Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung"

Transkript

1 Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK Physikalische Prozesse, die eier statistische Gesetzmäßigkeit uterworfe sid, lasse sich mit eier Verteilugsfuktio beschreibe. Die Gauß-Verteilug ist bereits aus der Fehlerrechug bekat. I diesem Versuch wird auf de radioaktive Zerfall eigegage. Er gehorcht der Poisso-Statistik. 1. Vorbemerkug Radioaktive Strahlug etsteht bei Zerfall, Verschmelzug oder Umwadlug vo Atomkere. Ma uterscheidet zwische drei verschiedee Sorte vo Strahlug, der α-, β- oder γ-strahlug. α-teilche sid Kere vo 4 He-Atome, sie etstehe hauptsächlich bei radioaktivem Zerfall. Ihre Reichweite ist recht kurz, bedigt durch die gerige Geschwidigkeit der Teilche ud ihre hohe Wechselwirkugsfreudigkeit. β-strahlug etsteht i der Regel durch Umwadlugsprozesse i Kere, bei dee ei Neutro i ei Elektro ud ei Proto zerfällt. Das Elektro wird mit hoher Geschwidigkeit ausgesadt. β-strahlug läßt sich bei weitem icht so gut abschirme wie α-strahlug. γ-teilche sid Photoe (quatisierte elektromagetische Strahlug) mit Eergie, die och weit über dem Rötgespektrum liege. Sie werde bei viele Kerprozesse freigesetzt. γ- Strahlug läßt sich am weitaus schlechteste abschirme. Im Versuch wird ei Radium-Präparat (γ-strahler) sowie die Weltraumhitergrudstrahlug verwedet. Letztere besteht aus α-, β-, γ-strahlug ud adere Elemetarteilche. Die Aweseheit eies Teilches wird mit dem Geiger-Müller-Zählrohr gemesse, welches sei Eidrige mit eiem kurze Stromstoß beatwortet (die Fuktiosweise des Geiger- Müller-Zählrohrs soll im Protokoll beschriebe werde). Dieser Stromstoß läßt sich i eiem Lautsprecher hörbar mache ud/oder ka parallel i eiem elektroische Zählwerk verarbeitet werde (siehe Abschitt 3 Experimetelle Durchführug ).

2 Versuch 1/1 POISSON STATISTIK Blatt 2 2. Theorie der Poisso - Statistik Das Auftreffe des eizele ioisierede Teilches auf das Zählrohr ist ei Ereigis vo rei zufälliger, statistischer Natur. Um daraus zu quatitative Aussage über diese physikalische Prozeß zu komme, müsse wir folgedermaße vorgehe: Wir zähle zu wiederholte Male, uter kostat gehaltee äußere Bediguge, über bestimmte Zeititervalle T die Zählstöße. Dabei stelle wir Schwakuge fest. Durch Wiederholug der Messug versuche wir eie Verteilugsfuktio (i diesem Fall die Poisso-Verteilug) für diese statistische Prozeß zu fide. Die Poisso-Verteilug lautet (Ableitug siehe Ahag): (,, ) P T = e (1).! Sie gibt a, wie groß die Wahrscheilichkeit ist, Teilche i der Zeit T zu zähle, we der Erwartugswert µ ist (siehe auch Fehlerrechug). Es ist leicht zu beweise, daß die Summe ach über alle Wahrscheilichkeite (1) gleich eis ist. Tatsächlich habe wir:! x Dabei habe wir die Defiitio der e-fuktio: e = x! beutzt. P(, T, ) = e = e e = 1 (2). Weiterhi erhalte wir für de Mittelwert defiitiosgemäß: = P = e = e ( ) = (3).! ( 1)! Der Erwartugswert µ ist also gleich dem Mittelwert. 2 2 Für ede Verteilug gilt (siehe Fehlerrechug): σ = (4). Im Falle der Poisso-Verteilug ist: 2 1 ( 1) 1 ( ) +! ( 2 )! ( 1)! + = P = e = e + = Da = ist, wird σ ach (4): σ = σ = (5).

3 Versuch 1/1 POISSON STATISTIK Blatt 3 Die Poisso-Verteilug hägt also ur vo eiem Parameter µ ab. Die Poissosche Formel der Dichteverteilug gilt auch für icht gazzahliges, das wir mit x bezeiche wolle, i der Form (, ) P x x = e (6), Γ + ( x 1) wobei Γ(x + 1) die Gammafuktio ist, für die bei x = (x gazzahlig) gilt: Γ ( + 1) =!. Aus der Summe über diskrete Wahrscheilichkeite wird da ei Itegral z.b.: ( ) ( ) =. = P x = xp x dx = 0 0 I Figur 1 sid drei typische Poissoverteiluge zu sehe. Für kleie µ (µ 1) ist die Poisso-Verteilug stark asymmetrisch. Das Argumet x max vo P max ist dabei immer kleier als µ. Bei Kurve 1 i Figur 1 z.b. ist x max = 0 ud µ = 0,2. Die Poisso-Verteilug geht für große µ, wie sich zeige läßt, i eie bestimmte Gauß- Verteilug mit ach (5) vorgegebeem σ über (siehe Kurve 3): lim P poiss 1 ( ) 2 2 = e (7). 2π Figur 1

4 Versuch 1/1 POISSON STATISTIK Blatt 4 Die Wahrscheilichkeit, bei der Poisso-Verteilug eie x-wert ierhalb der Stadardabweichug σ = des Mittelwertes µ zu fide, läßt sich über W + σ ( σ, ) P( x, ) = dx σ (8) bereche. ( ) ( ) ( ) ± σ bei W, σ = 0, 67 Sie liegt für das Itervall ± 2σ bei W, σ = 0,95 (8 ). ± 3σ bei W, σ = 0,997 Figur 2 Im Experimet werde allerdigs diskrete Teilche gezählt, wir müsse zu dere statistischer Beschreibug wieder vo kotiuierliche Parameter zum diskrete übergehe. Die Poisso-Verteilug für diskretes et ma auch Biomialverteilug.

5 Versuch 1/1 POISSON STATISTIK Blatt 5 3. Experimetelle Durchführug I (A4) des Ahags ist N/t die i der Zeiteiheit t ausgesadte Teilchezahl, die charakteristisch für das Präparat ist. Bei gegebeem Präparat ka daach µ durch Veräderug vo T variiert werde. Techische Ausrüstug der Apparatur Ker der Apparatur ist ei etwa figergroßes Geiger-Müller-Zählrohr, das i eiem Bleimatel mit abehmbarer Glocke eigebaut ist. Die aus dem Weltraum kommede Strahlug ist so hart, daß sie vo dem Blei ur zu etwa % abgeschirmt wird. Im like der beide Apparaturgehäuse befidet sich eie Spaugsquelle, ei Verstärker, ei Lautsprecher ud ei Zähler. Die Spaugsquelle liefert die für das Zählrohr ötige Spaug vo 500 V, der Verstärker ermöglicht die Hörbarkeit der Stromstöße im Lautsprecher. Gleichzeitig werde die Impulse dem Zähler zugeführt ud i desse Zifferazeige sichtbar gemacht. Der Lautsprecher ka gesodert ei- ud ausgeschaltet werde. Zur Eistellug der Meßzeit befidet sich rechts am Apparaturgehäuse ei Drehkopf, mit dem sich Zeite vo 1, 5 ud 10 Sekude wähle lasse. Die Azahl der durchzuführede Messuge wird a dem durch Zahräder eistellbare mechaische Zählwerk festgelegt. Es sid maximal 999 Messuge möglich. Durchführug der Messuge Die Apparatur ist aufgrud der zahlreiche Eizelmessuge weitgehed automatisiert. Erforderlich ist lediglich die Vorwahl vo Meßzeit ud Azahl der Messuge. Nach Betätigug des Startkopfes gibt die Apparatur zuächst über de eigebaute Drucker die vorher bestimmte Parameter Meßzeit ud Azahl aus. Daraufhi führt sie die erste Messug durch, was durch Vermiderug der im Leuchtdiode- (LED-) Zählwerk agegebee Ziffer um 1 agezeigt wird. Ist die erste Messug beedet, wird die gefudee Stromstoßzahl zur spätere Auswertug gespeichert; gleichzeitig wird sie im Zähler für eie bestimmte Zeitraum agezeigt ( Displayzeit ). I diesem Fall leuchtet die rote Sigallampe uter dem Schild Displayzeit auf. Aschließed begit der ächste Meßzyklus. Die letzte Messug erfolgt, we der LED-Zählerstad 000 azeigt. Der gesamte Meßvorgag wird vo der Apparatur mit der Ausgabe der ach Stromstoßhäufigkeit geordete Meßergebisse beedet.

6 Versuch 1/1 POISSON STATISTIK Blatt 6 4. Aufgabe Es solle mehrere Meßreihe durchgeführt werde, die eie Nachprüfug gestatte, i wie weit die Ergebisse vo Zählrohrmessuge der Poissostatistik geüge. Zu eder Apparatur gehört ei Radium-Präparat. Das Präparat wird umittelbar über das Zählrohr gelegt ud die Glocke wieder geschlosse. Es solle folgede Meßreihe durchgeführt werde: 200 Eizelmessuge mit Präparat für T = 1, 5 ud 10 Sekude 200 Eizelmessuge ohe Präparat für T = 10 Sekude. 5. Auswertug Für ede Meßreihe wird das Histogramm (Balkediagramm) der Stromstoßhäufigkeite auf Millimeterpapier gezeichet ud der Mittelwert ud die Stadardabweichug berechet. Im folgede soll uterschiede werde zwische dem Mittelwert, der mit bezeichet wird ud dem Erwartugswert µ, der de Grezwert vo darstellt, we die Azahl der Meßprobe gege Uedlich geht (siehe Fehlerrechug). Darauf wird mit dem so erhaltee, das astelle vo µ i der Formel (1) eigesetzt wird, mit Hilfe des Rechers die dazu gehörige Poisso-Verteilug berechet, zusätzlich als Kurve i das Histogramm gezeichet ud vergliche. Köe Sie i alle Fälle Poisso-Verteilug feststelle? Es ka festgestellt werde, daß die 10s-Kurve mit Präparat beiahe symmetrisch zum Mittelwert ist. Ihre Mittelwert gebe wir i de Recher ud bereche ach (7) die dazugehörige Gauß-Verteilug. Vergleiche wir sie graphisch mit der Poisso-Verteilug, köe wir eie recht gute Agleichug der letztere a die erstere beobachte. (Die etsprechede Gaußkurve ka mit Hilfe des Praktikum-Rechers ermittelt werde). Bestimme Sie mit Hilfe Ihrer Histogramme, wieviel Prozet Ihrer Messuge ierhalb des Bereichs µ ± σ, µ ± 2σ respektive µ ± 3σ falle ud vergleiche Sie das Ergebis mit dem i (8,8 ) berechete. Auf de folgede Seite befidet sich eie Ableitug der Poisso-Verteilug.

7 Versuch 1/1 POISSON STATISTIK Blatt 7 6. Ahag: Ableitug der Poisso-Verteilug () Bekatlich ist die Azahl N t radioaktiver Nuklide i eiem Präparat zur Zeit t: () 0 ( T τ ) l 2 λ t N t = N e = N e (A1), we sie bei t = 0 durch N 0 gegebe war. τ ist die sogeate Halbwertszeit. Ist die Meßzeit N t als kostat asehe. kurz gege die Halbwertszeit, läßt sich ( ) Es werde also laufed Teilche emittiert. Der Eifachheit halber ehme wir a, daß alle Teilche, die das Zählrohr treffe, dort eie Stromstoß verursache, so daß wir i der Lage sid, sie wahrzuehme. Wir wolle ermittel, mit welcher Wahrscheilichkeit wir eie bestimmte Azahl vo Teilche i eiem bestimmte Zeitraum erkee köe. Eie Meßreihe laufe über eie lage Zeit t << τ. Die Messug bestehe aus eier größere Azahl vo Eizelmessuge, die eweils de Zeitraum T << t i Aspruch ehme. Ist diese Azahl hireiched hoch, köe wir eie sivolle mittlere Zahl µ der im Verlauf eier Eizelmessug registrierte Teilche agebe; es gilt ämlich: T = N (A2), t wobei t/t die Zahl der Eizelmessuge währed der Gesamtzeit t ist. Die Zählapparatur besitzt u ihrerseits ei begreztes Auflösugsvermöge; d.h., es existiert eie Zeitspae δt, i der höchstes ei Teilche registriert werde ka. Auf der Zeitachse stelle sich die eizele Itervalle also folgedermaße dar: 0 0 T 2T 3T 4T (t/t) T = t δt Us iteressiert daher zur Agabe eier Wahrscheilichkeitsverteilug der Zählrohrmessug die Elemetarwahrscheilichkeit δp, mit der ierhalb δt ei Teilche gezählt wird ud die Wahrscheilichkeit (1 - δp) mit der keies wahrgeomme wird. We der Zeitraum T der Eizelmessug, i dem a durchschittlich µ Teilche erkat werde, aus Itervalle δt besteht, T = δt, ergibt sich für δp: δ p = ( δ p << 1) (A3). Ersetze wir durch T/δt, liefert (A3): δ p = δ t T (A3a); ud mit (A2): N δ p = δt = αδt t (A3b). α hägt ur vo der Strahlugsquelle ab ud ist Kehrwert eier Zeit; im Mittel wird i dem Zeitraum Δ t = 1 α = T ei Teilche gesehe.

8 Versuch 1/1 POISSON STATISTIK Blatt 8 Ei umerisches Beispiel soll das Verhältis der Größe zueiader verdeutliche: Die Gesamtzeit t betrage 3600 s, die Dauer eier Eizelmessug T = 10 s. Mit δt = 10-4 s ud eier Gesamtzahl N = 1800 a registrierte Teilche folgt für die mittlere Teilchezahl µ: N = T = 5 (A4), t für die Azahl der Zeititervalle δt i T: T 5 = = 10 δ t ud für α resp. δp: N δ p 1 5 α = = = = 0,5, δ p = 5 10 << 1. t T δ t s Zuächst betrachte wir ur ei Itervall δt. Die Wahrscheilichkeit, i diesem Zeitelemet ei Teilche zu sehe, ist δp, ud die Wahrscheilichkeit, kei Teilche zu sehe, ist (1-δp). Bei zwei Itervalle δt habe wir folgede kombiierte Wahrscheilichkeite: i beide e ei Teilche zu sehe ( ) 2 δ pδ p = δ p i beide ei Teilche zu sehe 2 2δ p ( 1 δ p) = δ p( 1 p) 1 δ. Betrachte wir u das gaze T-Itervall mit seie Elemetaritervalle δt ud frage ach der Wahrscheilichkeit P(,T,µ), daß im gesamte Itervall T, = 1, 2, 3,... Teilche gezählt werde, so erhalte wir für die Wahrscheilichkeit, Null Teilche zu zähle: P 0, T, = 1 δ p = 1 δ p = 1 (A5) ist mit großem vo der Form Wir köe also schreibe: ( ) ( ) ( ) ( ) (A5). i= 1 ( x ) lim 1 = ( 0,, ) x e P T = e (A6). Weiterhi ist 1 1 P( 1, T, ) = δ p ( 1 δ p) = δ p( 1 δ p). 1 i= 1 1 Da >> 1 ist, köe wir - 1 setze. Ersetze wir δp wie i (A5), so erhalte wir: 1 P( 1, T, ) = e = e (A7) 1 1! ud mit erhält ma 2 P( 2, T, ) = e (A8). 2! Daraus erhält ma da durch Verallgemeierug die i (1) eigeführte Verteilug: P(, T, ) = e (A9).!

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

elektr. und magnet. Feld A 7 (1)

elektr. und magnet. Feld A 7 (1) FachHochschule Lausitz Physikalisches Praktikum α- ud β-strahlug im elektr. ud maget. Feld A 7 Name: Matrikel: Datum: Ziel des Versuches Das Verhalte vo α- ud β-strahlug im elektrische ud magetische Feld

Mehr

Teil II Zählstatistik

Teil II Zählstatistik Teil II Zählstatistik. Aufgabestellug. Vergleiche Sie experimetelle Zählverteiluge mit statistische Modelle (POISSON-Verteilug ud Normalverteilug) 2. Theoretische Grudlage Stichworte zur Vorbereitug: Impulszahl,

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

3. Einführung in die Statistik

3. Einführung in die Statistik 3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Fehlerrechnung. 3. Genauigkeit von Meßergebnissen am Beispiel der Längenmessung

Fehlerrechnung. 3. Genauigkeit von Meßergebnissen am Beispiel der Längenmessung 1 Gie 11/000 Fehlerrechug 1. Physikalische Größe: Zahlewert ud Eiheit. Ursache vo Meßfehler 3. Geauigkeit vo Meßergebisse am Beispiel der Lägemessug 4. Messug eier kostate Größe ud Mittelwert 5. Messug

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

Beschreibende Statistik Kenngrößen in der Übersicht (Ac)

Beschreibende Statistik Kenngrößen in der Übersicht (Ac) Beschreibede Statistik Kegröße i der Übersicht (Ac) Im folgede wird die Berechugsweise des TI 83 (sowie vo SPSS, s. ute) verwedet. Diese geht auf eie Festlegug vo Moore ud McCabe (00) zurück. I der Literatur

Mehr

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit - 18 - (Kapitel 3 : Bedigte Wahrscheilichkeite ud Uabhägigkeit) Kapitel 3: Bedigte Wahrscheilichkeite ud Uabhägigkeit Wird bei der Durchführug eies stochastische Experimets bekat, daß ei Ereigis A eigetrete

Mehr

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE Versuch 3/ NEWTONSCHE INTERFERENZRINGE Blatt NEWTONSCHE INTERFERENZRINGE Die Oberfläche vo Lise hat im allgemeie Kugelgestalt. Zur Messug des Krümmugsradius diet das Sphärometer. Bei sehr flacher Krümmug

Mehr

Linsengesetze und optische Instrumente

Linsengesetze und optische Instrumente Lisegesetze ud optische Istrumete Gruppe X Xxxx Xxxxxxxxx Xxxxxxx Xxxxxx Mat.-Nr.: XXXXX Mat.-Nr.: XXXXX XX.XX.XX Theorie Im olgede werde wir eie kurze Überblick über die Fuktio, de Aubau ud die Arte vo

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel.

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel. Uiversität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dr. D. Zimmerma MSc. J. Köller MSc. R. Marczizik FDSA 4 Höhere Mathematik II 30.04.2014 el, kyb, mecha, phys 1 Kovergezkriterie

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch ifo@matheachhilfe.ch 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

Behandlung von Messunsicherheiten (Fehlerrechnung)

Behandlung von Messunsicherheiten (Fehlerrechnung) Behadlug vo Messusicherheite (Fehlerrechug). Ermittlug vo Messusicherheite. Messug ud Messusicherheit Die Messug eier physikalische Größe erfolgt durch de Vergleich dieser Größe mit eier Bezugseiheit ach

Mehr

Löslichkeitsdiagramm. Grundlagen

Löslichkeitsdiagramm. Grundlagen Grudlage Löslichkeitsdiagramm Grudlage Zur etrachtug des Mischugsverhaltes icht vollstädig mischbarer Flüssigkeite, das heißt Flüssigkeite, die sich icht bei jeder Temperatur i alle Megeverhältisse miteiader

Mehr

Analysis ZAHLENFOLGEN Teil 4 : Monotonie

Analysis ZAHLENFOLGEN Teil 4 : Monotonie Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5 Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe

Mehr

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac Die Gasgesetze Die Beziehug zwische olume ud Temeratur (Gesetz vo J.-L. Gay-Lussac ud J. Charles): cost. T oder /T cost. cost.. hägt h vo ud Gasmege ab. Die extraolierte Liie scheidet die Temeratur- skala

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Zur Definition. der wirksamen. Wärmespeicherkapazität

Zur Definition. der wirksamen. Wärmespeicherkapazität Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč, Büro für Bauphysik, Schöberg a Kap, Österreich Zur Defiitio der wirksae Wärespeicherkapazität vo Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč Büro für Bauphysik

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Stichproben im Rechnungswesen, Stichprobeninventur

Stichproben im Rechnungswesen, Stichprobeninventur Stichprobe im Rechugswese, Stichprobeivetur Prof Dr Iree Rößler ud Prof Dr Albrecht Ugerer Duale Hochschule Bade-Württemberg Maheim Im eifachste Fall des Dollar-Uit oder Moetary-Uit Samplig (DUS oder MUS-

Mehr

Kunde. Kontobewegung

Kunde. Kontobewegung Techische Uiversität Müche WS 2003/04, Fakultät für Iformatik Datebaksysteme I Prof. R. Bayer, Ph.D. Lösugsblatt 4 Dipl.-Iform. Michael Bauer Dr. Gabi Höflig 17.11. 2003 Abbildug E/R ach relatioal - Beispiel:

Mehr

Aufgaben zur Übung und Vertiefung

Aufgaben zur Übung und Vertiefung Aufgabe zur Übug ud Vertiefug ARITHMETISCHE ZAHLENFOLGEN Berufliches Gymasium / Uterstufe () Stelle Sie fest, welche der gegebee Folge arithmetisch sid: Bestimme Sie zuächst die erste füf Folgeglieder,

Mehr

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)

Mehr

Praktikum Messtechnik

Praktikum Messtechnik Praktikum Messtechik Fachhochschule Stuttgart, Hochschule der Medie Witersemester 008/009 Versuchsdatum: 05. November 008 Versuch 6: 6/ Biegesteifigkeit (Balkemethode DIN 53 ) 6/ Biegesteifigkeit (Resoazläge-Verfahre

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik ür Iormatiker -- 8 Folge -- 11.10.2015 1 Folge: Deiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reiheolge wichtig,

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

Versuch D3: Energiebilanz einer Verbrennung

Versuch D3: Energiebilanz einer Verbrennung Versuch D: Eergiebilaz eier Verbreug 1. Eiführug ud Grudlage 1.1 Eergiebilaz eier Verbreug Die Eergiebilaz eier Verbreug wird am eispiel eier kleie rekammer utersucht, i welcher die bei der Verbreug vo

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

1 Einführung in die Fehlerrechnung

1 Einführung in die Fehlerrechnung Physik für Biologie ud Zwei-Fächer-Bachelor Chemie Kap.: Eiführug i die Fehlerrechug Eiführug i die Fehlerrechug Tiefemessschiee Abbildug: Messschieber. Theoretische Grudlage Bei jeder physikalische Messug

Mehr

Wallis-Produkt, Gammafunktion und n-dimensionale Kugeln

Wallis-Produkt, Gammafunktion und n-dimensionale Kugeln Wallis-Produkt, Gammafuktio ud -dimesioale Kugel Thomas Peters Thomas Mathe-Seite www.mathe-seite.de 6. Oktober 3 Das Ziel dieses Artikels ist es, Formel für das Volume ud die Oberfläche vo -dimesioale

Mehr

Monte Carlo-Simulation

Monte Carlo-Simulation Mote Carlo-Simulatio Mote Carlo-Methode Der Begriff Mote Carlo-Methode etstad i de 1940er Jahre, als ma im Zusammehag mit dem Bau der Atombombe die Simulatio vo Zufallsprozesse erstmals i größerem Stil

Mehr

6 Grenzwerte von Zahlenfolgen

6 Grenzwerte von Zahlenfolgen 6 Grezwerte vo Zahlefolge Ei zetraler Begriff der Aalysis ist der des Grezwertes. Wir begie mit der Betrachtug vo Grezwerte vo Zahlefolge. 6. Zahlefolge 6.. Grudbegriffe Defiitio 6... Eie Fuktio f : Z

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Der χ 2 Test. Bei Verteilungen Beantwortung der Frage, ob eine gemessene Verteilung Gauß- oder Poisson-verteilt ist oder nicht?

Der χ 2 Test. Bei Verteilungen Beantwortung der Frage, ob eine gemessene Verteilung Gauß- oder Poisson-verteilt ist oder nicht? Der χ Test Es gibt verschiedee Arte vo Sigifikaztests Nebe Sigifikaztests, die sich mit dem Mittelwert beschäftige, gibt es auch Testverfahre für Verteiluge Bei Verteiluge Beatwortug der Frage, ob eie

Mehr

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung Prof. Dr. V. Schmidt WS 200/20 G. Gaiselma, A. Spettl 7.02.20 Lösugsvorschlag Probeklausur zur Elemetare Wahrscheilichkeitsrechug Hiweis: Der Umfag ud Schwierigkeitsgrad dieser Probeklausur muss icht dem

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

7.2 Grundlagen der Wahrscheinlichkeitsrechnung

7.2 Grundlagen der Wahrscheinlichkeitsrechnung 7.2 Grudlage der Wahrscheilichkeitsrechug Ei Ereigis heißt i Bezug auf eie Satz vo Bediguge zufällig, we es bei der Realisierug dieses Satzes eitrete ka, aber icht ubedigt eitrete muss. Def. 7.2.: Ei Experimet

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Praktikum Vorbereitung Fertigungsmesstechnik Statistische Qualitätskontrolle

Praktikum Vorbereitung Fertigungsmesstechnik Statistische Qualitätskontrolle Praktikum Vorbereitug Fertigugsmesstechik Statistische Qualitätskotrolle Bei viele Erzeugisse ist es icht möglich jedes Werkstück zu prüfe, z.b.: bei Massefertigug. Hier ist es aus ökoomische Grüde icht

Mehr

Zufallsvariable. Die Wahrscheinlichkeitsverteilung p (probability function) ist definiert durch: p(x i ) := P (X = x i ),

Zufallsvariable. Die Wahrscheinlichkeitsverteilung p (probability function) ist definiert durch: p(x i ) := P (X = x i ), ETHZ 90-683 Dr. M. Müller Statistische Methode WS 00/0 Zufallsvariable Zusammehag: Wirklichkeit Modell Wirklichkeit Stichprobe Date diskret stetig rel. Häufigkeit Häufigkeitstabelle Stabdiagramm Histogramm

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Uiversität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übuge Aufgabe zu Kapitel 1 (aus: K. Hefft Mathematischer Vorkurs zum Studium der Physik, sowie Ergäzuge) Aufgabe 1.1: SI-Eiheite: a)

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

10 Aussagen mit Quantoren und

10 Aussagen mit Quantoren und 0 Aussage mit Quatore ud 0.6. Eisatz vo (bereits bekater) Eistezaussage Bisher hatte wir Eistezbeweise geführt, idem wir ei passedes Objekt agegebe habe ( Setze... ). Stattdesse ka ma auch auf bereits

Mehr

Tests für beliebige Zufallsvariable

Tests für beliebige Zufallsvariable Kapitel 10 Tests für beliebige Zufallsvariable 10.1 Der Chi-Quadrat-Apassugstest Sei x eie gaz beliebige Zufallsvariable, dere Dichtefuktio icht oder icht geau bekat ist. Beispiel: Es seie z.b. mittels

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Fassug vom 13. Februar 2006 Mathematik für Humabiologe ud Biologe 129 9.1 Stichprobe-Raum 9.1 Stichprobe-Raum Die bisher behadelte Beispiele vo Naturvorgäge oder Experimete

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Empirische Wirtschaftsforschug ud Ökoometrie Dr. Rolad Füss Statistik II: Schließede Statistik SS 2007 6. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

Statistik. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.html

Statistik. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.html Statistik Prof. Dr. K. Melzer kari.melzer@hs-esslige.de http://www.hs-esslige.de/de/mitarbeiter/kari-melzer.html Ihaltsverzeichis 1 Eileitug ud Übersicht 3 2 Dategewiug (kurzer Überblick) 3 2.1 Plaugsphase

Mehr

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern Modrago Formel Herleitug, Azahl Quadrate ud Differeze 01.doc 1 FormelfürdieAzahlmöglicherQuadrateauf*Spielfelder Mit Erläuteruge zur Ableitug der Formel vo Dr. Volker Bagert Berli, 11.03.010 Ihaltsverzeichis

Mehr

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung .3. Prozetuale Häufigkeitsverteilug (HV) Die prozetuale Häufigkeitsverteilug erlaubt de Vergleich vo Auswertuge, dee uterschiedliche Stichprobegröße zugrude liege. Es köe auch uterschiedliche Stichprobegröße

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

Preisblatt. Service. über Netzanschlüsse Erdgas, Trinkwasser, Strom und Fernwärme, Baukostenzuschüsse und sonstige Kosten. Gültig ab 1.

Preisblatt. Service. über Netzanschlüsse Erdgas, Trinkwasser, Strom und Fernwärme, Baukostenzuschüsse und sonstige Kosten. Gültig ab 1. Preisblatt über Netzaschlüsse Erdgas, Trikwasser, Strom ud Ferwärme, Baukostezuschüsse ud sostige Koste Gültig ab 1. Jui 2015 Service Preisblatt Netzaschluss ud sostige Koste zu de Ergäzede Bestimmuge

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

425 Polarisationszustand des Lichtes

425 Polarisationszustand des Lichtes 45 Polarisatioszustad des Lichtes. Aufgabe. Bestimme Sie de Polarisatiosgrad vo Licht ach Durchgag durch eie Glasplattesatz, ud stelle Sie de Zusammehag zwische Polarisatiosgrad ud Azahl der Glasplatte

Mehr

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte. Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste

Mehr

Kapitel 5: Schließende Statistik

Kapitel 5: Schließende Statistik Kapitel 5: Schließede Statistik Statistik, Prof. Dr. Kari Melzer 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

Das kollektive Risikomodell. 12. Mai 2009

Das kollektive Risikomodell. 12. Mai 2009 Kirill Rudik Das kollektive Risikomodell 12. Mai 2009 4.1 Eileitug Wir betrachte i diesem Kapitel die Gesamtforderuge im Laufe eies Jahres. Beim Abschluss eies Versicherugsvertrages weiß der Versicherer

Mehr

Klasse: Platzziffer: Punkte: / Graph zu f

Klasse: Platzziffer: Punkte: / Graph zu f Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25

Mehr

K. Felten: Internet Network infrastucture Fachhochschule Kiel, Fachbereich IuE

K. Felten: Internet Network infrastucture Fachhochschule Kiel, Fachbereich IuE Defiitio ach DIN4004 Als Zuverlässigkeit ( reliability ) gilt die Fähigkeit eier Betrachtugseiheit ierhalb vorgegebeer Greze dejeige durch de Awedugszweck bedigte Aforderuge zu geüge, die a das Verhalte

Mehr

Wörterbuchmethoden und Lempel-Ziv-Codierung

Wörterbuchmethoden und Lempel-Ziv-Codierung Kapitel 3 Wörterbuchmethode ud Lempel-Ziv-Codierug I diesem Abschitt lere wir allgemei Wörterbuchmethode zur Kompressio ud isbesodere die Lempel-Ziv (LZ))-Codierug kee. Wörterbuchmethode sid ei eifaches

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen.

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen. 3. Variazaalyse Die Variazaalyse mit eier quatitative abhägige Variable ud eier oder mehrerer qualitativer uabhägiger Variable wird auch als ANOVA (Aalysis of Variace) bezeichet. Mit eier Variazaalyse

Mehr

Arbeitsblatt 22: Rekursive Reihen Alkoholentzug

Arbeitsblatt 22: Rekursive Reihen Alkoholentzug Arbeitsblatt 22: Reursive Reihe Aloholetzug Erläuteruge ud Aufgabe Zeicheerlärug: [ ] - Drüce die etsprechede Taste des Graphirechers! [ ] S - Drüce erst die Taste [SHIFT] ud da die etsprechede Taste!

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

Physikalisches Anfaengerpraktikum. Beugung und Brechung

Physikalisches Anfaengerpraktikum. Beugung und Brechung Physikalisches Afaegerpraktikum Beugug ud Brechug Ausarbeitug vo Marcel Egelhardt & David Weisgerber (Gruppe 37) Mittwoch, 3. Februar 005 I Utersuchuge am Prismespektroskop 1. Versuch zur Bestimmug des

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

Versicherungstechnik

Versicherungstechnik Operatios Research ud Wirtschaftsiformati Prof. Dr. P. Recht // Dipl.-Math. Rolf Wedt DOOR Versicherugstechi Übugsblatt 3 Abgabe bis zum Diestag, dem 03..205 um 0 Uhr im Kaste 9 Lösugsvorschlag: Vorbereituge

Mehr

Zahlenfolgen. Zahlenfolgen

Zahlenfolgen. Zahlenfolgen Zahlefolge Eie Zahlefolge a besteht aus Zahle a,a,a 3,a 4,a 5,... Die eizele Zahle eier Folge heiße Glieder oder Terme. Beispiele für Zahlefolge sid die atürliche Zahle: 3 4 5 6 7 8 9 0 3 4 5..., die gerade

Mehr

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung MaMaEuSch Maagemet Mathematics for Europea Schools http://www.mathematik.uikl.de/ mamaeusch Grudgesamtheitsaaylse ud Stichprobe. Betrachtuge zur Stichprobefidug Paula Lagares Justo Puerto 1 MaMaEuSch 2

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

3 Elemente der Komplexitätstheorie Definitionen und ein Beispiel Nichtdeterminismus und das P-NP-Problem... 57

3 Elemente der Komplexitätstheorie Definitionen und ein Beispiel Nichtdeterminismus und das P-NP-Problem... 57 Ihaltsverzeichis 1 Berechebarkeit ud Algorithme 7 1.1 Berechebarkeit................................. 7 1.1.1 LOOP/WHILE-Berechebarkeit................... 8 1.1.2 Turig-Maschie...........................

Mehr

2 ISO/BIPM-Leitfaden Guide to the Expression of Uncertainty in Measurement, GUM (2008 überarbeitet, die deutsche Fassung ist [3])

2 ISO/BIPM-Leitfaden Guide to the Expression of Uncertainty in Measurement, GUM (2008 überarbeitet, die deutsche Fassung ist [3]) I- Messusicherheite: Lit.: Prof. Dr. Gerz Wahrscheilichkeitsrechug ud Usicherheitsberechug IO/BIPM-Leitfade Guide to the Epressio of Ucertaity i Measuremet, GUM (008 überarbeitet, die deutsche Fassug ist

Mehr

Grundbegriffe der Differentialrechnung

Grundbegriffe der Differentialrechnung Wirtschaftswisseschaftliches Zetrum Uiversität Basel Mathematik für Ökoome 1 Dr. Thomas Zehrt Grudbegriffe der Differetialrechug Referez: Gauglhofer, M. ud Müller, H.: Mathematik für Ökoome, Bad 1, 17.

Mehr

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier Der atürliche Werkstoff Holz - Statistische Betrachtuge zum uiaxiale Zugversuch am Beispiel vo Furier B. Bellair, A. Dietzel, M. Zimmerma, Prof. Dr.-Ig. H. Raßbach Zusammefassug FH Schmalkalde, 98574 Schmalkalde,

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

6. Grenzwertsätze. 6.1 Tschebyscheffsche Ungleichung

6. Grenzwertsätze. 6.1 Tschebyscheffsche Ungleichung 6. Grezwertsätze 6.1 Tschebyscheffsche Ugleichug Sofer für eie Zufallsvariable X die Verteilug bekat ist, lässt sich die Wahrscheilichkeit dafür bestimme, dass X i eiem bestimmte Itervall liegt. Wie ist

Mehr