uch,min von R T uch,min = (39,43 ± 0,81) 1 min. (4.15) Der Fehler auf die Minutenrate wurde auch hier durch R T uch,min = N T uch,h /60 min berechnet. Auch dieses Ergebnis ist mit dem der Untergrundmessung (R U20h,min = 39,26 ± 0, 18 1 ) konsistent. Somit beeinflussen, den Messergebnissen nach, weder der min Kaffeefilter noch das Taschentuch die Nullrate, welche bei Radioaktivitätsmessungen stets zu berücksichtigen ist. Radon-Probe von der Hochspannungsmethode (HM) Die Hochspannungsmethode, bei der quer durch den Raum ein Kupferdraht von einigen Metern Länge gespannt und mit den Anschlüssen einer Hochspannungsversorgung verbunden wurde, wobei der Draht mit dem Minus-Pol verbunden und der Plus-Pol geerdet wird, wurde bereits in Kapitel 3.8 beschrieben. Für diese Methode wurde der dünnste, in der Physikwerkstatt zur Verfügung stehende, Kupferdraht mit einem Durchmesser von 0,6 mm ausgesucht und über zwei Meter Länge mit 5 kv Spannung versorgt. Nach 24 Stunden wurde die Spannungsversorgung abgestellt und der Kupferdraht sorgfältig über die gesamte Länge mit einem Taschentuch abgewischt und für 9 Für diese Messung wurden Taschentücher der Marke Floradays von LIDL verwendet. 56

61 4.2 Messungen mit dem ersten Versuchsaufbau den Transport vorsichtig in eine Tüte gelegt. 10 Angelangt am ersten Versuchsaufbau wurde das Taschentuch, wie bereits erwähnt, mit der betroffenen Stelle vor das GMZ mit Hilfe eines Gummis angebracht. Am Digitzähler wurde eine einstündige Messdauer programmiert und im Anschluss an die Messung die vom GMZ registrierte Ereignisanzahl abgelesen. Diese betrug N HM,h = 6959, sodass daraus folgende Minutenrate R HM,min resultiert: R HM,min = (115,98 ± 1,39) 1 min. (4.16) Der Fehler wurde durch σ HM,min = N HM,h /60 min berechnet. Diese Rate ist rund dreimal so groß wie die Nullrate, die noch bei der Angabe der Mehrereignisrate R (HM U),min, bezogen auf das Zeitintervall von einer Minute, berücksichtigt werden muss. R (HM U),min errechnet sich dann zu: 1 R (HM U),min = R HM,min R U20h,min = (76,72 ± 1,39). (4.17) min Der Fehler auf die Mehrereignisrate wurde wie schon bei den vorangegangenen Auswertungen zuvor mit dem GFG ermittelt, wobei der Fehler auf die Nullrate nicht berücksichtigt wurde. Vergleichsweise wurde die Hochspannungsmethode unter Verwendung des selben Drahtes über einen Zeitraum von etwa vier Stunden angewandt. Bei dieser Probe wurden 3196 Ereignisse in einer einstündigen Messdauer registriert, also rund 54 % weniger als bei der Probe der 24-stündigen Anwendung der Hochspannungsmethode. Radon-Probe von der Filtermethode (FM) Auch mit Hilfe der Filtermethode (Kapitel 3.8) werden durch das Ansaugen größerer Luftmengen die Folgeprodukte von Radon gesammelt und auf kleinem Raum konzentriert. Dazu wurde im Keller des Physikhochhauses an das Saugrohr des Staubsaugers ein Filter angebracht und mit einem Gummi am Saugrohr fixiert. Der Staubsauger wurde daraufhin für 30 Minuten auf die schwächste Stufe eingestellt und eingeschaltet. Anschließend wurde der Filter vorsichtig vom Saugrohr abgenommen und für den Transport, wie das Taschentuch zuvor, in eine Tüte verpackt. Angelangt am ersten Versuchsaufbau wurde der Filter ebenfalls mit der betroffenen Stelle vor das GMZ mit Hilfe eines Gummis angebracht. Auch bei dieser Radon-Probe wurde eine Messdauer von einer Stunde eingestellt und die registrierte Ereignisanzahl am Digitalzähler abgelesen, welche sich auf N F M,h = ± 136,68 Ereignisse pro Stunde belief. Folglich ergibt sich für die vom GMZ registrierten Ereignisse eine Minutenrate R F M,min von R F M,min = (311,37 ± 2,28) 1 min mit σ F M,min = N F M,h /60 min. (4.18) 10 Da die gesammelten Partikel nich am Taschentuch kleben, sondern nur aufliegen, bestand die Gefahr, dass sie während des Transports fortgeweht werden könnten. 57

62 4 Messungen und Auswertungen Daraus ergibt sich eine Aktivität A RF M der Probe von: A RF M U = N F M,h N U20h,h 3600 s = (4,54 ± 0,04) Bq. (4.19) Der Fehler der Aktivität wurde durch σ AF M = N F M,h /3600 s berechnet, da der Fehler der Nullrate bezogen auf das Zeitintervall von einer Sekunde im Vergleich zu σ AF M zu gering (σ U20h,s 0, ), um sich wesentlich auf den Gesamtfehler aus zu wirken. s Aus Interesse und zum Vergleich wurde dieselbe Methode (FM2) nach derselben Vorgehensweise in einem relativ neuen Reihenendhauses (BJ 2006) angewandt, wobei die Transportzeit der Probe etwa eine Stunde betrug. Die Messungen ergaben eine Ereignisanzahl von: N F M2,h = (18306 ± 135,3) Ereignisse Minutenrate von: R F M2,min = (305,37 ± 2,25) 1 min Aktivität von: A RF M2 U = N F M2,h N U20h,h 3600 s = (4,43 ± 0,04) Bq Alle Ergebnisse der Messung im Reihenhaus liegen in der 3-fachen Standardabweichung der Ergebnisse der Messung im Keller des Physikhochhauses. Die geringe Abweichung der Werte voneinander kann entweder durch die lange Transportzeit, da während dieser Zeit bereits einige Partikel entflohen sein könnten, oder durch eine geringere Belastung des Hauskellers mit radioaktiven Substanzen verursacht worden sein. Vergleicht man den Aufwand, die Dauer zur Beschaffung der Probe und die Ergebniswerte, so ist die Filtermethode eindeutig die effizientere und weniger aufwendige Methode. Denn sie liefert nach geringem Aufbau- und Zeitaufwand eine messbare Probe und ist aus diesem Grund für den Schulunterricht und für den Versuch im Demonstrationspraktikum geeignet. Die Mehrbelastung an Strahlung lässt sich mit Hilfe dieser Ergebnisse jedoch nicht angeben, da mit Hilfe der Filtermethode lediglich die radioaktiven Partikel aus der Luft konzentriert wurden, sodass sich eine radioaktive Probe ergab, mit Hilfe derer man auf Radon in der Raumluft rückschließen kann. Allerdings beträgt die gemessene Aktivität der Probe bereits nach einer Anwendung von Minuten in etwa das Achtfache der Nullrate, sodass eine Belastung der Raumluft durch Radon sowie seiner Zerfallsprodukte deutlich anhand der Messergebnisse zu sehen ist. 4.3 Berücksichtigung der Totzeit Wie in Kapitel 3 bereits beschrieben, erzeugen die in die Kammer einfallenden ionisierenden Teilchen durch Stöße mit den Gassatomen beziehungsweise -molekülen im GMZ eine Vielzahl von Ionen und Elektronen, die zu den Elektroden hin beschleunigt werden. Die Entladung des Gases führt zu einem kurzzeitigen Spannungsabfall an dem Arbeitswiderstand und macht das GMZ für eine gewisse Zeit, die sogenannte 58

63 4.4 Messungen mit dem zweiten Versuchsaufbau Totzeit τ, für weitere Teilchen unempfindlich. Da das GMZ nach jedem Teilchendurchgang für die Zeit τ tot ist, entspricht R τ bei R Teilchendurchgängen pro Sekunde dem Bruchteil der für weitere Teilchenregistrierung unempfindlichen Zeit. Umgekehrt bedeutet das, dass das GMZ für den Anteil von (1 R τ) der Zeit für weitere Teilchen empfindlich ist. Daher ergibt sich nach Totzeitkorrektur die tatsächliche Zählrate R wahr zu R wahr = R 1 R τ. (4.20) Bei den bisher betrachteten Proben betrug die Anzahl der Teichendurchgänge pro Sekunde nicht mehr als R = 5 1. Da die für das GMZ angegebene Totzeit 100sµs s beträgt, bedeutet das für die tatsächliche Zählrate R wahr : R wahr = R 1 R τ = 5 0, s 5,03 1 s. (4.21) Somit weicht bei fünf vom GMZ registrierten und angezeigten Teilchen pro Sekunde der tatsächliche Wert lediglich um R wahr R = 0, 6% von dem Wert, welchen der R Digitalzähler als den wahren Wert ausgegeben hat, ab. Aufgrund der sehr geringen Abweichung, wurde die Totzeit bei den Messungen und Auswertungen mit dem ersten Versuchsaufbau nicht berücksichtigt. 4.4 Messungen mit dem zweiten Versuchsaufbau Wie in Kapitel 4 beschrieben, wird der zweite Aufbau (Abbildung 3.7) für die Messungen und Auswertungen der Radon -Probe benutzt und zur Vesuchsdurchführung im Demonstrationspraktikum verwendet werden. Dieser Aufbau besteht aus dem GMZ, der GM-Box, dem Sensor-Cassy 2 und einem Computer mit installierter Cassy Lab 2 Software zur Auswertung der Messergebnisse, die vom GMZ über das Sensor-Cassy 2 direkt auf den Computer übertragen werden und im Cassy-Lab-2-Programm zu sehen sind (siehe Kapitel 3). Die Messungen sowie ihre Analyse mit dem Programm sollen den Lehramtstudenten und Schülern innerhalb relativ kurzer Zeit einen guten Einblick in verschiedene Themengebiete der Radioaktivität verschaffen, wie statistische Streuung von Messdaten, natürliche Strahlenbelastung sowie Absorption von Strahlung. Sowohl bei der Untersuchung der statistischen Streuung von zufälligen Ereignissen sowie der Strahlungsabsorption wird zum Vergleich zusätzlich ein Radium-Präparat verwendet, das für die Versuche des Demonstrationspraktikums gemäß den Richtlinien der Strahlenschutzverordnung zugelassen ist. Das Radiumpräparat Die Firma ELWE Lehrsysteme GmbH gibt für das Radiumpräparat Ra-226 (Abbildung 4.1), das in einem speziellen Schutzbehälter aufbewahrt wird und gemäß den 59

64 4 Messungen und Auswertungen Abb. 4.1: Radiumpräparat. Richtlinien der aktuellen Strahlenschutzverordnung zugelassen ist, eine maximale Aktivität von 3,7 kbq an. Das Präparat ist in den Stift, der im Deckel des Behälters angebracht ist, in der kleinen Öffnung eingesetzt, welche rechts im Bild zu sehen ist Statistische Streuung Zählexperimente mit einer großen Anzahl an Einzelversuchen, bei denen sowohl die Messergebnisse als auch die Messfehler dem Zufall unterliegen, führen dazu, dass die Messdaten um den Mittelwert verteilt sind und zu beiden Seiten hin abfallen. Während die Messdaten bei kleinen zu erwartenden Zählraten poissonverteilt sind (siehe Kapitel 2.6.3), so sind sie bei großen Zählraten gaußverteilt (siehe Kapitel 2.6.4). Ein Beispiel für die Poissonverteilung ist die Untergrundstrahlung, für die Gaußverteilung der radioaktive Zerfall. An dieser stelle sollen die mit der zweiten Versuchsanordnung durchgeführten Messungen und Messergebnisse sowie ihre Auswertungen mit dem Cassy-Lab-2-Programm vorgestellt werden. Zudem soll stichpunktartig erklärt werden, welche für diese Messreihen erforderlichen Einstellungen im Programm ausgewählt werden müssen. Einstellungen im Cassy-Lab-2-Programm zur Erstellung eine Histogramms 1. Cassy Lab 2 öffnen. 2. Auf den Button Beispiel laden klicken. 3. In der Indexsuche die Poissonverteilung auswählen und anzeigen lassen. 4. Im geöffneten CASSYs-Fenster die GM (R A1 )-Box anklicken. 5. Die Einstellungen für die Häufigkeitsverteilung 11 laden und öffnen. (Die eventuell auftretende Frage Änderung speichern? mit nein beantworten.) 11 Führt man eine Messreihe durch, in der man n-mal eine Größe x (z.b. Länge eines Stabes oder Aktivität eines radioaktiven Präparats) misst, so erhält man m (m n) verschiedene Messwerte unterschiedlicher Häufigkeit (Häufigkeitsverteilung). Diese Messdaten lassen sich graphisch in 60

65 4.4 Messungen mit dem zweiten Versuchsaufbau 6. Das noch geöffnete Cassy-Fenster schließen. 7. Mit Rechtsklick auf Rate R A1 werden die notwendigen Einstellungen angezeigt. Das an der Seite geöffnete Einstellungen-Fenster kann auf der oberen Symbolleiste ( -Symbol) ein- und ausgeblendet werden. 8. Einstellungen zur Messzeit und Intervalllänge vornehmen. 9. Mit F9 oder -Symbol in der Symbolleiste die Messung starten (bzw. bei Bedarf stoppen). 10. Nach Beendigung der Messung unter Diagramm weitere Auswertungen die Poissonverteilung 12 bzw. die Gaußverteilung 13 berechnen lassen. Dabei den für die Berechnung gewünschten Bereich markieren. 11. Im links geöffneten Fenster für die Einstellungen kann unter Darstellungen Häufigkeitsverteilung (Doppelklick mit der Maus) H A1 (R A1 ) die Farbe des Diagramms und der Kurve frei gewählt werden. 12. Die für die Verteilung charakteristischen Messparameter n (Gesamtzahl der Ereignisse), µ (Erwartungswert) und σ (Standardabweichung) können der Zeile am unteren Bildschirmrand entnommen werden. 13. Unter Diagramm Markierung setzen Text lassen sich alle Messparameter sowie weitere Beschriftungen ins Diagramm einfügen. 14. Das Diagramm kann unter Diagramm Diagramm kopieren als Bitmap oder Metafile kopiert und mit einem Bildbearbeitungsprogramm bearbeitet werden. 15. Damit die Achsenbeschriftungen sowie die Messergebnisse besser lesbar sind, kann unter Diagramm die Schriftgröße und Linienbreite eingestellt werden. 16. Die gesamte Messung sowie ihre Auswertung kann gespeichert werden. Anschließend kann eine neue Messung gestartet werden. Der Untergrund Mit den oben beschriebenen Einstellungen wurde eine einstündige Untergrundmessung mit einsekündigen Messintervallen durchgeführt. Da die Ereignisrate Werte zwischen 0 und 5 Ereignisse pro Sekunde angenommen hat, wurde unter weitere Auswertungen die Poissonverteilung ausgewählt. In der Abbildung 4.2 ist das zur Messung gehörende Histogramm zu sehen. Form eines sogenannten Histogramms darstellen, das einen stufenförmigen Verlauf hat. Dabei wird die Häufigkeit der Messwerte gegen die Messwerte selbst aufgetragen. 12 f(x) = n µx x! e µ (n: Gesamtzahl der Ereignisse; µ: Erwartungswert; σ: Standardabweichung) 13 f(x) = n 2πσ e (x µ)2 2σ 2 (n: Gesamtzahl der Ereignisse; µ: Erwartungswert; σ: Standardabweichung) 61

66 4 Messungen und Auswertungen Abb. 4.2: Untergrundmessung mit dem Cassy-Lab-2-Programm (Histogramm). Da die Poissonverteilung diskret und nur für positive Werte definiert ist, ist nur der rechte (etwas kantige) Kurventeil zu sehen. Die Auswertung liefert für die Gesamtzahl 14 von 3010 Ereignissen für den Erwartungswert und die Standardabweichung der Rate folgende Werte: µ = 0,651 1 s und σ = 0,798 1 s. (4.22) In der Abbildung 4.2 ist zu sehen, dass das Maximum nicht mit dem Erwartungswert übereinstimmt und die Verteilung somit asymmetrisch ist. Dies ist für poissonverteilte Messwerte typisch (Kapitel 2.6.1). Soll mit diesem Wert für die Rate weitergearbeitet werden, so kann die vom Programm berechnete Standardabweichung nicht übernommen werden, da diese die Gesamtzahl der Einzelmessungen nicht berücksichtigt. 14 Die Gesamtzahl stimmt meist nicht mit der vorgesehenen bzw. vom Programm berechneten Anzahl überein, da das Programm mit Zeitverzögerung arbeitet, die daher rührt, dass das Programm nach jedem Messintervall Zeit benötigt, um den Messwert zu übertragen. Erst wenn der Messwert übertragen und in der Tabelle (links) abgespeichert wurde, wird eine neue Messung gestartet. Bei der Untergrundmessung waren beispielsweise in der einstündigen Messungdauer eine Messung von 3600 einseküngigen Einzelereignissen vorgesehen, es konnten aber in dieser Zeit nur 3010 Einzelereignissen gemessen werden. Wird eine spezielle Ereignisanzahl benötigt, z. B. n = 3600, so muss die Messzeit offen gelassen und unter Stoppbedingung im Einstellungsfenster n = 3600 gefordert werden. Die Messung würde dann jedoch länger als eine Stunde dauern.[40] 62

67 4.4 Messungen mit dem zweiten Versuchsaufbau Sie muss aus den Tabellenwerten berechnet werden. Dazu muss die Tabelle zunächst (linkes Fenster während einer Messung) durch Maus-Rechtsklick Tabelle kopieren kopiert und beispielsweise in eine Exceltabelle eingefügt werden, damit die Standardabweichung aus den Daten berechnet werden kann. Aus diesem Grund empfiehlt es sich einfachheitshalber das GMZ im Demonstrationspraktikum zuerst an den Digitalzähler anzuschließen und die Untergrundmessung, falls erwünscht, mit der 1. Versuchsanordnung durchzuführen, solange die Vorbereitungen für die weiteren Messungen laufen, und anschließend die Messungen mit dem Sensor Cassy vorzunehmen (siehe Kapitel 4 Untergrundmessung ). Die Rate der 20-stündigen Untergrundmessung mit dem 1. Versuchsaufbau (Kapitel 4.1) betrug sodass die Ergebnisse konsistent sind. R U20h,s = (0,654 ± 0,003) 1 s, (4.23) Die Radon-Probe Da das Demonstrationspraktikum in einem anderen Gebäude des Physikalischen Instituts stattfindet, nämlich dem Praktikumsgebäude, wurde die Filtermethode zur Beschaffung einer Radon-Probe aufgrund kürzerer Wegstrecken direkt im Keller des Gebäudes 20 Minuten lang angewandt. Für die Untersuchung wurde die Probe vor dem GMZ (im Physikhochhaus) angebracht und eine 15-minütige Messung gestartet. Das Messintervall wurde auf eine Sekunde eingestellt. In der Abbildung 4.3 ist die Häufigkeitsverteilung der Radon-Probe zu sehen. Da die Werte für die Ereignisrate um den Ereignisratenwert von etwa 15 Ereignissen pro Sekunde verteilt sind, also unter R = 30 1 liegen, wurde unter weitere Auswertungen (wie zuvor bei der Untergrundmessung) wieder die Poissonverteilung ausgewählt. Bei dieser (Poisson-)Funktion ist s nur noch eine leichte Asymmetrie zu erkennen, denn der rechte Teil der Kurve läuft etwas länger aus als der linke. Die Auswertung der Häufigkeitsverteilung liefert für eine Gesamtzahl von n = 752 Ereignisse folgenden Erwartungswert µ und Standardabweichung σ: µ = 14,0 1 s und σ = 3,9 1 s. (4.24) Dabei wird der Untergrund von dem Cassy-Lab-2-Programm nicht berücksichtigt. Zwar könnten auch hier die Tabellenwerte kopiert werden, um mit ihnen weiterarbeiten zu können. Da jedoch die Untergrundstrahlung (µ 0, 7 1 ) nur etwa 5 % des s Erwartungswertes µ beträgt und somit innerhalb einer Standardabweichung liegt, kann diese vernachlässigt werden. Eine Totzeitkorrektur muss hier nicht vorgenommen werden, da die gemessenen Werte für die Rate relativ klein sind. Zum Vergleich: Bei der Radon-Probe aus dem Keller des Physikhochhauses wurde eine Ereignisrate von 63

68 4 Messungen und Auswertungen Abb. 4.3: Radon -Probe: Statistische Streuung A RF M = (5,19 ± 0,04) Bq (4.25) gemessen (ohne Berücksichtigung des Untergrundes). A RF M Wert N F M,h = (18682 ± 136, 68) in Kapitel 4.2 durch: berechnet sich aus dem µ ARF M = 18682/3600 s mit σ ARF M = 18682/3600 s. (4.26) Das bedeutet, dass der Keller im Praktikumsgebäude etwa dreimal stärker belastet 15 ist, als der Keller im Physikhochhaus. Die vergleichsweise geringe Belastung des Kellers im Physikhochhauses rührt daher, dass dort Lüftungen aktiv sind und deshalb die Belastung durch die Zerfallsprodukte von Radon trotz fehlender Fenster niedriger ist als im Praktikumsgebäude. Dieses Ergebnis macht glaubhaft, dass Radon beziehungsweise die Inhalation von Radon und seinen Zerfallsprodukten, die sich an Partikeln und Aerosolen der Luft anlagern, einen großen Anteil an der natürlichen Strahlenexposition hat. Zudem belegen die Ergebnisse, dass ein häufiger Aufenthalt in schlecht gelüfteten Räumlichkeiten zu einer wesentlich höheren Strahlenbelastung führt. 15 Das bedeutet, dass eine Person im Keller des Praktikumsgebäudes eine etwa 24-mal stärkere Belastung, verglichen mit der Untergrundstrahlung, erfährt. 64

69 4.4 Messungen mit dem zweiten Versuchsaufbau Das Radiumpräparat Ra-226 Um die Häufigkeitsverteilung zu betrachten und diese auszuwerten, wurde das Radiumpräparat aufgrund der geringen Reichweite der α-strahlen möglichst nah an das GMZ gerückt. Es wurde eine einstündige Messdauer mit Messintervallen von einer Sekunde eingestellt. Die Abbildung 4.4 zeigt die bei der Messung entstandene Häufigkeitsverteilung. Abb. 4.4: Radiumpräparat: Statistische Streuung. Die Messwerte für die Rate sind (ihrer Häufigkeit nach) um einen Wert von etwa R = verteilt sind. Links neben der recht symmetrischen Verteilung um diesen s Wert ist zu sehen, dass auch einige Werte geringerer Rate registriert worden sind. Auf der rechten Seite der symmetrischen Verteilung taucht kein derartiges Rauschen 16 auf. Da die Raten im Bereich von mehreren hundert Ereignissen pro Sekunde liegen, wurde hier zur Auswertung der Häufigkeitsverteilung die Gaußverteilung ausgewählt. Wird das Rauschen in der Auswertung berücksichtigt, so verschiebt sich die Gaußglocke nach links. Es ist zu sehen, dass die Gaußfunktion in dem Fall keine gute Anpassung an die Verteilung der Messwerte ensprechend ihrer Häufigkeit liefert. Lässt man das Rauschen auf der linken Seite der symmetrischen Verteilung für die Auswertung weg, 17 so erhält man eine Gaußglocke, die an die Häufigkeitsverteilung der Messwerte gut angepasst ist und deren Maximum bei einem Erwartungswert von µ = liegt. Laut Auswertung s 16 Darunter ist allgemein eine Störgröße mit breitem Frequenzspektrum zu verstehen. 17 Hier wurde die Verteilung der Ratenwerte ab 800/s ausgewertet. 65

70 4 Messungen und Auswertungen ergibt sich für die Rate bei einer Gesamtzahl von 2862 berücksichtigten Ereignissen folgender Erwartungswert µ und Standardabweichung σ: µ = s und σ = 28 1 s. (4.27) Da die Nullrate wesentlich kleiner ist (R U20h,s = 0, 654 ± 0, 003/s) als die Rate des Radiumpräparats, wurde sie nicht berücksichtigt. Allerdings sollte bei solchen hohen Ereignisraten eine Totzeitkorrektur vorgenommen werden. Nach Einberechnung der Totzeit beträgt der wahre Wert der Rate: µ wahr = µ 1 µ τ s. (4.28) Folglich wurden aufgrund der Totzeit des GMZ etwa 10 % der Ereignisse nicht mitgezählt und flossen somit nicht in die Häufigkeitsverteilung ein Absorption von Strahlung Radium ist ein α-strahler, der auch einen geringen γ-anteil besitzt. Radon sowie seine Zerfallsprodukte sind α-, β- und γ-strahlend, senden aber hauptsächlich α- und γ-strahlen aus. Dies soll nach Möglichkeit mit der zweiten Versuchsanordnung, genauer mit der Cassy Lab 2 Software, durch eine Absorptionskurve sichtbar gemacht werden, indem nach jeweils kurzen Messdauern immer mehr Absorbermaterial - hier wurden Druckerpapierblätter verwendet - zwischen das Präparat beziehungsweise die Probe und den GMZ geschoben wird. Zuerst soll allerdings stichpunktartig erklärt werden, welche für diese Messung erforderlichen Einstellungen im Programm ausgewählt werden müssen. Einstellungen im Cassy-Lab-2-Programm für die Absorptionsmessung 1. Cassy-Lab-2-Programm starten. 2. Im geöffneten Cassy-Fenster die GM-Box anklicken und das Cassy-Fenster schließen. 3. Im rechten Einstellungen-Fenster unter Eingang A 1 (GM-Box) Rate R A1 (Doppelklick) auswählen, sodass sich unterhalb des Fensters alle für diese Messung wählbaren Messparameter öffnen. 18 (Bei dieser Messreihe ist die Torzeit von Bedeutung.) 4. Die Torzeit und Messdauer einstellen. Das ist die Zeit, während der Messdaten aufgenommen werden und der Mittelwert der Messwerte in die Tabelle übertragen wird. Der 0 - Button setzt diese wieder auf Null, sodass die Messung 18 Sollte das Fenster mit der Torzeit versehentlich geschlossen werden, so kann es per Mausklick auf das links geöffnete kleinere R A1 -Fenster wieder geöffnet werden. 66

71 4.4 Messungen mit dem zweiten Versuchsaufbau in der Länge der eingestellten Torzeit wieder von neuem startet. Das muss bei der Wahl der Messdauer berücksichtigt werden. 5. Mit F9 oder dem -Symbol in der oberen Symbolleiste kann die Absorptionsmessung gestartet (und bei Bedarf gestoppt) werden. 6. Um die Messwerte kenntlich zu machen, muss unter Diagramm Werteanzeige Werte einblenden gewählt werden. 7. Damit die Messpunkte nicht miteinander verbunden werden, kann unter Diagramm Werteanzeige Verbindungslinie einblenden die Verbindungslinie abgewählt werden. 8. Unter Diagramm Anpassung durchführen freie Anpassung kann vor der Bereichsmarkierung eine beliebige Funktion f(x, A, B, C, D) eingegeben, sinnvolle Startwerte für die Parameter gewählt und die gewünschte Funktion an die Messpunkte angepasst werden. 9. Die für die Funktionskurve berechneten Parameter können der Leiste am unteren Bildschirmrand entnommen werden. 10. Rest wie bei Einstellungen zur Erstellung eines Histogramms ( ). Die Radon-Probe Um eine Probe von Radon sowie seinen Zerfallsprodukten zu erhalten wurde wieder die Filtermethode im Keller des Praktikumsgebäudes angewandt (Dauer: 20 Minuten). Zur Durchführung der Absorptionsmessung wurde die Probe, um mit dieser während der Messung bequemer hantieren zu können, mit Hilfe eines Gummis auf die Unterseite einer Plastikflasche 19 befestigt und möglichst nah vor das GMZ positioniert. Da die Flasche möglicherweise die Untergrundstrahlung und somit die Nullrate 20 beeinflusst, wurde diese zuvor direkt vor das GMZ gelegt und eine einstündige Messung mit Cassy Lab 2 durchgeführt. Innerhalb dieser Messdauer hat das Programm geschafft 3000 einsekündige Messungen durchzuführen. Zur Berechnung der Ereignisrate wurden die Werte aus der Tabelle des Cassy-Lab-2-Programms übernommen und summiert, wobei jedes Ereignis mit seiner Häufigkeit gewichtet wurde. Laut Berechnung wurden in diesen 50 Minuten vom GMZ 1965 (= N F l ) Ereignisse registriert, so dass die Messung folgende Minutenrate R F l,min lieferte: R F l,min = (39,3 ± 0,74) 1 min (4.29) Dabei wurde die Minutenrate durch R F l,min = N F l /50 min ± N F l /50 min berechnet. Demzufolge wird die Nullrate von der vor dem GMZ platzierten Plastikflasche nicht 19 Die bei dieser Messung verwendete Falsche stammt von dm (Drogeriemarktkette). 20 R U20h,min = 39,26 ± 0,18 1 min (Kapitel 4.1) 67

72 4 Messungen und Auswertungen verändert. Für die Absorptionsmessung wurde die Torzeit auf 30 Sekunden eingestellt und eine 20- minütige Messzeit gewählt. Diese Torzeitspanne ist ausreichend lang, um zusätzliches Absorbermaterial zwischen die Probe und das GMZ anzubringen und anschließend die Torzeit auf Null zurück zu setzen, sodass an die vorangegangenen 30 Sekunden Messdauer wieder eine 30-sekündige Messdauer anschließt kann. Als Absorbermaterial wurden Druckerpapierblätter 21, die vorher zur bequemeren Handhabung geviertelt wurden. Die Wahl fiel auf das Druckerpapier, da aus der Theorie bekannt ist, dass α- Strahlen kurzreichweitig sind und bereits von einem Blatt Papier absorbiert werden. Dies soll aus der Auswertung der Messdaten hervorgehen. Nach der Positionierung der Radon-Probe wurde die Messung gestartet. Dabei wurde jeweils 30 Sekunden vom Programm (ohne Blatt dazwischen) gemessen, dann nach der ersten 30-sekündigen Messdauer das erste Blatt angebracht und die Torzeit zurückgesetzt. Anschließend wurde wieder 30 Sekunden lang gemessen, dann ein zusätzliches Blatt angebracht, die Torzeit zurückgesetzt, etc.. Diese Schritte erfolgten solange bis sich insgesamt 11 Druckerpapierblätter als Absorber zwischen der Probe und GMZ befanden. Die Blätteranzahl erschien für die Auswertung als ausreichend, sodass die Messung beendet wurde. Im Bild 4.5 sind die vom Cassy-Lab-2-Programm aufgenommenen Messwerte zu sehen. Auf der y-achse können die Werte für die Rate bezogen auf das Zeitintervall von einer Sekunde abgelesen werden. Diese werden vom Programm als Mittelwert über die Zeit von 30 Sekunden (Torzeit) berechnet und im Schaubild, als kleines Viereck markiert, eingetragen. Auf der x-achse ist die Anzahl der Messungen abzulesen. Dabei entspricht n = 1 der Messung ohne Druckerpapierblatt dazwischen, n = 2 der Messung mit einem Druckerpapierblatt dazwischen, u. s. w. Im Schaubild ist zu erkennen, dass die Werte für die Rate mit jedem dazwischen geschobenen Blatt immer mehr abfallen, wobei zwischen dem ersten Messwert (n = 1) und dem zweiten (n = 2) der größte Sprung zu sehen ist. Da die Abstände zwischen den Messwerten immer kleiner werden und bei den letzten Messwerten asymptotisch gegen eine zur x-achse parallele Gerade zu streben scheinen, wurde unter Diagramm Anpassung durchführen eine freie Anpassung gewählt. Für die Anpassung wurde folgende Funktion f(x, A, B, C) eingetragen: f(x, A, B, C) = A e B (x 1) + C. (4.30) Die Funktion wurde so gewählt, da die Intensitätsabnahme bei einer Absorption von γ-strahlung einer Exponentialfunktion entspricht. Der Parameter C ist als Offset 22 der Funktion gedacht, da die Abstände zwischen den Messwerten immer kleiner werden und asymptotisch gegen eine zur x-achse parallele Gerade (oberhalb der x-achse) zu streben scheinen. Statt x wurde im Argument der Exponentialfunktion (x 1) gewählt, damit die Rate bei x = 1 = n gerade gleich der Summe aus A und B ist und 21 Das hier verwendete Druckerpapier war von der Marke Evolve (Blue Angel accredited) 22 Damit ist die Verschiebung einer Funktion entlang der y-achse gemeint. Hier ist es eine Verschiebung nach oben. 68

73 4.4 Messungen mit dem zweiten Versuchsaufbau Abb. 4.5: Radon-Probe: Auswertung der Messwerte zur Strahlenabsorption mit Cassy Lab 2. somit dem Wert entspricht, wenn sich kein Absorbermaterial zwischen dem GMZ und der Probe befindet. Für die Parameter A, B und C war eine Vorgabe von Startwerten im Programm nicht notwendig. Die rote Kurve in der Abbildung 4.5 entspricht der vom Programm berechneten und an die Messwerte angepassten Funktion nach der Gleichung (4.30). Dabei wurde der erste Wert für die Kurvenanpassung nicht berücksichtigt, da an dem Sprung zwischen dem ersten Messwert (bei keinem Blatt) und dem zweiten Messwert (bei einem Blatt) zu sehen ist, dass die Strahlung einen α-anteil hat, der von dem eingeschobenen Blatt Papier absorbiert wird. Die Berechnung der Parameter ergab: A = 24,692, B = 0,16445, C = 8,3268. (4.31) In der unteren Leiste wird zusätzlich zu den berechneten Parametern noch der Korrelationskoeffizient 23 r angegeben, der in dem Cassy-Lab-2-Programm als Maß für die Güte der Anpassung an die Messwerte angegeben wird [40]. 24 Dabei ist die Anpassung an die Messwerte umso besser, je näher der Korrelationskoeffizient bei eins liegt. Hier liegt dieser bei r = 0,9917, also nahe der Eins. 23 Für den Korrelationskoeffizienten gilt: r 1 24 Der Korrelationskoeffizient wird nur bei der freien Anpassung in der Statuszeile angegeben. 69

74 4 Messungen und Auswertungen Da das Programm keine Standardabweichungen auf die Messwerte angibt und somit keine Fehlerbalken im Diagramm zu sehen sind, wurde zum Vergleich zusätzlich eine Anpassung an dieselben Messwerte mit dem Mathematik-Programm, Scilab 25 durchgeführt. Hierfür wurden die Messwerte aus der Tabelle des Cassy-Lab-2-Programms kopiert und die Standardabweichung auf jeden Messwert berechnet (siehe Tabelle 4.1). Blätteranzahl n Rate R(n) in 1/s Fehler in 1/s ,53 1, ,83 0, ,87 0, ,23 0, ,73 0, ,17 0, ,03 0, ,43 0, ,97 0, ,50 0, ,53 0, ,80 0,65 Tabelle 4.1: Radon-Probe: Messwerte aus dem Cassy-Lab-2-Programm, sowie ihre Standardabweichungen. Da die Tabelle jeweils den Mittelwert für die Rate (R(n) in 1 ; n = 1,..., 12), die s während einer 30-sekündigen Torzeitdauer im Sekundentakt gemessen wurde, enthält, wurden die Standardabweichungen auf diese Mittelwerte wie folgt berechnet: σ = R(n) s 1 30 s R(n)/30 s =. (4.32) 30 s In der Abbildung 4.6 sind die Messwerte mit den jeweiligen Standardabweichungen, die als Fehlerbalken eingetragen sind zu sehen. Hier wurde die Aktivität in Bq ( ˆ= Rate in 1/s im Cassy Lab 2) gegen die Anzahl der Blätter ( ˆ= n im Cassy Lab 2) aufgetragen. Der Verlauf der Messpunkte ist derselbe, nur dass diese um Eins nach links verschoben sind. Das bedeutet, dass die Rate bei m Blättern der Rate bei n = m + 1 entspricht. Für die Anpassung wurde ebenfalls eine Funktion der Form f(x, A, B, C) = A e B (x) + C. (4.33) gewählt. Die an die Messwerte angepasste Funktion ist als blaue Kurve im Bild 4.6 zu sehen. Auch hier wurde der erste Messwert aus den oben genannten Gründen bei 25 Scilab ist ein freies Softwarepaket für die Anwendungen aus der Numerik und wurde als Alternative zu MATLAB entwickelt. 70

75 4.4 Messungen mit dem zweiten Versuchsaufbau Abb. 4.6: Radon-Probe: Auswertung der Messwerte zur Strahlenabsorption mit Scilab. der Kurvenanpassung nicht berücksichtigt. Die Berechnung der Parameter mit Scilab ergab: A = 24,6899, B 0,164466, C = 8, (4.34) Diese Werte unterscheiden sich von denen vom Cassy-Lab-2-Programm berechneten Werten für die Parameter erst ab der vierten Nachkommastelle, sodass die Anpassung, die das Cassy-Lab-2-Programm vorgenommen hat, recht gut mit der des Mathematik-Programms übereinstimmt. Das bedeutet, dass die Wahl der Funktion f(x, A, B, C)) = A e B (x) + C gut war. Die Vermutung, dass α-strahlung bereits von einem kräftigeren Blatt Papier absorbiert wird, wird durch den Sprung der Messwerte nach Einschub des ersten Blattes in den Schaubildern bestätigt. Die in der Theorie vorhergesagte exponentielle Abnahme der Intensität (hier an der Abnahme der Rate zu erkennen) der γ-strahlung ist an der an die Messwerte angepassten Funktion ebenfalls gut erkennbar. Bei beiden Auswertung wurde die Nullrate (R U20h,s = (0,654 ± 0,003) 1 ) nicht von der s gemessenen Rate abgezogen, da selbst bei der niedrigsten gemessenen Rate R(11) = (12,80 ± 0,6) 1 die Nullrate noch innerhalb einer Standardabweichung liegt. Da die s Ereignisrate nur im Zehnerbereich liegt, wurde auch keine Totzeitkorrektur vorge- 71

76 4 Messungen und Auswertungen nommen. Das Radiumpräparat Für die Messung der Absorption der Strahlung, die vom Radiumpräparat ausgeht, wurde dieses möglichst nah an das GMZ gestellt. Die Torzeit wurde auf 30 Sekunden eingestellt und eine 25-minütige Messzeit gewählt. Die Abfolge der Messschritte ist mit den Schritten bei der Absorptionsmessung der Radon-Probe identisch. Die Messung wurde beendet, sobald sich insgesamt 14 Druckerpapierblätter zwischen dem Präparat und dem GMZ befanden. Im Schaubild 4.7 sind die vom Cassy-Lab-2-Programm aufgenommenen Messwerte sowie die an die Werte angepasste Funktion (schwarze Kurve) zu sehen. Abb. 4.7: Radiumpräparat: Auswertung der Messwerte zur Strahlenabsorption mit Cassy Lab 2 Entlang der y-achse können die Werte für die Rate bezogen auf das Zeitintervall von einer Sekunde abgelesen werden, welche von dem Programm wieder als Mittelwert über die Zeit von 30 Sekunden (Torzeit) berechnet wurden und im Schaubild, als kleines Viereck markiert, zu sehen sind. Auf der x-achse kann die Anzahl der Messungen abgelesen werden. Wie bei der Absorptionsmessung der Radon-Probe entspricht n = 1 der Messung ohne Druckerpapierblatt dazwischen, n = 2 der Messung mit einem 72

77 4.4 Messungen mit dem zweiten Versuchsaufbau Druckerpapierblatt dazwischen, etc.. Auch in diesem Schaubild ist zu erkennen, dass die Werte für die Rate mit jedem dazwischen geschobenen Blatt immer mehr abfallen, wobei der erste Messwert (n = 1) und der zweite (n = 2) den größten Abstand voneinander haben. Dieser Sprung rührt von dem α-anteil der Strahlung, sodass der erste Messwert bei der Kurvenanpassung wieder nicht berücksichtigt wurde. Da die Abstände zwischen den Messwerten immer kleiner werden und der Verlauf der Kurve, welche die Messwerte beschreiben, insgesamt immer flacher wird, wurde unter Diagramm Anpassung durchführen freie Anpassung wieder folgende Funktion f(x, A, B, C) gewählt: 26 f(x, A, B, C) = A e B (x 1) + C. (4.35) Statt x wurde im Argument der Exponentialfunktion wieder (x 1) gewählt, damit die Rate bei x = 1 = n gerade gleich der Summe aus A und B ist. D. h. der y-achsenabschnitt der Kurve soll sich an der Stelle x = 1 = n befinden. Für die Parameter A, B und C war eine Vorgabe von Startwerten im Programm nicht notwendig. Die schwarze Kurve in der Abbildung 4.7 entspricht der vom Programm berechneten und an die Messwerte angepassten Funktion nach der Gleichung (4.35). Die Berechnung der Parameter ergab: A = 660,82, B = 0,1856, C = 136,12. (4.36) Der Korrelationskoeffizient, welcher zu r= 0,9996 berechnet wurde, liegt nahe der 1. Das bedeutet, dass die gewählte Funktion eine gute Anpassung an den Verlauf der Messwerte darstellt. Zusätzlich zur von Cassy Lab 2 durchgeführten Anpassung wurde der Verlauf derselben Messwerte wieder mit dem Mathematik-Programm Scilab durch eine Funktion angenähert. Dazu wurden die Messwerte aus der Tabelle des Cassy-Lab-2-Programms übernommen und die Standardabweichung auf jeden Messwert berechnet (siehe Tabelle 4.2). Auch hier enthält die Tabelle jeweils den Mittelwert der Rate (R Mess (n) in 1 s ; n = 1,..., 12), die während einer 30-sekündigen Torzeitdauer im Sekundentakt gemessen wurde, sodass die Standardabweichungen auf diese Mittelwerte wie in Gleichung (4.32) berechnet wurden. Im folgenden Bild 4.8 sind die Messwerte mit den jeweiligen Standardabweichungen, die als Fehlerbalken eingetragen sind zu sehen. Wieder wurde die Aktivität in Bq gegen die Anzahl der Blätter aufgetragen, sodass die Messpunkte um eins nach links verschoben sind (vergleiche Abbildung 4.6 ). Die an die Messwerte angepasste Funktion, für welche wieder die Gleichung (4.35) benutzt wurde, ist als blaue Kurve im Bild 4.6 zu sehen. Die Parameter wurden von Scilab zu A = 660,813, B = 0,185604, C = 136,13. (4.37) berechnet. Die Werte stimmen sehr gut mit den vom Cassy-Lab-2-Programm berechneten Werten für die Parameter überein. Auch bei dieser Messung wird die Vermutung, 26 Die Gründe hierfür wurden bereits bei der Radon -Absorptionsmessung erläutert. Diese waren: 1) Exponentielle Intensitätsabnahme bei einer Absorption von γ-strahlung; 2) Das Streben der Messwerte gegen eine zur x-achse parallelen Gerade. 73

78 4 Messungen und Auswertungen Abb. 4.8: Radiumpräparat: Auswertung der Messwerte zur Strahlenabsorption mit Scilab. dass α-strahlung bereits von einem kräftigeren Blatt Papier absorbiert wird, durch den Sprung der Messwerte nach Einschub des ersten Blattes in den Schaubildern bestätigt. Die exponentiell verlaufende Abnahme ist auch hier an der an die Messwerte angepassten Funktion gut erkennbar. Da die Nullrate (R U20h,s = 0,654 ± 0,003 1 ) im Vergleich zu den gemessenenen Raten s R Mess (n) sehr niedrig ist, wurden diese nicht um den Untergrund korrigiert. Eine Totzeitkorrektur schien dagegen sinnvoll, da die Raten im Bereich von mehreren hundert registrierten Zerfällen pro Sekunde liegen. Diese Korrektur wird von Cassy Lab 2 jedoch nicht vorgenommen, sodass die Messwerte nachträglich berichtigt und mit Scilab ausgewertet werden mussten. Die um die Totzeit berichtigten Raten R wahr (n) können der Tabelle 4.2 entnommen und mit den gemessenen R Mess (n) verglichen werden. Während bei den ersten beiden Raten R Mess (0) und R Mess (1) die tatsächlichen Raten um 5-10 % höher liegen, wird die letzte Rate gerade mal um 2 % berichtigt. Folglich ist der Verlauf der totzeitkorrigierten Messwerte im Vergleich zu den gemessenen Werten etwas in Richtung der y-achse gestreckt, wobei die Streckung umso größer ist, je größer der Wert der Zählrate ist. Den Tabellenwerten für die tatsähliche Rate R wahr sowie Standardabweichung liegt folgende Berechnung zugrunde (vergleiche Kapitel 4.2, 74

79 4.4 Messungen mit dem zweiten Versuchsaufbau Blätter n R Mess (n) in 1/s σ Mess (n) in 1/s R wahr (n) in 1/s σ wahr (n) in 1/s ,73 5, ,03 5, ,65 4,78 736,12 4, ,47 4,46 634,30 4, ,57 4,11 532,49 4, ,42 3,87 470,57 3, ,23 3,66 418,00 3, ,40 3,45 369,57 3, ,18 3,26 329,70 3, ,68 3,04 285,61 3, ,68 2,95 267,66 2, ,52 2,85 249,60 2, ,37 2,73 228,47 2, ,27 2,64 213,74 2, ,80 2,54 197,63 2, ,70 2,47 186,10 2,49 Tabelle 4.2: Radiumpräparat: Messwerte R Mess aus dem Cassy-Lab-2-Programm, sowie ihre Standardabweichungen σ Mess. Und Messwerte R wahr sowie ihre Standardabweichungen σ wahr unter Berücksichtigung der Totzeit Gleichung (4.20)): R wahr = R Mess 1 R Mess s und σ wahr = Rwahr s 30 1 s (4.38) Die eingetragenen Werte sowie die an die Messwerte nach Gleichung (4.35) angepasste Funktion sind in Abbildung 4.9 zu sehen. Die Streckung der Kurve ist in dieser Abbildung nicht gut erkennbar, da die y-achse von Scilab anders skaliert wird. Folglich sind die beiden Kurven in den Abbildungen 4.8 und 4.9 optisch schwer von einander zu unterscheiden, sodass zusätzlich ein Diagramm (Abbildung 4.10) erstellt worden ist, in dem beide Kurven zu sehen sind. 75

80 4 Messungen und Auswertungen Abb. 4.9: Radiumpräparat: Auswertung der um die Totzeit des GMZ korrigierten Messwerte zur Strahlenabsorption mit Scilab. Abb. 4.10: Radiumpräparat: Gegenüberstellung der gemessenen Werte (f1) zu den tatsächlichen Werten (f2). 76

81 4.4 Messungen mit dem zweiten Versuchsaufbau Die Berücksichigung der Totzeit hat eine Veränderung der Parameter zur Folge. Für diese ergab die Berechnung mit Scilab folgende Werte (vergleich Abbildung 4.9): A = 719,624, B = 0,195165, C = 142,692. (4.39) Nach Einberechnung der Totzeit fallen sämtliche Parameterwerte größer aus. Die Streckung der Kurve ist an den Parametern A und B zu erkennen. Am Offset C ist deutlich zu sehen, dass die Werte aufgrund der Berücksichtigung der Totzeit nach oben korrigiert wurden. Radiumpräparat: Absorptionsmessung mit der ersten Versuchsanordnung Ergänzend zur Absorptionsmessung mit Cassy Lab 2 wurde eine Messung zur Absorption der vom Radiumpräparat ausgehenden Strahlung mit dem 1. Versuchaufbau durchgeführt. Das Präparat wurde hierfür wieder möglichst nah am GMZ positioniert. Im Digitalzähler wurde eine Messdauer von 60 Sekunden einprogrammiert. Nach Ablauf dieser Zeit wurden die von dem GMZ registrierten Ereignisse am Zähler abgelesen und in einer Tabelle festgehalten. Anschließend wurde ein Druckerpapierblatt zwischen das Präparat und das GMZ geschoben und eine neue einminütige Messung gestartet. Diese Abfolge hielt an, bis sich Absorptionsmaterial von insgesamt 16 Blätter dazwischen befand. Die Tabelle 4.3 zeigt die mit dieser Anordnung gemessenen sowie die um die Totzeit berichtigten Raten einschließlich ihrer Standardabweichungen. 27 : Dabei wurden die Werte R Mess,min vom Digitalzähler übernommen und die übrigen Werte daraus wie folgt errechnet: R Mess,s = R Mess,min 60 mit σ Mess,s = RMess,min min, (4.40) 60 s R wahr,s = R Mess,s 1 R Mess,s τ mit σ wahr,s = Rwahr,min min. (4.41) 60 s In Abbildung 4.11 sind die bereits korrigierten Werte R wahr,s sowie die an diese Messwerte angenäherte Kurve zu sehen, wobei für die Vorgabe der Funktion wieder dieselbe wie in Gleichung (4.35) gewählt worden ist. Die Berechnung der Parameter aus den um die Totzeit korrigierten Messwerten ergab mit Scilab: A = 779,46, B = 0,171081, C = 132,037. (4.42) Auch bei diesen Messwerten lässt sich die Absorption der α-strahlung an dem Sprung zwischen den ersten beiden Messwerten nach Einschub des ersten Blattes beobachten. Am Verlauf der Messwerte sowie der angepassten Kurve ist zu sehen, dass die Intensität der γ-strahlung exponentiell mit der Absorberdicke abnimmt. Der Vorteil der Absorptionsmessung mit der ersten Versuchsanordnung liegt in der 27 Der Untergrund wurde aufgrund der wesentlich höher liegenden Zählraten nicht berücksichtigt. 77

82 4 Messungen und Auswertungen Blätter R Mess,min (1/min) R Mess,s (1/s) σ Mess,s (1/s) R wahr,s (1/s) σ wahr,s (1/s) ,03 4, ,22 4, ,63 3,51 799,87 3, ,87 3,24 671,07 3, ,17 3,13 626,05 3, ,35 2,78 486,96 2, ,63 2,69 454,38 2, ,30 2,56 408,32 2, ,97 2,46 375,56 2, ,35 2,37 350,20 2, ,21 302,02 2, ,87 2,14 283,69 2, ,13 2,03 253,40 2, ,80 1,93 227,88 1, ,58 1,86 213,03 1, ,43 1,82 203,49 1, ,02 1,76 188,50 1, ,15 1,69 175,17 1,71 Tabelle 4.3: Radiumpräparat: Messwerte R Mess sowie ihre Standardabweichungen σ Mess. Und Messwerte R wahr sowie ihre Standardabweichungen σ wahr unter Berücksichtigung der Totzeit. einfachen Handhabung sowie in der geringen Anzahl der dafür benötigen Geräte. Die Messwerte lassen sich mit einem beliebigen Mathematik-Programm, wie beispielsweise Scilab, in einem Schaubild darstellen und durch eine Funktion annähern. Zudem lässt sich die Totzeitkorrektur direkt an den Messwerten in der Tabelle vornehmen. Der Nachteil ist, dass die Schüler und Studenten den Verlauf der Messwerte nicht sofort vor Augen haben und diesen bereits vorab durch eine Funktion annähern können, wie es in dem 2. Versuchsaufbau der Fall ist. Weiterhin müssen Kenntnisse bezüglich des ausgewählten Programms vorhanden sein oder noch angeeignet werden. Das trifft jedoch auch beim 2. Versuchsaufbau zu, wenn eine Berichtigung der Werte aufgrund der Totzeit des GMZ vorgenommen werden muss. Somit ist die erste Versuchsanordnung eine gute Alternative zur zweiten, falls ein Sensor Cassy, die GM-Box oder die Software für eine Absorptionsmessung nicht zur Verfügung stehen. 78

83 4.5 Zusammenfassung der Ergebnisse Abb. 4.11: Radiumpräparat: Absorptionsmessung mit der ersten Versuchsanordnung unter Berücksichtigung der Totzeit. 4.5 Zusammenfassung der Ergebnisse Die gewählten Proben wurden zunächst auf Radioaktivität und die von ihnen ausgehende zusätzliche Strahlenbelastung für den Menschen untersucht. Die Proben waren: Eine Zimmerwand im 7. Stock des Physikhochhauses, ein Kühlschrankeinlegeboden aus Glas, Zigarettentabak und eine Radon-Probe. Die Untersuchung wurde mit der ersten Versuchsanordnung durchgeführt, da hier lediglich die von den Proben ausgehende Aktivität gemessen und mit der Untergrundstrahlung verglichen wurde. Tatsächlich konnte bei allen vier Proben eine höhere Aktivität verglichen mit der Nullrate nachgewiesen werden. Bis auf die Radon -Probe ist die nachgewiesene Mehraktivität der Proben für den Menschen unbedenklich. Die gemessene Ereignisrate der Radon-Probe hingegen betrug etwa das achtfache der Nullrate im Keller des Physikhochhauses und etwa das 24-fache im Keller des Praktikumsgebäudes, sodass es plausibel erscheint, dass die Inhalation von Radon und seinen Zerfallsprodukten den größten Anteil an der natürlichen Strahlenexposition des Menschen hat und dass der Aufenthalt in schlecht belüfteten Räumen zu einer wesentlich höheren Strahlenbelastung führt. Um etwas in das Gebiet der Statistischen Streuung einzutauchen, wurden die vom GMZ registrierten Zählraten des Untergrunds, der Radon-Probe und eines Radiumpräparats mit dem zweiten Versuchsaufbau im Cassy-Lab-2-Programm eingetragen und ausgewer- 79

84 4 Messungen und Auswertungen tet. Dabei war gut zu erkennen, dass die Zählraten des Untergrunds und der Radon- Probe poissonverteilt und die Zählraten der Radiumprobe gaußverteilt waren. Wobei die Zählratenverteilung der Radon-Probe bereits bei den gemessenen Raten sehr einer Gaußverteilung ähnelten, die aus einer Poissonverteilung hervorgeht. Die letzten Messreihen, bei denen es sich ausschließlich um Absorptionsmessungen handelte, wurden mit dem zweiten Versuchsaufbau durchgeführt. Am Verlauf der Messwerte und deren Auswertung mit Cassy Lab 2 sowie dem Mathematik-Programm Scilab war das in der Theorie vorhergesagte Absorptionsverhalten von α- und γ-strahlung gut erkennbar. Ergänzend zu den Absorptionsmessungen mit dem zweiten Versuchsaufbau wurde eine Absorptionsmessung der vom Radiumpräparat ausgehenden α- und γ-strahlung durchgeführt, die ähnliche Ergebnisse lieferte. Damit stellt die erste Versuchsanordnung für die Absorptionsmessung eine gute Alternative zur zweiten dar. 80

85 5 Die Einbindung in den Schulunterricht Der neue Bildungsplan 2004 vom Ministerium für Kultus, Jugend und Sport Baden- Württemberg trat mit der Umstellung auf das achtjährige Gymnasium im Jahr 2004 in Kraft. Im Unterschied zu den davor geltenden Lehrplänen, die angaben, was gelehrt werden soll, gibt der neue Bildungsplan an, was die Schüler lernen sollen [41]. Mit dem Wort lernen ist in diesem Kontext weniger das Gelernte (fächerbezogen) gemeint, sondern vielmehr die Anforderungen und Ziele, auf die sich die jungen Menschen hin aufgrund von Erfahrungen formen sollen, und die Kompetenzen, welche von den Schülern erworben werden sollen, um als Person und Bürger in ihrer Zeit bestehen zu können. Dabei müssen die Anforderungen, Ziele und der Erwerb der geforderten sowie gewünschten Kompetenzen mit den der Schule zur Verfügung stehenden Mitteln erreichbar sein. 1 Die Naturwissenschaften sind für die Allgemeinbildung und die Persönlichkeitsentwicklung von großer Bedeutung, denn gerade ihre Erkenntnisse prägen das Weltverständnis in zunehmendem Maße. Auch ihre praktische Umsetzung in Medizin und Technik ist für die Lebensweise der Menschen von grundlegender Bedeutung. Naturwissenschaftlicher Unterricht soll das Interesse der Schülerinnen und Schüler an Natur und Technik wecken, fördern und erhalten. Wichtige Erkenntnisse und Entwicklungen der Naturwissenschaften sollen durchschaubar und verständlich werden. Das wiederum bedeutet, dass naturwissenschaftliches Wissen sich nicht in der Kenntnis von Begriffen und reinem Faktenwissen erschöpfen darf. Vielmehr soll der naturwissenschaftliche Unterricht aufgrund des geweckten Interesses die Schüler befähigen, ihr Wissen selbst aufzubauen. Hierfür bilden Projektarbeiten, Schülerexperimente und das Erforschen selbst gefundener Fragestellungen die zentralen Bestandteile des naturwissenschaftlichen Unterrichts. Die in dieser Arbeit vorgestellten Versuche dienen in erster Linie dazu den Unterricht zum Thema Radioaktivität freier gestalten zu können, da auf radioaktive, genehmigungsbedürftige Präparate verzichtet wird. Durch die freiere Gestaltung wiederum sollen die Schüler die Möglichkeit erhalten zu diesem Thema selbstständig Erkenntnisse zu gewinnen, das in der Theorie Erarbeitete in der Praxis nachzuvollziehen und 1 Mehr zu diesem Thema kann bei Bedarf im Bildungsplan unter [41] nachgelesen werden. 81

86 5 Die Einbindung in den Schulunterricht somit ihr Wissen selbst aufzubauen. Im Folgenden soll auf der Grundlage des aktuellen Bildungsplans der Einsatz der Versuche im Physikunterricht diskutiert werden. Einsatz im Physikunterricht An allgemeinbildenden Gymnasien werden zwei Kursstufen für den Physikunterricht angeboten: Der 2-stündige und der 4-stündige Physikkurs. Die Kursarten haben ein gemeinsames Ziel, nämlich die Förderung und Entwicklung grundlegender Kompetenzen als Teil der Allgemeinbildung und als Voraussetzung für Studium und Beruf. Für den 2-stündigen Kurs stehen als inhaltlicher Schwerpunkt die Quantenphysik oder die Astrophysik zur Auswahl. Dieser Kurs strebt vor allem die Beherrschung der wesentlichen Arbeitsmethoden an und fördert darüber hinaus das Interesse am Fach durch Bezüge zur Lebenswelt als auch die Selbstständigkeit durch schülerzentriertes Arbeiten. Der 4-stündige Kurs soll die Beherrschung der Fachmethoden vertiefen. Dieser Kurs zeichnet sich durch einen hohen Grad an Selbstständigkeit der Schüler aus, vor allem beim Experimentieren. Die Kurse unterscheiden sich in ihrem Umfang und Spezialisierungsgrad, dem Abstraktionsniveau und in ihrer Komplexität. Das Thema Kernspaltung, Radioaktivität soll inhaltsmäßig ab Klasse 10 (in beiden Kursarten) unter dem Aspekt Technische Entwicklungen und ihre Folgen behandelt werden. Im Physikbuch Dorn-Bader, ein in Baden-Württemberg weit verbereitetes Lehrbuch für die Sekundarstufe II in Gymnasien, werden im Themenkomplex der Kern- und Teilchenphysik die unterschiedlichen Strahlenarten sowie ihre Wirkungen 2 behandelt. Weiterhin werden in diesem Lehrbuch Exkursionen wie beispielsweise in die Zählstatistik oder zu Apparaturen zum Nachweis ionisierender Strahlung angeboten und mögliche Themen als Vertiefung des Gelernten vorgeschlagen, wie die Absorption von γ-strahlung [4]. Trotz der Unterschiede in der Qualität und der Quantität der Anforderungen der Physikkurse, zielen beide gemäß dem aktuellen Bildungsplan unter anderem auf das Erlangen folgender Kompetenzen in der Oberstufe ab: Anwendung der naturwissenschaftlichen Arbeitsweise: Hypothese, Vorhersage, Überprüfung im Experiment, Bewertung,... Untersuchung der Zusammenhänge zwischen physikalischen Größen. Planung (unter Anleitung), Durchführung, Auswertung, grafische Veranschaulichung und einfache Fehlerbetrachtung von Experimenten. 2 In dem Kapitel Wirkung ionisierender Strahlung werden unter anderem die natürliche Strahlenbelastung des Menschen, biologische Wirkungen, Dosismessgrößen und der Strahlenschutz behandelt. 82

87 Einsatz (unter Anleitung) computerunterstützter Messwerterfassungs- und Auswertungssysteme im Praktikum. Die im Rahmen dieser Arbeit vorgestellten und durchgeführten Messungen und Experimente eignen sich um das theoretisch Gelernte in der Praxis nachzuvollziehen und zu festigen, aber auch um eigene Erkenntnisse zu gewinnen. Außerdem wird der Erwerb der oben genannten Kompetenzen unterstützt. Denn für die Auswahl geeigneter Proben, müssen sich die Schüler unter anderem mit dem Thema natürliche Strahlenbelastung des Menschen befassen, um diese Proben auf erhöhte Radioaktivität (im Vergleich mit der Untergrundstrahlung) prüfen und die Messergebnisse auswerten zu können. Bei der Verwendung des zweiten Versuchsaufbaus für die Messungen zur statistischen Streuung und zur Absorption der γ-strahlung ist ein Verständnis für die Funktionsweise der einzelnen Komponenten notwendig. Dazu können die Vorschläge zu den Exkursionen und Vertiefungen des behandelten Themas des Lehrbuchs Dorn- Bader genutzt werden. Bei der Vorbereitung auf die Versuche, ihrer Planung und Durchführung werden die Schüler mit der naturwissenschaftlichen Arbeitsweise vertraut gemacht. Sie lernen das in der Theorie Vorhergesagte anhand von Experimenten zu überprüfen und die Ergebnisse ihrer Messungen auf ihre Güte hin zu bewerten. Zur Analyse der Messergebnisse ist eine Betrachtung von Fehlern und Fehlerquellen unabkömmlich. Da die Messdaten bei dem zweiten Versuchsaufbau mit dem Cassy- Lab-2 - Programm ausgewertet werden, lernen die Schüler mit computerunterstützten Messwerterfassungs- und Auswertungssystemen zu arbeiten, sodass die Messergebnisse dadurch auch grafisch visualisiert werden können. Die vorgestellten Experimente können einzeln durchgeführt werden. Der pro Versuchsdruchführung benötigte Zeitaufwand ist je nach Versuch unterschiedlich. Während für die Vorbereitung der Absorptionsmessungen, die Durchführung sowie ihre Auswertung eine Unterrichtsstunde ausreicht, sollte für die statistische Streuung von zufälligen Ereignissen und die Überprüfung der Proben auf erhöhte Radioaktivität eine Doppelstunde eingeplant werden. Die Versuche können demnach problemlos in den regulären Physikunterricht aufgenommen werden. Da bei allen Experimenten auf den Einsatz genehmigungspflichtiger Präparate verzichtet werden kann, können die Versuche sowohl von einer Lehrkraft, welche kein Strahlenschutzbeauftragter ist, als Demonstrationsversuche vorgeführt werden, als auch von den Schülern selbst als eigenständiges Experiment. 83

88 5 Die Einbindung in den Schulunterricht 84

89 6 Versuchsanleitung für das Demonstrationspraktikum Experimente sind für einen guten Physikunterricht wichtig, da sich der Unterricht durch diese lebendig und interessant gestalten lässt. Aus diesem Grund wird für Lehramtstudierende des Faches Physik als Hauptfach die erfolgreiche Teilnahme an einem Kurs zur Durchführung von Demonstrationsversuchen im Umfang von 4 Semesterwochenstunden vorgeschrieben. Diese Pflichtveranstaltung bietet den Lehramstudenten die Möglichkeit sich mit verschiedenen Experimenten aus den Bereichen Mechanik, Optik, Akustik, Wärmelehre, Atomphysik und Kern- und Teilchenphysik vertraut zu machen. In diesem Kurs sollen die Studierenden die Bedienung der unterschiedlichen Experimentiergeräte und den methodisch sinnvollen Einsatz von verschiedenen Medien einüben, sowie lernen schulübliche Experimente zu verschiedenen Bereichen der Physik selbstständig aufzubauen und durchzuführen. Die Veranstaltung ist so konzipiert, dass die Stundenten jeden Versuch in Zweiergruppen einmal durchführen, wobei die Durchführung nicht mehr als etwa eine Stunde an Zeit in Anspruch nehmen soll. Zusätzlich zu den Versuchsdurchführungen muss jede Zweiergruppe einen der Versuche den Kursteilnehmern präsentieren, und zwar so, wie er in einer Schulklasse in eine Unterrichtsstunde eingebettet sein könnte. Im Anschluss an die Präsentation findet eine Diskussion der Gruppe über die fachdidaktische Umsetzung des Versuchs statt. Dieser Kurs dient den Studenten bzw. den angehenden Lehrern dazu später im Berufsleben auf die in dieser Pflichtveranstaltung gesammelten Erfahrungen zurückgreifen zu können. In dieser Arbeit werden verschiedene Messreihen zum Thema Radioaktivität durchgeführt und vorgestellt, die nicht alle in der vorgegebenen Zeit von etwa einer Stunde durchgeführt werden können. Aus diesem Grund wurden für das Demonstrationspraktikum lediglich zwei interessante Experimente, eines zur Statistischen Streuung von zufälligen Ereignissen und eines zur Absorption von γ-strahlung, ausgesucht. Die Durchführung dieser beiden Messreihen sollte höchstens 70 Minuten in Anspruch (inkl. Vorbereitung und Auswertung) nehmen, sodass sie sich sehr gut für die Erweiterung des Angebots an Experimenten im Bereich der Kernphysik im Demonstrationspraktikum eignen. Die nachfolgende Versuchsanleitung ist ein eigenständiger Teil dieser Examensarbeit und hat demzufolge ein eigenes Titelblatt sowie Literaturverzeichnis. Als Vorlage dienten die bereits vorhandenen Anleitungen, welche von Frau Schmid, Herr Schneider und Frau Patzner im Rahmen ihrer Examensarbeit entworfen wurden [2]. Der 85

90 6 Versuchsanleitung für das Demonstrationspraktikum Versuchsanleitung sind die Aufgabenstellungen, die zusammengefassten theoretischen Grundlagen, der Versuchsaufbau, die Versuchsdurchführung sowie einige Kontrollfragen, die zum weiteren Nachdenken anregen sollen, zu entnehmen. Zu den eigentlichen Versuchen werden Tipps und eine genaue Anleitung zur Bedienung der Cassy-Lab-2- Software gegeben, sodass eine selbständige Durchführung und Auswertung der Versuche ohne Probleme möglich ist. 86

91 Versuch 30 Radioaktivität in der Schule In diesem Versuch werden Experimente zum Thema Radioaktivität vorgestellt, welche im Physikunterricht ohne Einsatz von genehmigungspflichtigen radioaktiven Substanzen durchgeführt werden können. 87

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

Radioaktivität. den 7 Oktober Dr. Emőke Bódis

Radioaktivität. den 7 Oktober Dr. Emőke Bódis Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.

Mehr

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München.

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München. Röntgenstrahlen 1 Wilhelm Konrad Röntgen Foto: Deutsches Museum München. Röntgenröhre von 1896 2 1 ev = 1 Elektronenvolt = Energie die ein Elektron nach Durchlaufen der Potentialdifferenz 1V hat (1.6 10-19

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

Radioaktiver Zerfall des Atomkernes: α-zerfall

Radioaktiver Zerfall des Atomkernes: α-zerfall Radioaktiver Zerfall des Atomkernes: α-zerfall Schwere Atomkerne (hohes Z, hohes N) sind instabil gegen spontanen Zerfall. Die mögliche Emission einzelner Protonen oder einzelner Neutronen ist nicht häufig.

Mehr

Natürliche Radioaktivität

Natürliche Radioaktivität Natürliche Radioaktivität Definition Natürliche Radioaktivität Die Eigenschaft von Atomkernen sich spontan in andere umzuwandeln, wobei Energie in Form von Teilchen oder Strahlung frei wird, nennt man

Mehr

Protokoll. Versuch Nr. XVI: Messen mit ionisierender Strahlung. Gruppe 18:

Protokoll. Versuch Nr. XVI: Messen mit ionisierender Strahlung. Gruppe 18: Protokoll Versuch Nr. XVI: Messen mit ionisierender Strahlung Gruppe 18: Tuncer Canbek 108096245659 Sahin Hatap 108097213237 Ilhami Karatas 108096208063 Valentin Tsiguelnic 108097217641 Versuchsdatum:

Mehr

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung Radioaktiver Zerfall Strahlung Nukliderzeugung Wiederholung: Struktur der Materie Radioaktivität Nuklidkarte, Nuklide Zerfallsarten Strahlung Aktivität Nukliderzeugung Was ist Radioaktivität? Eigenschaft

Mehr

2) Kernstabilität und radioaktive Strahlung (2)

2) Kernstabilität und radioaktive Strahlung (2) 2) Kernstabilität und radioaktive Strahlung (2) Periodensystem der Elemente vs. Nuklidkarte ca. 115 unterschiedliche chemische Elemente Periodensystem der Elemente 7 2) Kernstabilität und radioaktive Strahlung

Mehr

Grundwissen Physik (9. Klasse)

Grundwissen Physik (9. Klasse) Grundwissen Physik (9. Klasse) 1 Elektrodynamik 1.1 Grundbegriffe Elektrische Ladung: Es gibt zwei Arten elektrischer Ladung, die man als positiv bzw. negativ bezeichnet. Kräfte zwischen Ladungen: Gleichnamige

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD 7 Kernphysik 7.1 - Grundversuch Radioaktivität Durchgeführt am 15.11.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger R. Kerkhoff Marius Schirmer E3-463 marius.schirmer@gmx.de

Mehr

umwandlungen Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen,

umwandlungen Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen, Wiederholung der letzten Vorlesungsstunde: Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen, Neutronen, Element, Ordnungszahl Thema heute: Aufbau von Atomkernen, Kern- umwandlungen

Mehr

41. Kerne. 34. Lektion. Kernzerfälle

41. Kerne. 34. Lektion. Kernzerfälle 41. Kerne 34. Lektion Kernzerfälle Lernziel: Stabilität von Kernen ist an das Verhältnis von Protonen zu Neutronen geknüpft. Zu viele oder zu wenige Neutronen führen zum spontanen Zerfall. Begriffe Stabilität

Mehr

9. Kernphysik 9.1. Zusammensetzung der Atomkerne

9. Kernphysik 9.1. Zusammensetzung der Atomkerne Prof. Dieter Suter Physik B2 SS 01 9. Kernphysik 9.1. Zusammensetzung der Atomkerne 9.1.1. Nukelonen Die Atomkerne bestehen aus Protonen und Neutronen. Die Zahl der Nukleonen wird durch die Massenzahl

Mehr

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität R. Brinkmann http://brinkmann-du.de Seite 25..23 -, Beta- und Gammastrahlen Radioaktivität und Strahlenschutz FOS: Kernumwandlungen und Radioaktivität Bestimmte Nuklide haben die Eigenschaft, sich von

Mehr

42. Radioaktivität. 35. Lektion Radioaktivität

42. Radioaktivität. 35. Lektion Radioaktivität 42. Radioaktivität 35. Lektion Radioaktivität Lernziel: Unstabile Kerne zerfallen unter Emission von α, β, oder γ Strahlung Begriffe Begriffe Radioaktiver Zerfall ktivität Natürliche Radioaktivität Künstliche

Mehr

Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die

Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die Atomkerne von Cl bestehen. b) Erkläre, was man unter Isotopen versteht. Gib ein Beispiel an. 3, Cl c) Im Periodensystem wird die

Mehr

(in)stabile Kerne & Radioaktivität

(in)stabile Kerne & Radioaktivität Übersicht (in)stabile Kerne & Radioaktivität Zerfallsgesetz Natürliche und künstliche Radioaktivität Einteilung der natürlichen Radionuklide Zerfallsreihen Zerfallsarten Untersuchung der Strahlungsarten

Mehr

Physik für Mediziner Radioaktivität

Physik für Mediziner  Radioaktivität Physik für Mediziner http://www.mh-hannover.de/physik.html Radioaktivität Peter-Alexander Kovermann Institut für Neurophysiologie Kovermann.peter@mh-hannover.de Der Aufbau von Atomen 0-5 - 0-4 m 0-0 -4

Mehr

Gibt es myonische Atome?

Gibt es myonische Atome? Minitest 7 Das Myon it ist ein Elementarteilchen, t das dem Elektron ähnelt, jedoch jd eine deutlich höhere Masse (105,6 MeV/c 2 statt 0,511 MeV/c 2 ) aufweist. Wie das Elektron ist es mit einer Elementarladung

Mehr

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung Markus Drapalik 14.03.2013 26.03.2013 Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung 1 1 Inhalt Aufbau des Atoms Atomarer Zerfall

Mehr

Einführungsseminar S2 zum Physikalischen Praktikum

Einführungsseminar S2 zum Physikalischen Praktikum Einführungsseminar S2 zum Physikalischen Praktikum 1. Organisatorisches 2. Unterweisung 3. Demo-Versuch Radioaktiver Zerfall 4. Am Schluss: Unterschriften! Praktischer Strahlenschutz Wechselwirkung von

Mehr

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität Theoretische Grundlagen Physikalisches Praktikum Versuch 8: Radioaktivität Radioaktivität spontane Umwandlung instabiler tomkerne natürliche Radioaktivität: langlebige Urnuklide und deren Zerfallsprodukte

Mehr

Energie wird normalerweise in Joule gemessen. Ein Joule (J) einspricht einem Newtonmeter

Energie wird normalerweise in Joule gemessen. Ein Joule (J) einspricht einem Newtonmeter Maße wie Gammastrahlen abgeschwächt werden. Im Gegensatz zu den Gammastrahlen sind die Neutronenstrahlen auch Teilchenstrahlen wie Alpha- und Betastrahlen. Die Reichweiten von Strahlen mit einer Energie

Mehr

3) Natürliche und künstliche Radioaktivität (1)

3) Natürliche und künstliche Radioaktivität (1) 3) Natürliche und künstliche Radioaktivität (1) Kosmische Strahlung - Protonen (93 %) - Alpha-Teilchen (6.3 %) - schwerere Kerne (0. %) - Ohne Zerfallsreihen - 0 radioaktive Nuklide, die primordial auf

Mehr

Begriffe zum Atombau

Begriffe zum Atombau Staatsinstitut für Schulqualität und Bildungsforschung Begriffe zum Atombau Alphastrahlung Atom Atomhülle Atomkern Betastrahlung biologische Strahlenwirkung Elektronen Element Hierbei wird von einem Atomkern

Mehr

Allgemeine Chemie. Der Atombau

Allgemeine Chemie. Der Atombau Allgemeine Chemie Der Atombau Dirk Broßke Berlin, Dezember 2005 1 1. Atombau 1.1. Der Atomare Aufbau der Materie 1.1.1. Der Elementbegriff Materie besteht aus... # 6.Jh.v.Chr. Empedokles: Erde, Wasser,

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Abschwächung von γ-strahlung Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Reichweite von ß-Strahlen

Reichweite von ß-Strahlen Reichweite von ßStrahlen Atommodell: Nach dem Bohrschen Atommodell besteht ein Atom aus dem positiven Atomkern und der negativen Elektronenhülle. Der Durchmesser eines Atoms beträgt etwa 1 1 m, der Durchmesser

Mehr

Abgabetermin

Abgabetermin Aufgaben Serie 1 1 Abgabetermin 20.10.2016 1. Streuexperiment Illustrieren Sie die Streuexperimente von Rutherford. Welche Aussagen über Grösse und Struktur des Kerns lassen sich daraus ziehen? Welches

Mehr

Praktikum Radioaktivität und Dosimetrie Radioaktiver Zerfall

Praktikum Radioaktivität und Dosimetrie Radioaktiver Zerfall Praktikum Radioaktivität und Dosimetrie Radioaktiver Zerfall 1. ufgabenstellung Bestimmen Sie die Halbwertszeit und die Zerfallskonstante von Radon 220. 2. Theoretische Grundlagen Stichworte zur Vorbereitung:

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

Physikalische. Grundlagen. L. Kölling, Fw Minden

Physikalische. Grundlagen. L. Kölling, Fw Minden Physikalische Grundlagen L. Kölling, Fw Minden Radioaktivität kann man weder sehen, hören, fühlen, riechen oder schmecken. Daher muss sie der FA (SB) zumindest verstehen, um im Einsatzfall die erforderlichen

Mehr

Das Magnetfeld. Das elektrische Feld

Das Magnetfeld. Das elektrische Feld Seite 1 von 5 Magnetisches und elektrisches Feld Das Magnetfeld beschreibt Eigenschaften der Umgebung eines Magneten. Auch bewegte Ladungen rufen Magnetfelder hervor. Mithilfe von Feldlinienbilder können

Mehr

Versuch 29. Radioaktivität. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de

Versuch 29. Radioaktivität. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de Physikalisches Praktikum für das Hauptfach Physik Versuch 29 Radioaktivität Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9 Assistent:

Mehr

NR Natürliche Radioaktivität

NR Natürliche Radioaktivität NR Natürliche Radioaktivität Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 rten der Radioaktivität........................... 2 1.2 ktivität und Halbwertszeit.........................

Mehr

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl.

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl. Klausurinformation Zeit: Mittwoch, 3.Februar, 12:00, Dauer :90 Minuten Ort: Veterinärmediziner: Großer Phys. Hörsaal ( = Hörsaal der Vorlesung) Geowissenschaftler u.a.: Raum A140, Hauptgebäude 1. Stock,

Mehr

Die Idee des Atoms geht auf Demokrit von Abdera und Leukipp von Milet zurück. (5. Jhdt. v. Chr.) atomos (griech.) = unteilbar

Die Idee des Atoms geht auf Demokrit von Abdera und Leukipp von Milet zurück. (5. Jhdt. v. Chr.) atomos (griech.) = unteilbar 2Aufbau der Materie Hofer 1 2 Aufbau der Materie 2.1 Die Bestandteile der Materie Chemische Versuche und hoch auflösende Spezialmikroskope zeigen, dass alle Stoffe aus den chemischen Grundstoffen oder

Mehr

V 42 Messung der Reichweite von α und β Strahlen und der Schwächung von γ Strahlen durch Materie

V 42 Messung der Reichweite von α und β Strahlen und der Schwächung von γ Strahlen durch Materie V 42 Messung der Reichweite von α und β Strahlen und der Schwächung von γ Strahlen durch Materie A) Stichworte zur Vorbereitung Aufbau der Atomkerne, instabile Kerne, Isotope, Zerfallsgesetz, Halbwertszeit,

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität ität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 1553K 15.5.3 Kettenreaktion 15. Kernphysik

Mehr

15 Kernphysik Physik für E-Techniker. 15 Kernphysik

15 Kernphysik Physik für E-Techniker. 15 Kernphysik 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion 15. Kernphysik 15.

Mehr

41. Kerne. 33. Lektion Kerne

41. Kerne. 33. Lektion Kerne 41. Kerne 33. Lektion Kerne Lernziel: Kerne bestehen aus Protonen und Neutronen, die mit starken, ladungsunabhängigen und kurzreichweitigen Kräften zusammengehalten werden Begriffe Protonen, Neutronen

Mehr

Messung radioaktiver Strahlung

Messung radioaktiver Strahlung α β γ Messung radioaktiver Strahlung Radioaktive Strahlung misst man mit dem Geiger-Müller- Zählrohr, kurz: Geigerzähler. Nulleffekt: Schwache radioaktive Strahlung, der wir ständig ausgesetzt sind. Nulleffekt

Mehr

Strahlenschutzbelehrung zum Umgang mit radioaktiven Quellen im Physikalischen Fortgeschrittenen-Praktikum. Strahlenart Versuch Energie

Strahlenschutzbelehrung zum Umgang mit radioaktiven Quellen im Physikalischen Fortgeschrittenen-Praktikum. Strahlenart Versuch Energie Strahlenschutzbelehrung zum Umgang mit radioaktiven Quellen im Physikalischen Fortgeschrittenen-Praktikum Strahlenarten im F.-Praktkum Strahlenart Versuch Energie α-teilchen (Energieverlust) E α < 6 MeV

Mehr

Atomphysik NWA Klasse 9

Atomphysik NWA Klasse 9 Atomphysik NWA Klasse 9 Radioaktive Strahlung Strahlung, die im Inneren der Atomkerne entsteht heißt radioaktive Strahlung. Wir unterscheiden zwischen Teilchen- und Wellenstrahlung! Strahlung in der Natur

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Radioaktivität im Alltag - Messungen mit dem Geiger-Müller- Zählrohr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Radioaktivität im Alltag - Messungen mit dem Geiger-Müller- Zählrohr Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Radioaktivität im Alltag - Messungen mit dem Geiger-Müller- Zählrohr Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Radioaktivität Haller/ Hannover-Kolleg 1

Radioaktivität Haller/ Hannover-Kolleg 1 Radioaktivität 17.09.2007 Haller/ Hannover-Kolleg 1 Radioaktivität 17.09.2007 Haller/ Hannover-Kolleg 2 Radioaktivität 1. Was verstehe ich darunter? 2. Welche Wirkungen hat die Radioaktivität? 3. Muss

Mehr

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick)

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick) Masse etwa 1 u = 1.6605e-27 kg = 931.5 MeV/c^2 Neutron (Entdeckung 1932 James Chadwick) Kraft Reichweite (cm) Stärke bei 10 13 cm im Vergleich zu starker Kraft Gravitation unendlich 10 38 elektrische Kraft

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne Inhalt 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion Der Atomkern

Mehr

Lernziele zu Radioaktivität 1. Radioaktive Strahlung. Entdeckung der Radioaktivität. Entdeckung der Radioaktivität

Lernziele zu Radioaktivität 1. Radioaktive Strahlung. Entdeckung der Radioaktivität. Entdeckung der Radioaktivität Radioaktive Strahlung Entstehung Nutzen Gefahren du weisst, Lernziele zu Radioaktivität 1 dass Elementarteilchen nur bedingt «elementar» sind. welche unterschiedlichen Arten von radioaktiven Strahlungen

Mehr

A. PHYSIKALISCHE GRUNDLAGEN DER IONISIERENDEN STRAHLUNG. B. Kopka. Labor für Radioisotope der Georg-August-Universität Göttingen

A. PHYSIKALISCHE GRUNDLAGEN DER IONISIERENDEN STRAHLUNG. B. Kopka. Labor für Radioisotope der Georg-August-Universität Göttingen A. PHYSIKALISCHE GRUNDLAGEN DER IONISIERENDEN STRAHLUNG B. Kopka Labor für Radioisotope der Georg-August-Universität Göttingen 1. Aufbau der Materie 1.1. Die Atomhülle 1.2. Der Atomkern 2. Strahlenarten

Mehr

Atombau. Chemie. Zusammenfassungen. Prüfung Mittwoch, 14. Dezember Elektrische Ladung. Elementarteilchen. Kern und Hülle

Atombau. Chemie. Zusammenfassungen. Prüfung Mittwoch, 14. Dezember Elektrische Ladung. Elementarteilchen. Kern und Hülle Chemie Atombau Zusammenfassungen Prüfung Mittwoch, 14. Dezember 2016 Elektrische Ladung Elementarteilchen Kern und Hülle Atomsorten, Nuklide, Isotope Energieniveaus und Schalenmodell Steffi Alle saliorel

Mehr

Physikalisches Anfängerpraktikum Universität Hannover Sommersemester 2009 Kais Abdelkhalek - Vitali Müller. Versuch: D10 - Radioaktivität Auswertung

Physikalisches Anfängerpraktikum Universität Hannover Sommersemester 2009 Kais Abdelkhalek - Vitali Müller. Versuch: D10 - Radioaktivität Auswertung Physikalisches Anfängerpraktikum Universität Hannover Sommersemester 2009 Kais Abdelkhalek - Vitali Müller Versuch: D0 - Radioaktivität Auswertung Radioaktivität beschreibt die Eigenschaft von Substanzen

Mehr

Technologie/Informatik Kernaufbau und Kernzerfälle. Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d.

Technologie/Informatik Kernaufbau und Kernzerfälle. Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d. Technologie/Informatik Kernaufbau und Kernzerfälle Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d. Saale Übersicht Kernaufbau Rutherford-Experiment, Nukleonen Schreibweise,

Mehr

37. Lektion Strahlenschutz und Dosimetrie. Reichweite und Abschirmung von radioaktiver Strahlung

37. Lektion Strahlenschutz und Dosimetrie. Reichweite und Abschirmung von radioaktiver Strahlung 37. Lektion Strahlenschutz und Dosimetrie Reichweite und Abschirmung von radioaktiver Strahlung Lernziel: Der beste Schutz vor radioaktiver Strahlung ist Abstand und keine Aufnahme von radioaktiven Stoffen

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #47 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #47 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 007 VL #47 am 0.07.007 Vladimir Dyakonov Kernphysik 1 Zusammensetzung von Kernen Atomkerne bestehen

Mehr

Radioaktivität II. Gamma Absorption. (Lehrer AB) Abstract:

Radioaktivität II. Gamma Absorption. (Lehrer AB) Abstract: Radioaktivität II Gamma Absorption (Lehrer AB) Abstract: Den SchülerInnen soll der Umgang mit radioaktiven Stoffen nähergebracht werden. Im Rahmen dieses Versuches nehmen die SchülerInnen Messwerte eines

Mehr

FOS: Radioaktivität und Strahlenschutz. Chemische Elemente und ihre kleinsten Teilchen

FOS: Radioaktivität und Strahlenschutz. Chemische Elemente und ihre kleinsten Teilchen R. Brinkmann http://brinkmann-du.de Seite 5..03 Chemische Elemente FOS: Radioaktivität und Strahlenschutz Chemische Elemente und ihre kleinsten Teilchen Der Planet Erde besteht aus 9 natürlich vorkommenden

Mehr

ANALYSEN GUTACHTEN BERATUNGEN. aktuelle Kurzinformationen zu

ANALYSEN GUTACHTEN BERATUNGEN. aktuelle Kurzinformationen zu ANALYSEN GUTACHTEN BERATUNGEN aktuelle Kurzinformationen zu Radioaktivität Stand Mai 2011 Institut Kirchhoff Berlin GmbH Radioaktivität Radioaktivität (von lat. radius, Strahl ; Strahlungsaktivität), radioaktiver

Mehr

Atomphysik Klasse 9. Aufgabe: Fülle die freien Felder aus!

Atomphysik Klasse 9. Aufgabe: Fülle die freien Felder aus! 1. Was gibt die Massenzahl A eines Atoms an? Die Zahl der Neutronen im Kern. Die Zahl der Protonen im Kern. Die Summe aus Kernneutronen und Kernprotonen. Die Zahl der Elektronen. Die Summe von Elektronen

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I K20 Name: Halbwertszeit von Rn Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Atommodell führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen.

Atommodell führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen. Atommodell nach Rutherford 1911 führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen. Beobachtung: Fast alle Teilchen fliegen ungestört durch.

Mehr

Kernmodell der Quantenphysik

Kernmodell der Quantenphysik M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis In diesem Abschnitt 1.1 Aufbau 1.2 Starke Wechselwirkungen Aufbau Tröpfchenmodell Atomkerns Wesentliche Eigenschaften von n können im Tröpfchenmodell

Mehr

Grundwissen Atome und radioaktiver Zerfall

Grundwissen Atome und radioaktiver Zerfall Atome, Radioaktivität und radioaktive Abfälle Arbeitsblatt 6 1 Grundwissen Atome und radioaktiver Zerfall Repetition zum Atombau Die Anzahl der... geladenen Protonen bestimmt die chemischen Eigenschaften

Mehr

8.1 Einleitung... 2. 8.2 Aufbau der Atome... 3. 8.3 Radioaktive Elemente und ihre Eigenschaften... 5. 8.4 Radioaktiver Zerfall...

8.1 Einleitung... 2. 8.2 Aufbau der Atome... 3. 8.3 Radioaktive Elemente und ihre Eigenschaften... 5. 8.4 Radioaktiver Zerfall... Grundwissen Physik Lernheft 8 Atom- und Kernphysik Inhaltsverzeichnis: 8.1 Einleitung... 2 8.2 Aufbau der Atome... 3 8.3 Radioaktive Elemente und ihre Eigenschaften... 5 8.4 Radioaktiver Zerfall... 7 8.5

Mehr

Physik am Samstagmorgen 19. November Radioaktivität. Ein unbestechlicher Zeitzeuge. Christiane Rhodius

Physik am Samstagmorgen 19. November Radioaktivität. Ein unbestechlicher Zeitzeuge. Christiane Rhodius Physik am Samstagmorgen 19. November 2005 Radioaktivität Ein unbestechlicher Zeitzeuge Christiane Rhodius Archäochronometrie Warum und wie datieren wir? Ereignisse innerhalb der menschlichen Kulturentwicklung

Mehr

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten R. Brinkmann http://brinkmann-du.de Seite 1 25.11.2013 Radioaktivität und Strahlenschutz FOS: Energie von Strahlungsteilchen und Gammaquanten Energieeinheit Elektronenvolt (ev) Bekannte Energieeinheiten:

Mehr

Als Radioaktivität bezeichnet den spontanen Zerfall von Radionukliden unter Emission ionisierender Strahlung.

Als Radioaktivität bezeichnet den spontanen Zerfall von Radionukliden unter Emission ionisierender Strahlung. Als Radioaktivität bezeichnet den spontanen Zerfall von Radionukliden unter Emission ionisierender Strahlung. 1803 John Dalton, Atomtheorie 1869 D.I. Mendelejev, Periodensystem 1888 H. Hertz, experimenteller

Mehr

Strahlung. Arten und Auswirkungen

Strahlung. Arten und Auswirkungen Strahlung Arten und Auswirkungen Themen Alpha-Strahlung (α) Strahlung Zerfall Entdeckung Verwendung Beta-Strahlung (β) Entstehung Wechselwirkung mit Materie Anwendungen Forschungsgeschichte Gamma-Strahlung

Mehr

Stundenprotokoll vom : Compton Effekt

Stundenprotokoll vom : Compton Effekt Stundenprotokoll vom 9.12.2011: Compton Effekt Zunächst beschäftigten wir uns mit den einzelnen Graphen des Photoeffekts (grün), des Compton-Effekts (gelb) und mit der Paarbildung (blau). Anschließend

Mehr

Endstoffe (Produkte) Aus dem Reaktionsgemisch entweichendes Gas, z. B. 2 Welche Informationen kann man einer Reaktionsgleichung entnehmen?

Endstoffe (Produkte) Aus dem Reaktionsgemisch entweichendes Gas, z. B. 2 Welche Informationen kann man einer Reaktionsgleichung entnehmen? Reaktionsgleichungen Reaktionsgleichungen Blatt 1/5 1 Was ist eine Reaktionsgleichung? Eine Reaktionsgleichung beschreibt die Umwandlung von Stoffen, also einen chemischen Prozeß. Auf der einen Seite steht,

Mehr

Praktikumsprotokoll. vom 25.06.2002. Thema: Radioaktiver Zerfall, radioaktive Strahlung. Tutor: Arne Henning. Gruppe: Sven Siebler Martin Podszus

Praktikumsprotokoll. vom 25.06.2002. Thema: Radioaktiver Zerfall, radioaktive Strahlung. Tutor: Arne Henning. Gruppe: Sven Siebler Martin Podszus Praktikumsprotokoll vom 25.6.22 Thema: Radioaktiver Zerfall, radioaktive Strahlung Tutor: Arne Henning Gruppe: Sven Siebler Martin Podszus Versuch 1: Reichweite von α -Strahlung 1.1 Theorie: Die Reichweite

Mehr

Physikalisches Fortgeschrittenenpraktikum Gamma-Koinzidenzspektroskopie. Vorbereitung

Physikalisches Fortgeschrittenenpraktikum Gamma-Koinzidenzspektroskopie. Vorbereitung Physikalisches Fortgeschrittenenpraktikum Gamma-Koinzidenzspektroskopie Vorbereitung Armin Burgmeier Robert Schittny 1 Grundlagen 1.1 Gammastrahlung Gammastrahlung ist die durchdringendste radioaktive

Mehr

Fortgeschrittenen - Praktikum. Gamma Spektroskopie

Fortgeschrittenen - Praktikum. Gamma Spektroskopie Fortgeschrittenen - Praktikum Gamma Spektroskopie Versuchsleiter: Bernd Zimmermann Autor: Daniel Bruns Gruppe: 10, Donnerstag Daniel Bruns, Simon Berning Versuchsdatum: 14.12.2006 Gamma Spektroskopie;

Mehr

Physikalische Grundlagen ionisierender Strahlung

Physikalische Grundlagen ionisierender Strahlung Physikalische Grundlagen ionisierender Strahlung Bernd Kopka, Labor für Radioisotope an der Universität Göttingen www.radioisotope.de Einfaches Atommodell L-Schale K-Schale Kern Korrekte Schreibweise

Mehr

Versuch 25: Messung ionisierender Strahlung

Versuch 25: Messung ionisierender Strahlung Versuch 25: Messung ionisierender Strahlung Die Abstandsabhängigkeit und der Wirkungsquerschnitt von α- und γ-strahlung aus einem Americium-24-Präparat sollen untersucht werden. In einem zweiten Teil sollen

Mehr

NR - Natürliche Radioaktivität Praktikum Wintersemester 2005/06

NR - Natürliche Radioaktivität Praktikum Wintersemester 2005/06 NR - Natürliche Radioaktivität Praktikum Wintersemester 25/6 Alexander Rembold, Philipp Buchegger, Johannes Märkle Assistent Dr. Torsten Hehl Tübingen, den 7. Dezember 25 Theorie und Grundlagen Halbwertszeit

Mehr

Hauptseminar Quantenmechanisches Tunneln WS 2010/2011. Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall

Hauptseminar Quantenmechanisches Tunneln WS 2010/2011. Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall Hauptseminar Quantenmechanisches Tunneln WS 2010/2011 Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall Torben Kloss, Manuel Heinzmann Gliederung Was ist tunneln? Tunneln durch ein beliebiges

Mehr

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung 43. Strahlenschutz und Dosimetrie 36. Lektion Wechselwirkung und Reichweite von Strahlung Lernziel: Die Wechselwirkung von radioaktiver Strahlung (α,β,γ( α,β,γ) ) ist unterschiedlich. Nur im Fall von α-

Mehr

Natürliche Radioaktivität Lehrerinformation

Natürliche Radioaktivität Lehrerinformation Lehrerinformation 1/7 Arbeitsauftrag Ziel Material Sozialform Die SuS lesen den Informationstext. Als Verständnishilfe verwenden sie gleichzeitig das Arbeitsblatt Leitfragen zum Text. In Partnerarbeit

Mehr

d 10 m Cusanus-Gymnasium Wittlich Das Bohrsche Atomodell Nils Bohr Atomdurchmesser 10 Kerndurchmesser 14 d 10 m Atom

d 10 m Cusanus-Gymnasium Wittlich Das Bohrsche Atomodell Nils Bohr Atomdurchmesser 10 Kerndurchmesser 14 d 10 m Atom Das Bohrsche Atomodell Nils Bohr 1885-1962 Atomdurchmesser 10 d 10 m Atom Kerndurchmesser 14 http://www.matrixquantenenergie.de d 10 m Kern 14 dkern 10 m 10 datom 10 m Masse und Ladung der Elementarteilchen

Mehr

Arbeitsfragen zur Vorbereitung auf den Quali

Arbeitsfragen zur Vorbereitung auf den Quali Arbeitsfragen zur Vorbereitung auf den Quali Atombau 1 Was bedeutet das Wort Atom? 2 Welche Aussage mache Dalton über die Atome? 3 Was ist der größte Teil eines Atoms? 4 Was sind Moleküle? 5 Durch welchen

Mehr

Physikalische und mathematische Grundlagen zu den Vorlesungen über Kerntechnische Strahlungssensoren im Modul Sensorik Vertiefung

Physikalische und mathematische Grundlagen zu den Vorlesungen über Kerntechnische Strahlungssensoren im Modul Sensorik Vertiefung 1 Physikalische und mathematische Grundlagen zu den Vorlesungen über Kerntechnische Strahlungssensoren im Modul Sensorik Vertiefung von Prof. Dipl.-Phys. Dipl.-Ing. Edmund R. Schießle 16 Kerntechnische

Mehr

11. Kernphysik. [55] Ianus Münze

11. Kernphysik. [55] Ianus Münze 11. Kernphysik Der griechische Gott Ianus ist einer der ältesten römischen Gottheiten. Er gehört zur rein römischen Mythologie, das heißt es gibt in der griechischen Götterwelt keine vergleichbare Gestalt.

Mehr

Atome. Definition: das kleinste Teilchen eines chemischen Elementes, das mit chemischen Verfahren nicht mehr zerlegbar ist.

Atome. Definition: das kleinste Teilchen eines chemischen Elementes, das mit chemischen Verfahren nicht mehr zerlegbar ist. Atome Definition: das kleinste Teilchen eines chemischen Elementes, das mit chemischen Verfahren nicht mehr zerlegbar ist. Das Atom besitzt einen positiv geladene Atomkern und eine negative Elektronenhülle.

Mehr

Polarisation des Lichtes

Polarisation des Lichtes Polarisation des Lichtes Licht = transversal schwingende el.-magn. Welle Polarisationsrichtung: Richtung des el. Feldvektors Polarisationsarten: unpolarisiert: keine Raumrichtung bevorzugt (z.b. Glühbirne)

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 25..203 Oberstufe: se und ausführliche Lösungen zur Klassenarbeit zur Elektrik und Kernphysik se: E Eine Glühlampe 4V/3W (4 Volt, 3 Watt) soll an eine Autobatterie

Mehr

1 Natürliche Radioaktivität

1 Natürliche Radioaktivität 1 NATÜRLICHE RADIOAKTIVITÄT 1 1 Natürliche Radioaktivität 1.1 Entdeckung 1896: Henri BEQUEREL: Versuch zur Fluoreszenz = Emission einer durchdringenden Stahlung bei fluoreszierenden Uran-Verbindungen Eigenschaften:

Mehr

Musterlösung Übung 4

Musterlösung Übung 4 Musterlösung Übung 4 Aufgabe 1: Radon im Keller a) 222 86Rn hat 86 Protonen, 86 Elektronen und 136 Neutronen. Der Kern hat demnach eine gerade Anzahl Protonen und eine gerade Anzahl Neutronen und gehört

Mehr

5. Kernzerfälle und Kernspaltung

5. Kernzerfälle und Kernspaltung 5. Kernzerfälle und Kernspaltung 1. Zerfallsgesetz 2. α Zerfall 3. Kernspaltung 4. ß Zerfall 5. γ Zerfall 1 5.1 Das Zerfallsgesetz 2 Mittlere Lebensdauer und Linienbreite 3 Mehrere Zerfallskanäle 4 Zerfallsketten

Mehr

Basiskenntnistest - Physik

Basiskenntnistest - Physik Basiskenntnistest - Physik 1.) Welche der folgenden Einheiten ist keine Basiseinheit des Internationalen Einheitensystems? a. ) Kilogramm b. ) Sekunde c. ) Kelvin d. ) Volt e. ) Candela 2.) Die Schallgeschwindigkeit

Mehr

Jetzt noch die Strahlung aus der Elektronenhülle. Hüllenstrahlung. Kein Radioaktiver Zerfall. Kapitel 4 1

Jetzt noch die Strahlung aus der Elektronenhülle. Hüllenstrahlung. Kein Radioaktiver Zerfall. Kapitel 4 1 Hüllenstrahlung Inhalt des 4.Kapitels Charakteristische Photonen- und Röntgenstrahlung - Röntgenfluoreszenz Augerelektronen Fluoreszenz- und Augerelektronenausbeute Bremsstrahlung Erzeugung von Röntgenstrahlung

Mehr

FK Experimentalphysik 3, Lösung 4

FK Experimentalphysik 3, Lösung 4 1 Sterne als schwarze Strahler FK Experimentalphysik 3, 4 1 Sterne als schwarze Strahler Betrachten sie folgende Sterne: 1. Einen roten Stern mit einer Oberflächentemperatur von 3000 K 2. einen gelben

Mehr

Der radioaktive Zerfall ist ein zufälliger und nicht deterministischer Prozess. Im Mittel gehorcht er folgendem Gesetz:

Der radioaktive Zerfall ist ein zufälliger und nicht deterministischer Prozess. Im Mittel gehorcht er folgendem Gesetz: Radioaktiver Zerfall Der radioaktive Zerfall ist ein zufälliger und nicht deterministischer Prozess. Im Mittel gehorcht er folgendem Gesetz: (1) Nt () = Ne λt Aktivität Die Aktivität ist als Anzahl der

Mehr

Lösungen Kapitel 5 zu Arbeits- Übungsblatt 1 und 2: Trennverfahren unter der Lupe / Vorgänge bei der Papierchromatografie

Lösungen Kapitel 5 zu Arbeits- Übungsblatt 1 und 2: Trennverfahren unter der Lupe / Vorgänge bei der Papierchromatografie Lösungen Kapitel 5 zu Arbeits- Übungsblatt 1 und 2: Trennverfahren unter der Lupe / Vorgänge bei der Papierchromatografie 77 Lösungen Kapitel 5 zu Arbeits- Übungsblatt 3-6: Trennverfahren Küche, Aus Steinsalz

Mehr

Grundwissen. Physik. Jahrgangsstufe 9

Grundwissen. Physik. Jahrgangsstufe 9 Grundwissen Physik Jahrgangsstufe 9 Grundwissen Physik Jahrgangsstufe 9 Seite 1 1. Elektrische Felder und Magnetfelder 1.1 Elektrisches Feld Elektrisches Kraftgesetz: Gleichnamige Ladungen stoßen sich

Mehr

Feldbegriff und Feldlinienbilder. Elektrisches Feld. Magnetisches Feld. Kraft auf Ladungsträger im elektrischen Feld

Feldbegriff und Feldlinienbilder. Elektrisches Feld. Magnetisches Feld. Kraft auf Ladungsträger im elektrischen Feld Feldbegriff und Feldlinienbilder Elektrisches Feld Als Feld bezeichnet man den Bereich um einen Körper, in dem ohne Berührung eine Kraft wirkt beim elektrischen Feld wirkt die elektrische Kraft. Ein Feld

Mehr

Kernreaktionen chemisch beschrieben

Kernreaktionen chemisch beschrieben Physics Meets Chemistry Kernreaktionen chemisch beschrieben 1 Kernreaktionen chemisch beschrieben 1. Ausgangslage 2. Ziele 3. Unterrichtsvorschlag mit Übungen Physics Meets Chemistry Kernreaktionen chemisch

Mehr

Welche wichtigen Begriffe gibt es?

Welche wichtigen Begriffe gibt es? Welche wichtigen Begriffe gibt es? Moleküle Beispiel: Kohlendioxid CO 2 bestehen aus Protonen (+) bestehen aus Atomkerne Chemische Elemente bestehen aus Atome bestehen aus Neutronen Beispiele: Kohlenstoff

Mehr

Aufbau und Struktur der Materie. Wellen- und Teilchencharakter

Aufbau und Struktur der Materie. Wellen- und Teilchencharakter Aufbau und Struktur der Materie Atommodelle Energie Wellen- und Teilchencharakter Periodensystem der Elemente Radioaktivität Modell des Atomkerns Nukleonen: Teilchen des Atomkerns = Protonen+Neutronen

Mehr