Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion"

Transkript

1 Steeo-Rekonstuktion Geometie de Steeo-Rekonstuktion Steeo-Kalibieung Steeo-Rekonstuktion Steeo-Rekonstuktion Kameakalibieung kann dazu vewendet weden, um aus einem Bild Weltkoodinaten zu ekonstuieen, falls eine Lochkamea vewendet wid und alle zu vemessenden Obekte in eine Ebene liegen ode eine telezentische Kamea vewendet wid In beiden Fällen wid zwangsläufig nu die D-Geometie de Obekte bestimmt Zu Rekonstuktion de ditten Dimension wid ein Aufbau mit mindestens zwei Kameas benötigt Die Kameas müssen so angeodnet weden, daß die zu vemessenden Obekte in beiden Bilden sichtba sind Die 3D-Obektkoodinaten können duch Tiangulation von zwei koespondieenden Bildpunkten ekonstuiet weden Geometie de Steeo-Rekonstuktion Geometie eines Aufbaus mit zwei Kameas Kamea O Kamea Basis O C C P Relative Oientieung R, T P Geometie de Steeo-Rekonstuktion Um die Steeo-Rekonstuktion duchfühen zu können, muß die Kameageometie de zwei Kameas bekannt sein Innee Oientieung Äußee Oientieung Es gelten, wie bei einem Bild, folgende Gleichungen, um Punkte im Weltkoodinatensystem in die eweiligen Kameakoodinatensysteme zu tansfomieen: P R P T P Bei Vewendung von homogenen 3D-Koodinaten kann die Scheibweise de Tansfomationen veeinfacht weden ( x, y, z,) T R 0 R w P T w T ( xw, yw, zw,) T P MP c w

2 Geometie de Steeo-Rekonstuktion Es gilt also: P MPw, P M Pw P MM P M P Die stae Abbildung R, T, die duch M gegeben ist, heißt elative Oientieung de beiden Kameas Die elative Oientieung kann auf zwei Aten intepetiet weden Es gilt: P MPw, M M M P M M Pw Die elative Oientieung kann als Tansfomation von Punkten im Kameakoodinatensystem in das Kameakoodinatensystem betachtet weden Dual dazu kann die elative Oientieung als Tansfomation des Kameakoodinatensystems in das Kameakoodinatensystem betachtet weden Beispiel: Kamea ist 0 cm echts von Kamea (Tansfomation des Kameakoodinatensystems ) Auf Punkte im Kameakoodinatensystem muß 0 cm (in x) addiet weden, um sie in Kameakoodinatensystem dazustellen 475 Kalibieung des Steeo-Aufbaus Die äußeen Oientieungen, die notwendig sind, um die elative Oientieung zu bestimmen, weden von de nomalen Kameakalibieung zuückgeliefet Im Pinzip könnte die Geometie des Steeo-Aufbaus duch sepaate Kalibieung de zwei Kameas duchgefüht weden Dabei muß natülich sichegestellt weden, daß die Bilde des Kalibieköpes von beiden Kameas zu selben Zeit aufgenommen weden, d.h. die Bilde müssen den Kalibieköpe eweils in deselben Lage in de Welt in einem Bildpaa zeigen Die elative Oientieung könnte dann aus einem Paa de zuückgeliefeten äußeen Oientieungen beechnet weden ode duch Mittelung alle äußeen Oientieungen 476 Kalibieung des Steeo-Aufbaus Die sepaate Kalibieung ezwingt abe nicht, daß die zwei Kameas duch genau eine stae Abbildung miteinande vebunden sind, da bei de nomalen Kameakalibieung die äußeen Oientieungen in den zusammengehöigen Bilden unabhängig voneinande bestimmt weden Kameakalibieung sollte die Eindeutigkeit de elativen Oientieung ezwingen Dies kann eeicht weden duch Minimieung von l k d( c) m,, π( M, c) m,, π( M, c) min i i i Dabei ist de Paametevekto gegeben duch c ( i, i, e, e,, e ), i e ( f,, s x,, s (,,, t y, x, l, c, t y, x, i, t, c z, y, ), ), e (,,, t i x,, t y,, t z, ) Kalibieung des Steeo-Aufbaus Dabei wid die Konsistenz de elativen Oientieung ezwungen, indem die Tansfomation de elativen Oientieung explizit in die Poektionsgleichungen eingefügt weden Dies geschieht in de Tansfomation vom Weltkoodinatensystem in das Kameakoodinatensystem in de Gleichung von Kamea P M M Die Gleichung von Kamea ist wie bei de nomalen Kameakalibieung P M Die äußee Oientieung wid also elativ zu Kamea beechnet Die andeen Abbildungsgleichungen bleiben unveändet Weitee Voteil: Die Anzahl de Paamete de äußeen Oientieungen (inklusive elative Oientieung) ist nu l statt l

3 P P P P Beispiel fü die Kalibieung Kalibieung aus 5 Steeo-Bildpaaen Anzeige de elativen Oientieung Rotation de Kameas um ca. 40 um die y-achse Kameas schielen nach innen Epipolageometie Zu Rekonstuktion von 3D-Punkten müssen in den zwei Bilden koespondieende Punkte gefunden weden Die Suche nach koespondieenden Punkten muß (glücklicheweise!) nicht im ganzen Bild ausgefüht weden Die Punkte, die mit einem Punkt im esten Bild koespondieen können, liegen auf eine Geaden im zweiten Bild, de sogenannten Epipolageaden Das gilt natülich auch umgekeht fü Punkte im zweiten Bild Sei P ein Punkt im esten Bild Dann spannt P mit den beiden Poektionszenten O und O eine Ebene auf, die sogenannte Epipolaebene Da de ekonstuiete Punkt in de Welt nu in de Epipolaebene liegen kann, muß de koespondieende Punkt im zweiten Bild auf dem Schnitt de Epipolaebene mit de Bildebene des zweiten Bildes liegen, nämlich de Epipolageaden Epipolageometie P De Punkt w kann nu in de Epipolaebene P, O, O liegen, da e auf den Sehstahlen duch die Poektionszenten liegen muß De Punkt kann nu auf de Epipolageaden liegen P Epipolageometie Die Epipolageometie ist symmetisch zwischen den beiden Bilden O O O O 48 48

4 P P Epipolageometie Veschiedene Punkte P und Q haben unteschiedliche Epipolageaden Alle Epipolageaden eines Bildes schneiden sich in einem Punkt, dem Epipol (, E ) E Beispiel fü Epipolageaden Epipolageaden von vie signifikanten Punkten auf dem Aufduck von vie ICs Q w E Q E P P Q Beispiel fü Epipolageaden Beachte: Aufgund de adialen Vezeichnungen sind die Epipolageaden nomaleweise keine Geaden sonden gekümmte Linien Insofen wäe de Name Epipolalinie besse Rekonstuktion von Punktkoodinaten Die 3D-Koodinaten von koespondieenden Punkten können ekonstuiet weden, indem die zugehöigen Sehstahlen miteinande geschnitten weden Die Sehstahlen schneiden sich aufgund von Rundungsfehlen und Fehlen in de Mekmalsextaktion nomaleweise nicht De ekonstuiete Punkt ist de Punkt mit dem küzesten Abstand von beiden Sehstahlen

5 Beispiel fü die Rekonstuktion Manuelle Vogabe von Regionen mit koespondieenden Punkten Extaktion von subpixelgenauen Punktkoodinaten (Vefahen hie nicht nähe eläutet) Rekonstuktion de 3D-Koodinaten de Punkte im Kameakoodinatensystem des linken Bildes Rektifizieung de Steeo-Bilde Die Epipolageaden sind fü veschiedene Punkte unteschiedlich Die Epipolageaden sind im allgemeinen wegen adiale Vezeichnungen nicht einmal Geaden sonden gekümmte Linien Bei automatische Koespondenzsuche muß fü eden zu findenden Punkt eine neue, kompliziete Epipolalinie konstuiet weden Ziel: Möglichst goße Veeinfachung de Konstuktion de Epipolageaden Beobachtung: Falls die Bildebenen paallel zueinande sind, paallel zu Basis sind, denselben Abstand zu Basis haben (gleiche Bennweite) und keine adialen Vezeichnungen vohanden sind, sind die Epipolageaden hoizontal und haben dieselbe y-koodinate Die Epipole liegen dann im Unendlichen Rektifizieung de Steeo-Bilde Epipolageometie bei paallelen Bildebenen mit gleichen Bennweiten Diese Konfiguation kann als epipolae Standadkonfiguation bezeichnet weden E O O P C C P 489 E Rektifizieung de Steeo-Bilde In de epipolaen Standadkonfiguation sind die Epipolageaden besondes einfach Die Suchichtung entspicht auch besondes gut de Abspeicheung von Bilden und de Cacheachitektu modene Rechne ( Effizienzgewinn) Jede Epipolakonfiguation kann in die Standadkonfiguation gebacht weden Dabei weden die Bilde auf neue Bildebenen in Standadkonfiguation epoiziet Um eine identische Stahlengeometie zu ehalten, müssen die Poektionszenten natülich gleich bleiben Die estlichen Kameapaamete müssen angepaßt weden Rotation de äußeen Oientieungen, so daß sie paallel sind und nu eine Veschiebung in x-richtung aufweisen Anpassung de Bennweiten, Hauptpunkte und Skalieungsfaktoen 490

6 Rektifizieung de Steeo-Bilde Tansfomation in Standadkonfiguation ändet die Stahlengeometie nicht Rektifizieung efolgt duch die angedeutete Repoektion Beispiel fü die Rektifizieung Kameapaamete und elative Oientieung vo de Rektifizieung Beachte: unteschiedliche Bennweiten und Vezeichnungen Tanslationsvekto enthält Wete 0 in allen Komponenten Rotation de Bildebenen O O O O C C P C P P C P Beispiel fü die Rektifizieung Kameapaamete und elative Oientieung nach de Rektifizieung Beachte: identische Bennweiten und keine Vezeichnung Tanslationsvekto enthält Wete 0 nu in x-richtung Keine Rotation de Bildebenen Bilde enthalten eine tapezfömige Entzeung Epipolageaden nach de Rektifizieung Epipolageaden von vie signifikanten Punkten auf dem Aufduck von vie ICs nach de Rektifizieung

7 Rekonstuktion von Punkten Manuelle Vogabe von Regionen mit koespondieenden Punkten Extaktion von subpixelgenauen Punktkoodinaten Rekonstuktion de 3D-Koodinaten de Punkte Im ektifizieten Kameakoodinatensystem de linken Kamea Im oiginalen Kameakoodinatensystem de linken Kamea Koespondenzfindung: Dispaität Nach de Tansfomation in die epipolae Standadkonfiguation ist die Suche nach koespondieenden Punkten besondes einfach Es muß lediglich im andeen Bild in deselben Zeile gesucht weden Damit sind die wichtigen Infomationen zweie koespondieende Punkte ihe Spaltenkoodinaten: c,c Eine kuze Übelegung anhand des Stahlensatzes zeigt, daß zu Rekonstuktion de Tiefe (de z-koodinate im ektifizieten Kameasystem) die eigentlichen Spaltenkoodinaten unwichtig sind Das einzig wichtige Mekmal ist die Diffeenz de Spaltenkoodinaten, die sogenannte Dispaität: d c c Die automatische Koespondenzfindung muß also fü eden Punkt in einem Bild (typischeweise im esten Bild) die Dispaität bestimmen Koespondenzfindung Die Koespondenzfindung kann als Template-Matching-Poblem aufgefaßt weden Dazu wid ein Bild als Refeenzbild und das andee Bild als Suchbild vewendet Im Suchbild weden echteckige Gauwetfenste aus dem Refeenzbild gesucht w (, c) w (, c d) c c c d w,c Refeenzbild g, ) Suchbild g, ) ( c w,c+d ( c 497 Epipolageade Koespondenzfindung Als Ähnlichkeitsmaße können dieselben Maße dienen, die beim Template Matching vewendet weden Summe de Gauwetdiffeenzen n n sad (, c, d) g ( i, c ) g ( i, c d) (n ) Effiziente Beechnung i n n Nicht invaiant gegenübe Beleuchtungsändeungen Nomiete Koelation n n g( i, c ) m ( i, c ) ncc(, c, d) (n ) i n n s ( i, c ) Aufwendige Beechnung Invaiant gegenübe Beleuchtungsändeungen g ( i, c d) m ( i, c d) s ( i, c d) 498

8 Koespondenzfindung Beispiel fü Dispaitätsbeechnung Als koespondieende Punkt wid de Punkt mit de Dispaität, die die höchste Ähnlichkeit besitzt, gewählt Da die Dispaität mit dem Abstand inves koespondiet, muß nicht die gesamte Zeile nach koespondieenden Punkten duchsucht weden, sonden nu ein kleine Teil, de vom Abstandsbeeich de Obekte zu Basis abhängt: d d min, d max Um falsche Koespondenzen zu vemeiden, wid typischeweise eine Schwelle auf dem Ähnlichkeitsmaß vewendet Komplexität de Beechnung de Koespondenzen bei naive Beechnung: O ( whln ) (l d max d min ) Hohe Komplexität Faugeas (993): Die Beechnung de Ähnlichkeitsmaße kann ekusiv efolgen, so daß die Laufzeit unabhängig von de Fenstegöße n ist: O (whl ) Zu weiteen Effizienzsteigeung können Bildpyamiden vewendet weden Die Dispaität wid im Bildkoodinatensystem des Refeenzbildes beechnet und zuückgeliefet Wie beim Template-Matching kann die Dispaität subpixelgenau intepoliet weden Dies geschieht hie anhand eine eindimensionalen Funktion (Anpassung eine Paabel entlang de Dispaitäten) Refeenzbild Dispaitätsbild Einfluß de Fenstegöße Vebesseung de Robustheit Die Koespondenzfindung kann nu in den Gebieten funktionieen, in denen genügend Textu vohanden ist Die Maskengöße hat eheblichen Einfluß auf das Egebnis Kleinee Masken fühen zu seh vielen falschen Koespondenzen Gößee Masken fühen zu Wenige Fehlkoespondenzen Bessee Rekonstuktion in Gebieten mit geinge Textu Eine Glättung des Egebnisses Schlechteen Egebnissen an Höhenspüngen Die Robustheit des Egebnisses kann auf mehee Aten vebesset weden Das Egebnis eines Textufiltes kann dazu vewendet weden, schwach textuiete Gebiete auszuschließen Typische Filte: Standadabweichung de Gauwete innehalb des Fenstes Außedem kann übepüft weden, ob de koespondieende Punkt im Suchbild zum selben Punkt im Refeenzbild füht (Matching vom Suchbild in das Refeenzbild) c c d c w,c 3 3 w,c+d Epipolageade

9 Beispiel fü Vebesseung de Robustheit Anwendung de Textuschwelle und de Konsistenzübepüfung Beachte: Konsistenzübepüfung entfent hauptsächlich Punkte an Vedeckungen im Bild Aufgund de Vedeckung können diese Punkte nicht eindeutig zugeodnet weden Beechnung des Abstandes Aus de Dispaität kann leicht de Abstand de Punkte in z-richtung beechnet weden Die Deiecke P P und O O sowie ihe Poektion in die xz- Ebene sind ähnlich z z f bf z b dw b dw dw d psx d p ( cx c ) ( c c d ( cx cx) O O x ) Keine Übepüfung Textuschwelle Konsistenzübepüfung b N f P C C f P c c x c x c Genauigkeit de Rekonstuktion Punkte mit gleiche Dispaität liegen auf Ebenen mit konstantem Abstand zu xy-ebene 3D-Dastellung de Rekonstuktion Ansicht ohne und mit Textue-Mapping Dispaität d: Abstand z: Die Genauigkeit de Egebnisse hängt von de Genauigkeit de Bestimmung de Dispaitäten und de b = 0 cm, f = 8 mm 0.9 b = 0 cm, f = mm b = 0 cm, f = 8 mm Steeo-Geometie ab 0.8 b = 0 cm, f = mm 0.7 Typischeweise kann d 0 Pixel 0.6 eeicht weden Die Genauigkeit de Rekonstuktion ist z z 0. z d w sx d 0 bf bf Genauigkeit [mm] Abstand [m]

10 Vemessung von Luftansaugstutzen Vemessung des Schnittwinkels zweie Ebenen an eine Röhe eines Luftansaugstutzens Steeo-Rekonstuktion Segmentieung des Tiefenbildes zu Auffindung von planaen Regionen Robuste Anpassung von Ebenen an die planaen Regionen Beechnung des Winkels aus den Paameten de Ebenen Zusammenfassung Steeo-Rekonstuktion Wichtige Punkte, die man sich meken sollte Geometie de Steeo-Rekonstuktion, insbesondee die Epipolageometie Kalibieung des Steeo-Aufbaus Rekonstuktion von 3D-Punkten Rektifizieung de Steeo-Bildpaae Pinzip de Dispaität Finden koespondieende Punkte übe Template-Matching Rekonstuktion de Abstände aus de Dispaität

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung -

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung - Einfühung in die Finanzmathematik - Gundlagen de ins- und Rentenechnung - Gliedeung eil I: insechnung - Ökonomische Gundlagen Einfache Vezinsung - Jähliche, einfache Vezinsung - Untejähliche, einfache

Mehr

KOMPONENTENTAUSCH. Elmar Zeller Dipl. Ing (FH), MBA Quality-Engineering

KOMPONENTENTAUSCH. Elmar Zeller Dipl. Ing (FH), MBA Quality-Engineering KOMPONENTENTAUSCH Komponententausch Beim Komponententausch weden nacheinande einzelne Komponenten zweie Einheiten vetauscht und ih Einfluss auf das Qualitätsmekmal untesucht. Ziele und Anwendungsbeeiche:

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= 4 + 0 + s 3 ;,s 0 3 4 a) Duch geeignete Wahl de Paamete und s ehält man

Mehr

Prüfung zum Erwerb der Mittleren Reife in Mathematik, Mecklenburg-Vorpommern Prüfung 2011: Aufgaben

Prüfung zum Erwerb der Mittleren Reife in Mathematik, Mecklenburg-Vorpommern Prüfung 2011: Aufgaben Püfung zum Eweb de Mittleen Reife in Mathematik, Mecklenbug-Vopommen Püfung 2011: Aufgaben Abeitsblatt (Pflichtaufgabe 1) Dieses Abeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwek und Taschenechne

Mehr

Die Hohman-Transferbahn

Die Hohman-Transferbahn Die Hohman-Tansfebahn Wie bingt man einen Satelliten von eine ednahen auf die geostationäe Umlaufbahn? Die Idee: De geingste Enegieaufwand egibt sich, wenn de Satellit den Wechsel de Umlaufbahnen auf eine

Mehr

Teilbereich 5: Exponential Funktionen 1. Grundkursniveau. Hier eine Musteraufgabe mit Lösung Auf CD alles komplett. Datei Nr

Teilbereich 5: Exponential Funktionen 1. Grundkursniveau. Hier eine Musteraufgabe mit Lösung Auf CD alles komplett. Datei Nr Püfungsaufgaben Mündliches Abitu Analysis Teilbeeich 5: Eponential Funktionen Gundkusniveau Hie eine Musteaufgabe mit Lösung Auf CD alles komplett Datei N. 495 Fiedich Buckel Oktobe 003 INTERNETBIBLIOTHEK

Mehr

F63 Gitterenergie von festem Argon

F63 Gitterenergie von festem Argon 1 F63 Gitteenegie von festem Agon 1. Einleitung Die Sublimationsenthalpie von festem Agon kann aus de Dampfduckkuve bestimmt weden. Dazu vewendet man die Clausius-Clapeyon-Gleichung. Wenn außedem noch

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

6 5 6 5 6 6 4 1 4 1 9 3 9 3-5 6 5 6-6 6-1 4 1 4-3 9 3 9 7 7-7 7 - - - Meine Foschemappe zu Name: Beabeitungszeitaum: vom bis zum Augabe 1 Schau di die Augaben genau an und echne sie aus. Finde viele weitee

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

Lichtbrechung 1. Der Verlauf des Strahlenbündels wird in diesem Beispiel mit Hilfe der Vektorrechnung ermittelt.

Lichtbrechung 1. Der Verlauf des Strahlenbündels wird in diesem Beispiel mit Hilfe der Vektorrechnung ermittelt. Lichtbechung Veau eines kegeömigen Stahenbündes in eine Sammeinse Bei de Beechnung von Daten optische Ssteme untescheidet man ogende Veahen: Optikechnen tigonometische Beechnung ü Stahen in de Meidionaebene

Mehr

Rollenrichtprozess und Peripherie

Rollenrichtprozess und Peripherie Rollenichtpozess und Peipheie Macus Paech Die Hestellung von qualitativ hochwetigen Dahtpodukten efodet definiete Eigenschaften des Dahtes, die duch einen Richtvogang eingestellt weden können. Um den Richtpozess

Mehr

Brandenburgische Technische Universität Cottbus. Fakultät für Mathematik, Naturwissenschaften und Informatik Lehrstuhl Grafische Systeme.

Brandenburgische Technische Universität Cottbus. Fakultät für Mathematik, Naturwissenschaften und Informatik Lehrstuhl Grafische Systeme. Bandenbugische Technische Univesität Cottbus Fakultät fü Mathematik, atuwissenschaften und Infomatik Lehstuhl Gafische Systeme Diplomabeit Umsetzung eines vollautomatisieten Objektefassungs- Systems übe

Mehr

Finanzmathematik Kapitalmarkt

Finanzmathematik Kapitalmarkt Finanzmathematik Kapitalmakt Skiptum fü ACI Dealing und Opeations Cetificate und ACI Diploma In Zusammenabeit mit den ACI-Oganisationen Deutschland, Luxemboug, Östeeich und Schweiz Stand: 02. Apil 2010

Mehr

Abstandsbestimmungen

Abstandsbestimmungen Abstandsbestimmungen A) Vektoechnungsmethoden (mit Skalapodukt): ) Abstand eines Punktes P von eine Ebene IE im Raum (eine Geade g in de Ebene ): Anmekung: fü Geaden im Raum funktioniet diese Vektomethode

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Shift-Invarianz, periodische Funktionen, diskreter Logarithmus, hi

Shift-Invarianz, periodische Funktionen, diskreter Logarithmus, hi Shift-Invaianz, peiodische Funktionen, diskete Logaithmus, hidden-subgoup-poblem Infomation und Codieung 2 SS 200 22. Juni 200 Shift-Invaianz de Fouie-Tansfomation f (y) = 2π f (x) e iyx dx Ist (T z f

Mehr

Laborpraktikum Sensorik. Versuch. Füllstandssensoren PM 1

Laborpraktikum Sensorik. Versuch. Füllstandssensoren PM 1 Otto-von-Gueicke-Univesität Magdebug Fakultät fü Elektotechnik und Infomationstechnik Institut fü Miko- und Sensosysteme (IMOS) Labopaktikum Sensoik Vesuch Füllstandssensoen PM 1 Institut fü Miko- und

Mehr

Unverbindliche Musterberechnung für den Wealthmaster Classic Plan von

Unverbindliche Musterberechnung für den Wealthmaster Classic Plan von Unvebindliche Mustebeechnung fü den Wealthmaste Classic Plan von Die anteilsgebundene Lebensvesicheung mit egelmäßige Beitagszahlung bietet Ihnen die pefekte Kombination aus de Sicheheit eine Kapitallebensvesicheung

Mehr

lassen sich die beiden ersten Eigenschaften von (2,4)- Bäume auch mit binären Knoten erreichen?

lassen sich die beiden ersten Eigenschaften von (2,4)- Bäume auch mit binären Knoten erreichen? .7 Rot-Schwaz Schwaz-Bäume (2,4)-Bäume sind ausgeglichen: gleiche Höhe fü alle Blätte Standadopeationen auf Mengen in O(h), d.h. O(log n) unteschiedliche Knoten (, 2 ode Schlüssel) Fage: lassen sich die

Mehr

2 Prinzip der Faser-Chip-Kopplung

2 Prinzip der Faser-Chip-Kopplung Pinzip de Fase-Chip-Kopplung 7 Pinzip de Fase-Chip-Kopplung Dieses Kapitel behandelt den theoetischen Hintegund, de fü das Veständnis de im Rahmen diese Abeit duchgefühten Untesuchungen de Fase-Chip- Kopplung

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen 3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die

Mehr

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Unterlagen Fernstudium - 3. Konsultation 15.12.2007

Unterlagen Fernstudium - 3. Konsultation 15.12.2007 Untelagen Fenstudium - 3. Konsultation 5.2.2007 Inhaltsveeichnis Infomationen u Püfung 2 2 Aufgabe 7. Umstömte Keisylinde mit Auftieb 3 3 Aufgabe 8. Komplexes Potential und Konfome Abbildung 0 Infomationen

Mehr

Der eigentliche Druck

Der eigentliche Druck 147 De eigentliche Duck 5 Kamea: Konica Minolta Maxxum 7D Ist das Bild gut vobeeitet und teten keine Pobleme auf, so ist das Ducken mit den heutigen fü Fine-At geeigneten Tintenducken ein Vegnügen. Leide

Mehr

; 8.0 cm; 0.40. a) ; wenn g = 2f ist, muss auch b = 2f sein.

; 8.0 cm; 0.40. a) ; wenn g = 2f ist, muss auch b = 2f sein. Physik anwenden und vestehen: Lösunen 5.3 Linsen und optische Instumente 4 Oell Füssli Vela AG 5.3 Linsen und optischen Instumente Linsen 4 ; da die ildweite b vekleinet wid und die ennweite konstant ist,

Mehr

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV Beechnung de vohandenen Masse von Biogas in Biogasanlagen zu Püfung de Anwendung de StöfallV 1. Gundlagen Zu Püfung de Anwendbakeit de StöfallV auf Betiebsbeeiche, die Biogasanlagen enthalten, muss das

Mehr

2.12 Dreieckskonstruktionen

2.12 Dreieckskonstruktionen .1 Deieckskonstuktionen 53.1 Deieckskonstuktionen.1.1 B aus a, b und c. Keis um mit Radius b 3. Keis um B mit Radius a 4. Schnittpunkt de Keise ist Bemekung: Es entstehen zwei konguente B..1. B aus α,

Mehr

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen Aufgabenblatt-Spialen Tangentenwinkel.doc 1 Aufgaben zu Bestimmung des Tangentenwinkels von Spialen Gegeben ist die Spiale mit de Gleichung = 0,5 φ, φ im Bogenmaß. (a) Geben Sie die Gleichung fü Winkel

Mehr

Der Lagrange- Formalismus

Der Lagrange- Formalismus Kapitel 8 De Lagange- Fomalismus 8.1 Eule-Lagange-Gleichung In de Quantenmechanik benutzt man oft den Hamilton-Opeato, um ein System zu bescheiben. Es ist abe auch möglich den Lagange- Fomalismus zu vewenden.

Mehr

Flächenberechnungen 2b

Flächenberechnungen 2b Flächenbeechnungen b Teil b: Flächenbeechnungen mit Integal (Fotsetzung) Datei N. 8 Juni Fiedich Buckel Intenatsgymnasium Schloß Togelow Inhalt Datei 8. Rechtecksmethoden. Ein estes goßes Beispiel. Heleitung

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mathematik fü Ingenieue Doppelintegale THE SERVICES Mathematik PROVIDER fü Ingenieue DIE - Doppelintegale Anschauung des Integals ingenieusmäßige Intepetation des bestimmten Integals Das bestimmte Integal

Mehr

Einführung in die Physik I. Wärme 3

Einführung in die Physik I. Wärme 3 Einfühung in die Physik I Wäme 3 O. von de Lühe und U. Landgaf Duckabeit Mechanische Abeit ΔW kann von einem Gas geleistet weden, wenn es sein olumen um Δ gegen einen Duck p ändet. Dies hängt von de At

Mehr

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben Zentale Klausu 2015 Aufbau de Püfungsaufgaben Die Zentale Klausu 2015 wid umfassen: hilfsmittelfeie Aufgaben zu Analysis und Stochastik eine Analysisaufgabe mit einem außemathematischen Kontextbezug eine

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke

Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke Schaltweke Schaltnete und Schaltweke Schaltnete dienen u Becheibung deen, wa innehalb eine Poeotakt abläuft. Die akteit de Poeo mu imme etwa göße ein al die Signallaufeit de Schaltnete. Damit wid ichegetellt,

Mehr

Parameter-Identifikation einer Gleichstrom-Maschine

Parameter-Identifikation einer Gleichstrom-Maschine Paamete-dentifikation eine Gleichtom-Machine uto: Dipl.-ng. ngo öllmecke oteile de Paamete-dentifikationvefahen eduzieung de Zeit- und Kotenaufwand im Püfpoze olltändige Püfung und Chaakteiieung von Elektomotoen

Mehr

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell Begische Univesität Wuppetal FB B Schumpete School of Economics and Management Makoökonomische Theoie und Politik Übung zu Einfühung in die VWL / Makoökonomie Teil 7: Das IS-LM-Modell Thomas Domeatzki

Mehr

Versuch M04 - Auswuchten rotierender Wellen

Versuch M04 - Auswuchten rotierender Wellen FACHHOCHSCHULE OSNABRÜCK Messtechnik Paktikum Vesuch M 04 Fakultät I&I Pof. D. R. Schmidt Labo fü Mechanik und Messtechnik 13.09.2006 Vesuch M04 - Auswuchten otieende Wellen 1 Zusammenfassung 2 1.1 Lenziele

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

Rechnen mit Vektoren im RUN- Menü

Rechnen mit Vektoren im RUN- Menü Kael 09.. CASIO Teach & talk Jügen Appel Einen deidimenionalen Vekto kann man al Matix mit dei Zeilen und eine Spalte auffaen. Daduch kann man mit Vektoen echnen. D.h. konket, man kann Vektoen addieen

Mehr

Grundwissen Mathematik Jahrgangsstufe 9. Bisher bekannte Zahlenmengen: a b = a b. Die üblichen Rechengesetze gelten unverändert.

Grundwissen Mathematik Jahrgangsstufe 9. Bisher bekannte Zahlenmengen: a b = a b. Die üblichen Rechengesetze gelten unverändert. Gundwissen Mathematik Jahgangsstufe I. Reelle Zahlen Eweiteung des Zahlenbeeichs Bishe bekannte Zahlenmengen: Jedes Element a aus N, Z, Q Q ist dastellba duch a= p q mit p Z und q N. Zahlen, die nicht

Mehr

Vom Strahlensatz zum Pythagoras

Vom Strahlensatz zum Pythagoras Vom Stahlensatz zum Pythagoas Maio Spengle 28.05.2008 Zusammenfassung Eine mögliche Unteichtseihe, um die Satzguppe des Pythagoas unte Umgehung de Ähnlichkeitsabbildungen diekt aus den Stahlensätzen hezuleiten.

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) In ein gleichschenklig-echtwinkliges Deieck mit Kathetenlänge 2 weden zwei Quadate so einbeschieben, dass a) beim esten Quadat eine Seite auf de Hypotenuse liegt und b) beim zweiten

Mehr

Bestimmung der massebezogenen Aktivität von Radionukliden

Bestimmung der massebezogenen Aktivität von Radionukliden Bestiung de assebezogenen ktivität von Radionukliden ÄQUIVL/MSSKT Beabeite:. Wiechen H. Rühle K. Vogl ISS 1865-8725 Bestiung de assebezogenen ktivität von Radionukliden ÄQUIVL/MSSKT-01 Die auf die Masse

Mehr

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Übungen zu Kusvolesung Physik II (Elektodynamik) Sommesemeste8 Übungsblatt N. 4 Aufgabe 3: Feldstäke im Innen eines Ladungsinges

Mehr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung

Mehr

Lagebeziehungen zwischen Geraden und Ebenen

Lagebeziehungen zwischen Geraden und Ebenen Lagebeziehungen zwischen Geaden und Ebenen. Lagebeziehungen zwischen Geaden g a Gegeben seien zwei Geaden zu g µ b () Man untesucht zuest die Richtungsvektoen a, b auf lineae Abhängigkeit bzw. Unabhängigkeit

Mehr

Newtons Problem des minimalen Widerstands

Newtons Problem des minimalen Widerstands Newtons Poblem des minimalen Widestands Newton-Poblem (685: Wie muss ein sich in eine Flüssigkeit mit konstante Geschwindigkeit bewegende Köe aussehen, damit e, bei vogegebenem maximalen Queschnitt einen

Mehr

Lösung: 1. Für das Volumen gilt die Formel: V = r 2. π. h = 1000 [cm 3 ]. 2. Für die Oberfläche gilt die Formel: O = 2. r 2. π + 2. r. π. h.

Lösung: 1. Für das Volumen gilt die Formel: V = r 2. π. h = 1000 [cm 3 ]. 2. Für die Oberfläche gilt die Formel: O = 2. r 2. π + 2. r. π. h. Analysis Anwendungen Wi 1. Das Konsevendosen-Poblem Ein Konsevendosenhestelle will zylindische Dosen mit einem Inhalt von einem Lite, das sind 1000 cm 3, hestellen und dabei möglichst wenig Mateial vebauchen.

Mehr

12. Berechnung reeller Integrale mit dem Residuensatz

12. Berechnung reeller Integrale mit dem Residuensatz 72 Andeas Gathmann 2. Beechnung eelle Integale mit dem esiduensatz Wi haben geade gesehen, dass man mit Hilfe des esiduensatzes nahezu beliebige geschlossene komplexe Kuvenintegale beechnen kann. In diesem

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektizität und Magnetismus IV.3. Stöme und Magnetfelde Physik fü Medizine 1 Magnetfeld eines stomduchflossenen Leites Hans Chistian Oested 1777-1851 Beobachtung Oesteds: in de Nähe eines stomduchflossenen

Mehr

Diplomarbeit DIPLOMINFORMATIKER

Diplomarbeit DIPLOMINFORMATIKER Untesuchung von Stöfaktoen bei de optischen Messung von Schaubenflächen Diplomabeit eingeeicht an de Fakultät Infomatik Institut fü Künstliche Intelligenz de Technischen Univesität Desden zu Elangung des

Mehr

Magische Zaubertränke

Magische Zaubertränke Magische Zaubetänke In diese Unteichtseinheit waten auf Ihe SchüleInnen magische Zaubetänke, die die Fabe wechseln. Begiffe wie Säue, Base, Indikato und Salz können nochmals thematisiet bzw. wiedeholt

Mehr

[ M ] = 1 Nm Kraft und Drehmoment

[ M ] = 1 Nm Kraft und Drehmoment Stae Köpe - 4 HBB mü 4.2. Kaft und Dehmoment Käfte auf stae Köpe weden duch Kaftvektoen dagestellt. Wie in de Punktmechanik besitzen diese Kaftvektoen einen Betag und eine Richtung. Zusätzlich wid abe

Mehr

Bei der Wärmeübertragung kann man drei Transportvorgänge voneinander unterscheiden:

Bei der Wärmeübertragung kann man drei Transportvorgänge voneinander unterscheiden: 6 ämeübetagung Bei de ämeübetagung kann man dei Tanspotvogänge voneinande untescheiden: ämeleitung ämeübegang / onvektion ämestahlung De ämetanspot duch Leitung ode onvektion benötigt einen stofflichen

Mehr

6 Die Gesetze von Kepler

6 Die Gesetze von Kepler 6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de

Mehr

ERGEBNISSE TM I,II UND ETM I,II

ERGEBNISSE TM I,II UND ETM I,II ERGEBNISSE TM I,II UND ETM I,II Lehstuhl fü Technische Mechanik, TU Kaiseslauten WS /2, 8.02.22. Aufgabe: ( TM I, TM I-II, ETM I, ETM I-II) q 0 = 3F a F G a M 0 = 2Fa x a A y z B a a De skizziete Rahmen

Mehr

Dr. Jan Friedrich Nr L 2

Dr. Jan Friedrich Nr L 2 Übungen zu Expeimentalphysik 4 - Lösungsvoschläge Pof. S. Paul Sommesemeste 5 D. Jan Fiedich N. 4 9.5.5 Email Jan.Fiedich@ph.tum.de Telefon 89/89-1586 Physik Depatment E18, Raum 3564 http://www.e18.physik.tu-muenchen.de/teaching/phys4/

Mehr

Stochastik: Nutzung sozialer Netzwerke

Stochastik: Nutzung sozialer Netzwerke Stochastik: Nutzung soziale Netzweke Die Nutzung von sozialen Netzweken wid imme beliebte. Dabei nutzen imme meh Jugendliche veschiedene soziale Netzweke. Es wid davon ausgegangen, dass 30 % alle Jugendlichen

Mehr

Berufsmaturitätsprüfung 2005 Mathematik

Berufsmaturitätsprüfung 2005 Mathematik GIBB Geweblich-Industielle Beufsschule Ben Beufsmatuitätsschule Beufsmatuitätspüfung 005 Mathematik Zeit: 180 Minuten Hilfsmittel: Fomel- und Tabellensammlung ohne gelöste Beispiele, Taschenechne Hinweise:

Mehr

Integration von Ortsgrößen zu Bereichsgrößen

Integration von Ortsgrößen zu Bereichsgrößen Integation von Otsgößen zu Beeichsgößen 1 Integation von Otsgößen zu Beeichsgößen Stömungen sind Bewegungen von Teilchen innehalb von Stoffen. Ihe wesentlichen Gesetzmäßigkeiten gehen aus Zusammenhängen

Mehr

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik Abitupüfung Physik 2016 (Nodhein-Westfalen) Leistungskus Aufgabe 1: Induktion bei de Tolinientechnik Im Fußball sogen egelmäßig umstittene Entscheidungen übe zu Unecht gegebene bzw. nicht gegebene Toe

Mehr

Lösungshinweise und Bewertungskriterien

Lösungshinweise und Bewertungskriterien 27. Bundeswettbeweb Infomatik, 1. Runde Lösungshinweise und Bewetungskiteien Allgemeines Zuest soll an diese Stelle gesagt sein, dass wi uns seh daübe gefeut haben, dass einmal meh so viele Leute sich

Mehr

C Aufgabenlösungen zu Kapitel 3

C Aufgabenlösungen zu Kapitel 3 C Aufgabenlösungen zu Kapitel 3 C.1 ösung de Übungsaufgabe 3.1 In Beispiel 3.5 (Buch S.92) wude eine komplexe Abschlussimpedanz Z A = (37,5+j150) übe eine eitung mit de änge l e / = 0,194 und dem eitungswellenwidestand

Mehr

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1 Mustelösung Klausu Mathematik Wintesemeste / Aufgabe : 8 Punkte Fü die Nahfage Dp nah einem Podukt als Funktion seines Peises p sollen folgende Szenaien modelliet weden:. Wenn de Peis um einen Euo steigt,

Mehr

6. Das Energiebändermodell für Elektronen

6. Das Energiebändermodell für Elektronen 6. Das Enegiebändemodell fü Eletonen Modell des feien Eletonengases ann nicht eläen: - Unteschied Metall - Isolato (Metall: ρ 10-11 Ωcm, Isolato: ρ 10 Ωcm), Halbleite? - positive Hall-Konstante - nichtsphäische

Mehr

STUDIENPRÜFUNGSARBEIT RATIONELLE ENERGIEWANDLUNG. Spule mit Eisenkern. Abgabedatum: Teilnehmer: Ludwik Anton

STUDIENPRÜFUNGSARBEIT RATIONELLE ENERGIEWANDLUNG. Spule mit Eisenkern. Abgabedatum: Teilnehmer: Ludwik Anton STUDIENPRÜFUNGSARBEIT RATIONELLE ENERGIEWANDLUNG Spule mit Eisenken Abgabedatum: 4.6.7 Teilnehme: Ludwik Anton 676 - - Aufgabe ist es, eine velustbehaftete Spule mit Eisenken (Skizze) zu untesuchen. Dies

Mehr

2 Theoretische Grundlagen

2 Theoretische Grundlagen 2 Theoetische Gundlagen 2.1 Gundlagen de dielektischen Ewämung 2.1.1 Mechanismen de dielektischen Ewämung Die dielektische Ewämung beuht auf de Wechselwikung atomae Ladungstäge elektisch nicht leitende

Mehr

Inhaltsverzeichnis (Ausschnitt)

Inhaltsverzeichnis (Ausschnitt) 6 Diskete Wahscheinlichkeitsäume Inhaltsvezeichnis (Ausschnitt) 6 Diskete Wahscheinlichkeitsäume Laplacesche Wahscheinlichkeitsäume Kombinatoik Allgemeine diskete Wahscheinlichkeitsäume Deskiptive Statistik

Mehr

Titrationskurven in der Chemie

Titrationskurven in der Chemie RS 1..004 Titationskuven.mcd Titationskuven in de Chemie In de Chemie wid de sauee bzw. de basische Chaakte eine wässigen Lösung mit Hilfe des ph-wetes beschieben. In jede wässigen Lösung gilt: [H O] +.

Mehr

34. Elektromagnetische Wellen

34. Elektromagnetische Wellen Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.

Mehr

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006 Semna übe Algothmen Load Balancng Slawa Belousow Fee Unvestät Beln, Insttut fü Infomatk SS 2006 1. Load Balancng was st das? Mt Load Balancng ode Lastvetelung weden Vefahen bescheben, um be de Specheung,

Mehr

WEKA FACHMEDIEN GmbH. Technische Spezifikationen für die Anlieferung von Online-Werbemitteln

WEKA FACHMEDIEN GmbH. Technische Spezifikationen für die Anlieferung von Online-Werbemitteln WEKA FACHMEDIEN GmbH Technische Spezifikationen fü die Anliefeung von Online-Webemitteln Jonathan Deutekom, 01.07.2012 Webefomen Webefom Beite x Höhe Fullsize Banne 468 x 60 Leadeboad 728 x 90 Rectangle

Mehr

Das makroökonomische Grundmodell

Das makroökonomische Grundmodell Univesität Ulm 89069 Ulm Gemany Dipl.-WiWi Sabina Böck Institut fü Witschaftspolitik Fakultät fü Mathematik und Witschaftswissenschaften Ludwig-Ehad-Stiftungspofessu Wintesemeste 2008/2009 Übung 3 Das

Mehr

Der Einfluss der Lichtquellengeometrie auf die Entfernungsmessung

Der Einfluss der Lichtquellengeometrie auf die Entfernungsmessung NESER, S., A. SEYFARTH: De Einfluss de Lichtquellengeometie auf die Entfenungsmessung von PMD- Kameas, in Th. Luhmann/Ch. Mülle (Hsg.) Photogammetie-Lasescanning Optische 3D-Messtechni, Beitäge de Oldenbuge

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

Projekt : Geometrie gotischer Kirchenfenster Jgst. 10

Projekt : Geometrie gotischer Kirchenfenster Jgst. 10 Pojekt : Geometie gotische Kichenfenste Jgst. 0 Begiffsekläung : Das Wot Gotik wude im 5. Jahhundet von italienischen Humanisten fü eine nichtantike, im Noden entstandene babaische (gotische) Kunst gebaucht.

Mehr

iaf Institut für angewandte Forschung

iaf Institut für angewandte Forschung iaf Institut fü angewandte Foschung Abschlussbeicht zum Pojekt: Entwicklung eines enegiespaenden Vefahens zum Hochenegiewassestahlen gefödet von de Deutschen Bundesstiftung Umwelt unte dem Az: 23757 Band

Mehr

Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum

Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Enst-Moitz-Andt-Univesität Geifswald / Institut fü Physik Physikalisches Gundpaktikum Paktikum fü Physike Vesuch E7: Magnetische Hysteese Name: Vesuchsguppe: Datum: Mitabeite de Vesuchsguppe: lfd. Vesuchs-N:

Mehr

Greedy Algorithmen für aufspannende Arboreszenzen

Greedy Algorithmen für aufspannende Arboreszenzen Geedy Aloithmen fü aufspannende Aboeszenzen Biit Hubet 23. Juni 29 1 Minimal aufspannende Bäume 1.1 Wiedeholun Sei G=(V, E) ein zusammenhänende Gaph, wobei V die Mene de Knoten und E die Mene de Kanten

Mehr

Software Engineering Projekt

Software Engineering Projekt FHZ > FACHHOCHSCHULE ZENTRALSCHWEIZ HTA > HOCHSCHULE FÜR TECHNIK+ARCHITEKTUR LUZERN Softwae Engineeing Pojekt Softwae Requiements Specification SRS Vesion 1.0 Patick Bündle, Pascal Mengelt, Andy Wyss,

Mehr

9.2. Bereichsintegrale und Volumina

9.2. Bereichsintegrale und Volumina 9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen

Mehr

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de lausthal ompute-aphik II Komplexität des Ray-Tacings. Zachmann lausthal Univesity, emany cg.in.tu-clausthal.de Die theoetische Komplexität des Ray-Tacings Definition: das abstakte Ray-Tacing Poblem (ARTP)

Mehr

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt Gleichseitige Deiecke im Keis aus de Sicht eines Punktes Eckat Schmidt Zu einem Punkt und einem gleichseitigen Deieck in seinem Umkeis lassen sich zwei weitee Deiecke bilden: das Lotfußpunktdeieck und

Mehr

Abituraufgabe Stochastik: Fliesenproduktion

Abituraufgabe Stochastik: Fliesenproduktion Abituaufgabe Stochastik: Fliesenpoduktion Eine Fima stellt mit zwei veschiedenen Maschinen A und B Bodenfliesen aus Keamik he. Damit eine Fliese als 1. Wahl gilt, muss sie stenge Qualitätsnomen efüllen.

Mehr

Komplexe Widerstände

Komplexe Widerstände Paktikum Gundlagen de Elektotechnik Vesuch: Komplexe Widestände Vesuchsanleitung 0. Allgemeines Eine sinnvolle Teilnahme am Paktikum ist nu duch eine gute Vobeeitung auf dem jeweiligen Stoffgebiet möglich.

Mehr

Die intertemporale Budgetbeschränkung ergibt sich dann aus

Die intertemporale Budgetbeschränkung ergibt sich dann aus I. Die Theoie des Haushaltes Mikoökonomie I SS 003 6. Die Spaentsheidung a) Das Gundmodell: Lohneinkommen nu in Peiode De gleihe fomale Rahmen wie im Zwei-Güte-Modell elaubt es auh, die Spaentsheidung

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS 7 Tosten Scheibe 7 Eine Mati ist eine Kombination aus eine bestimmten nzahl von, die in Zeilen und Spalten unteteilt sind, die das eine Mati bestimmen, wobei jede die jede Komponente duch die zugehöige

Mehr

Man erkennt, dass die Feldlinien an der Rundung und der Spitze Ecken besonders dicht liegen. Entsprechend ist hier die auch Ladungsdichte am höchsten.

Man erkennt, dass die Feldlinien an der Rundung und der Spitze Ecken besonders dicht liegen. Entsprechend ist hier die auch Ladungsdichte am höchsten. 1.6. Ladungen in Metallen; Influenz In diesem Abschnitt wollen wi zunächst betachten, wie sich Ladungen in geladenen metallischen 1 Objekten anodnen und welche allgemeinen Aussagen sich übe das elektische

Mehr

Investition und Finanzierung

Investition und Finanzierung Investition und Finanzieung Studiengang B.A. Business Administation Pof. D. Raine Stachuletz Hochschule fü Witschaft und Recht Belin Belin School of Economics and Law Somme 2012 slide no.: 1 Handlungsfelde

Mehr

Testnormal. Mikroprozessorgesteuerter Universal-Simulator für fast alle gängigen Prozessgrössen im Auto- Mobilbereich und Maschinenbau

Testnormal. Mikroprozessorgesteuerter Universal-Simulator für fast alle gängigen Prozessgrössen im Auto- Mobilbereich und Maschinenbau Testnomal Mikopozessogesteuete Univesal-Simulato fü fast alle gängigen Pozessgössen im Auto- Mobilbeeich und Maschinenbau Inhalt 1. Einsatzmöglichkeiten 2. Allgemeines 2.1. Einstellbae Sensoaten 2.2. Tastatu

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen $Id: impliit.tex,v 1.6 2012/10/30 14:00:59 hk Exp $ 1 Umkehfunktionen und impliite Funktionen 1.1 De Umkehsat Am Ende de letten Situng hatten wi alle Vobeeitungen um Beweis des Umkehsates abgeschlossen,

Mehr

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes Fakultät fü Physik R: Rechenmethoden fü Physike, WiSe 06/7 Dozent: Jan von Delft Übungen: Hong-Hao Tu, Fabian Kugle http://www.physik.uni-muenchen.de/lehe/volesungen/wise_6_7/_ echenmethoden_6_7/ Repetitoium

Mehr

über insgesamt Vorvertragliche Erläuterungen zum Darlehensantrag Name aller Darlehensnehner Sehr geehrter Kunde,

über insgesamt Vorvertragliche Erläuterungen zum Darlehensantrag Name aller Darlehensnehner Sehr geehrter Kunde, dessaue st. 5 I 06862 dessau-oßlau email info@pobaufi.de I www.pobaufi.de Kundenanschift Ih Anspechpatne Vovetagliche Eläuteungen zum Dalehensantag Name alle Dalehensnehne übe insgesamt Dalehensbetag Seh

Mehr