NP-vollständige Probleme. Michael Budahn - Theoretische Informatik 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "NP-vollständige Probleme. Michael Budahn - Theoretische Informatik 1"

Transkript

1 NP-vollständige Probleme Michael Budahn - Theoretische Informatik 1

2 Motivation Michael Budahn - Theoretische Informatik 2

3 Motivation viele praxisrelevante Probleme sind NPvollständig und eine Lösung würde auf vielen Gebieten helfen wenn man weiss das es unmöglich ist effizente Algorithmen zu finden braucht man keine zu suchen Michael Budahn - Theoretische Informatik 3

4 Definition Ein Problem C ist NP-vollständig wenn : (1) von einer Nicht-Deterministischen Turingmaschine in polynomieller Zeit erkannt wirdird (2) sich alle Probleme in NP auf C reduzieren lassen Michael Budahn - Theoretische Informatik 4

5 Definition Problem A ist auf ein Problem B reduzierbar genau dann wenn: es einen deterministischen Algorithmus mit polynomieller Laufzeit gibt der aus einem Problem a A ein Problem b B macht, sodass b genau dann wahr ist wenn a auch wahr ist Michael Budahn - Theoretische Informatik 5

6 Folgen aus der Definition wenn man ein Algorithmus findet der ein NPvollständiges Problem löst kann man sämtliche Probleme aus NP in polynomieller Zeit lösen P = NP um zu zeigen das ein Problem np-vollständig ist muss man nur zeigen das ein anderes NPvollständiges Problem darauf reduzierbar ist Michael Budahn - Theoretische Informatik 6

7 Einige np-vollständige Probleme SAT (Boolean satisfiability problem) ist ein Boolscher Ausdruck durch eine Variablenbelegung erfüllbar? n-puzzle ist eine bestimmte Position lösbar? knapsack a b a c b c kann man Gegenstände von einem Wert größer als w in seinen Rucksack packen ohne das Gewicht g zu überschreiten? Michael Budahn - Theoretische Informatik 7

8 Einige np-vollständige Probleme Subset sum Gegeben eine Menge an Ganzzahlen gibt es eine Teilmenge die Aufsummiert null ergibt? Cliquen-Problem Gibt es in einem Graphen einen Clique mit mehr als k-knoten? Eine Clique sind paarweise adjazente Knoten Independent Set Gibt es in einem Graphen eine Menge unabhängigen Knoten größer k? Michael Budahn - Theoretische Informatik 8

9 Einige np-vollständige Probleme Subgraph isomorphism gegeben zwei Graphen G und H ist G ein Untergraph von H? Graph coloring kann man die Knoten eines Graphen mit n Farben so einfärben so das adjazente Knoten nicht die gleiche Farbe haben? Michael Budahn - Theoretische Informatik 9

10 Einige np-vollständige Probleme Hamiltonian Cycle gibt es in einem Graphen einen Hamiltonischen Kreis? Traveling salesman Gegeben Städte und Kosten um zwischen ihnen zu reisen. Kann man alle Städte bereisen ohne dabei ein bestimmtes Kostenlimit zu überschreiten?

11 Hamiltonian Cycle Wie können wir zeigen das das Hamiltonian Cylce Problem np-vollständig ist? (1) wir zeigen das man eine Lösung für das Problem in polynomieller Zeit verifizieren kann (2) wir zeigen das ein anderes np-vollständiges Problem auf den Hamiltonian Cycle reduzierbar ist

12 Reduktion von Hamiltonian Cycle auf Traveling Salesman A A B C B C D E Hamiltonischer Kreis? D E Gibt es einen Kreis mit Gewicht 0? A B C D E A B C D E A 1 1 A B B C D E polynomieller Algorithmus C D E

13 Reduktion Mittlerweile gibt es mehr als 3000 Probleme für die NP-Vollständigkeit bewiesen wurde Wie wurde das erste NP-Vollständige Problem gefunden?

14 Satz von Cook Stephan A. Cook bewies 1971 in dem nach ihm benannten Satz von Cook die NP- Vollständigkeit des Boolschen Erfüllbarkeitsproblems (SAT)

15 Satz von Cook Zu jedem Problem in NP gibt es eine nichtdeterministische Turingmaschine M' die es in polynomieller Laufzeit löst Zu M' konstruieren wir M sodass : M hat 1 Band M betritt kein Feld links der Eingabe anstatt stehenzubleiben verharrt M in der Konfiguration M hat immernoch polynomielle Laufzeit T n =cn k

16 Satz von Cook Wenn wir die Zellen des Bandes mit 1 beginnend durchnummerieren brauchen wir uns nur mit den Zellen von 1 bis T+1 beschäftigen. Für alle anderen brauchen wir mehr als T Schritte um sie zu erreichen ein Wort x ist genau dann in der Sprache wenn es eine Reihe von Konfigurationen gibt und die T-te Konfiguration eine akzeptierende ist

17 Satz von Cook Wir brauchen nun eine Funktion die uns aus der Turingmaschine und dem Eingabewort eine Boolsche Formel erstellt die genau dann wahr ist wenn x in L liegt eine erfüllende Belegung der Boolschen Formel beschreibt eine legale akzeptierende Rechnung in polynomiller Zeit

18 Satz von Cook Wir können nun alle Probleme in NP in ein SAT-Problem umwandeln. Wenn es einen deterministischen Algorithmus mit polynomieller Laufzeit gibt der SAT löst dann können wir auch alle anderen Probleme in NP lösen. Daraus folgt np-vollständigkeit für das SAT-Problem

19 Cliquen Problem Wir wollen wissen ob es in einem Graphen G eine Clique größergleich k gibt Eine Clique ist eine Menge an Knoten die paarweise adjazent sind Wir wollen zeigen das das Cliquen Problem NP-nollständig ist und führen es einfach auf das Independent set Problem zurück

20 Independent set Wir wollen wissen ob es in einem Graphen G eine Menge an unabhängigen Knoten größer k gibt unabhängige Knoten sind untereinander paarweise nicht adjazent dieses Problem reduzieren wir auf das Cliquenproblem

21 Independent set Wir bilden den inversen Graphen G' zu G indem wir überall da wo Kanten waren die Kanten streichen und überall da wo keine Kanten waren Kanten hinzufügen in G' gibt es genau dann eine Clique größer als k wenn es in G ein Menge unabhängiger Knoten größer k gibt

22 Independent set Nun zeigen wir noch das Independent set wirklich in NP-schwer ist indem wir das SAT Problem darauf reduzieren Wir kriegen eine boolsche Formel und bringen sie in KNF wir konstruieren einen Graphen mit den Literalen als Knoten und verbinden alle Knoten einer Klausel und alle Literale mit ihrem negierten Gegenstück

23 Independent set wenn es in dem Graph ein unabhängige Menge größer als die Anzahl der Klauseln gibt dann ist die Formel erfüllbar

24 Quellen Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie (Hopcroft, Ullmann) Algorithms (Sedgewick) Wikipedia Uni-Hamburg Uni-Ilmenau

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann Grundlagen der Informatik Kapitel 20 Harald Krottmaier Sven Havemann Agenda Klassen von Problemen Einige Probleme... Approximationsalgorithmen WS2007 2 Klassen P NP NP-vollständig WS2007 3 Klasse P praktisch

Mehr

Probleme aus NP und die polynomielle Reduktion

Probleme aus NP und die polynomielle Reduktion Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 NP-Vollständigkeit Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v.

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Nichtdeterminismus David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Nichtdeterminismus NTM Nichtdeterministische Turingmaschine Die

Mehr

Kapitel L:II. II. Aussagenlogik

Kapitel L:II. II. Aussagenlogik Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen

Mehr

Übungsblatt Nr. 5. Lösungsvorschlag

Übungsblatt Nr. 5. Lösungsvorschlag Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 5 Aufgabe 1: Eine schöne Bescherung (K)

Mehr

Wie komme ich von hier zum Hauptbahnhof?

Wie komme ich von hier zum Hauptbahnhof? NP-Vollständigkeit Wie komme ich von hier zum Hauptbahnhof? P Wie komme ich von hier zum Hauptbahnhof? kann ich verwende für reduzieren auf Finde jemand, der den Weg kennt! Alternativ: Finde eine Stadtkarte!

Mehr

abgeschlossen unter,,,, R,

abgeschlossen unter,,,, R, Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen

Mehr

Informatik-Grundlagen

Informatik-Grundlagen Informatik-Grundlagen Komplexität Karin Haenelt 1 Komplexitätsbetrachtungen: Ansätze Sprachentheorie Klassifiziert Mengen nach ihrer strukturellen Komplexität Komplexitätstheorie Klassifiziert Probleme

Mehr

Sudoku ist NP-vollständig

Sudoku ist NP-vollständig Sudoku ist NP-vollständig Seminar über Algorithmen und Komplexität Freie Universität Berlin Institut für Informatik SS 007 Sarah Will 8.07.007 Einführung Sudoku ist ein japanisches Logikrätsel und hat

Mehr

Einführung in Algorithmen und Komplexität

Einführung in Algorithmen und Komplexität Einführung in Algorithmen und Komplexität SS2004 w u v High Performance = Innovative Computer Systems + Efficient Algorithms Friedhelm Meyer auf der Heide 1 Was haben wir bisher gemacht? - Rechenmodell:

Mehr

Proseminar Theoretische Informatik. Die Klasse NP. von Marlina Spanel

Proseminar Theoretische Informatik. Die Klasse NP. von Marlina Spanel Proseminar Theoretische Informatik Die Klasse NP von Marlina Spanel 29.11.2011 1 Gliederung Gliederung Problem des Handlungsreisenden Die Klasse NP Einleitung und Wiederholung Sprachen Nichtdeterministische

Mehr

Reduktionen. Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie. Exkurs: Reduktionen allgemein. Reduktionen: Erläuterungen

Reduktionen. Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie. Exkurs: Reduktionen allgemein. Reduktionen: Erläuterungen en Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie P, und C Definition () Seien L 1, L 2 {0, 1} zwei Sprachen. Wir sagen, dass L 1 auf L 2 in polynomialer Zeit reduziert wird, wenn eine

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Teil VI. Komplexitätstheorie.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Teil VI. Komplexitätstheorie. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Hochschuldozent Dr. Christian Schindelhauer Paderborn, den 21. 2. 2006 Lösungen zur 1. Klausur in Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Name :................................

Mehr

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012 Die Klassen P und NP Dr. Eva Richter 29. Juni 2012 1 / 35 Die Klasse P P = DTIME(Pol) Klasse der Probleme, die sich von DTM in polynomieller Zeit lösen lassen nach Dogma die praktikablen Probleme beim

Mehr

Komplexitätstheorie Einführung und Überblick (Wiederholung)

Komplexitätstheorie Einführung und Überblick (Wiederholung) Literatur C. Papadimitriou UC Berkeley Zum Komplexitätsbegriff Strukturelle Komplexität Average Case Analyse Effiziente Algorithmen Logische Komplexität Beschreibungssprachen: SQL Kolmogorov Komplexität

Mehr

Teil III. Komplexitätstheorie

Teil III. Komplexitätstheorie Teil III Komplexitätstheorie 125 / 160 Übersicht Die Klassen P und NP Die Klasse P Die Klassen NP NP-Vollständigkeit NP-Vollständige Probleme Weitere NP-vollständige Probleme 127 / 160 Die Klasse P Ein

Mehr

1 Einführung 2 1.1 Zwei Beispiele (MIN JOB SCHEDULING und MAXCUT)... 2 1.2 Notationen und Definitionen... 7 1.3 Übungsaufgaben...

1 Einführung 2 1.1 Zwei Beispiele (MIN JOB SCHEDULING und MAXCUT)... 2 1.2 Notationen und Definitionen... 7 1.3 Übungsaufgaben... Vorwort v I Approximative Algorithmen 1 1 Einführung 2 1.1 Zwei Beispiele (MIN JOB SCHEDULING und MAXCUT).... 2 1.2 Notationen und Definitionen... 7 1.3 Übungsaufgaben..... 18 2 DieKomplexitätsklassen

Mehr

Maike Buchin 18. Februar 2016 Stef Sijben. Probeklausur. Theoretische Informatik. Bearbeitungszeit: 3 Stunden

Maike Buchin 18. Februar 2016 Stef Sijben. Probeklausur. Theoretische Informatik. Bearbeitungszeit: 3 Stunden Maike Buchin 8. Februar 26 Stef Sijben Probeklausur Theoretische Informatik Bearbeitungszeit: 3 Stunden Name: Matrikelnummer: Studiengang: Geburtsdatum: Hinweise: Schreibe die Lösung jeder Aufgabe direkt

Mehr

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III Name Vorname Matrikelnummer Universität Karlsruhe Institut für Theoretische Informatik o. Prof. Dr. P. Sanders 26. Feb. 2007 Klausur: Informatik III Aufgabe 1. Multiple Choice 10 Punkte Aufgabe 2. Teilmengenkonstruktion

Mehr

Theoretische Informatik SS 03 Übung 11

Theoretische Informatik SS 03 Übung 11 Theoretische Informatik SS 03 Übung 11 Aufgabe 1 Zeigen Sie, dass es eine einfachere Reduktion (als die in der Vorlesung durchgeführte) von SAT auf 3KNF-SAT gibt, wenn man annimmt, dass die Formel des

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014 Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Ulrich Furbach Institut für Informatik Sommersemester 2014 Furbach Grundlagen d. Theoretischen Informatik:

Mehr

Nichtdeterministische Platzklassen

Nichtdeterministische Platzklassen Sommerakademie 2010 Rot an der Rot AG 1: Wieviel Platz brauchen Algorithmen wirklich? Nichtdeterministische Platzklassen Ulf Kulau August 23, 2010 1 Contents 1 Einführung 3 2 Nichtdeterminismus allgemein

Mehr

Einführung in Approximative Algorithmen und Parametrisierte Komplexität

Einführung in Approximative Algorithmen und Parametrisierte Komplexität Einführung in Approximative Algorithmen und Parametrisierte Komplexität Tobias Lieber 10. Dezember 2010 1 / 16 Grundlegendes Approximationsalgorithmen Parametrisierte Komplexität 2 / 16 Grundlegendes Definition

Mehr

Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual!

Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual! Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual! 0kg 4000 Euro Luster 5,5 kg, 430.- Laptop 2,0 kg, 000.- Schatulle 3,2 kg, 800.- Uhr 3,5 kg, 70.- Schwert,5 kg, 850.- Bild 3,4 kg, 680.- Besteck

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Hochschule Darmstadt, Wintersemester 2015/16 Bernd Baumgarten (Lehrbeauftragter) Der Großteil der Folieninhalte ist dankend übernommen von Prof. Steffen Lange, h_da 0/1, Folie 1

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie WS 2008/2009 Vorlesung: Dr. Felix Brandt, Dr. Jan Johannsen Übung: Markus Brill, Felix Fischer Institut für Informatik LMU München Organisatorisches Vorlesung Donnerstag,

Mehr

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Hier Aufkleber mit Name und Matrikelnr. anbringen

Mehr

Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13

Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13 Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 22/3 Vorname Nachname Matrikelnummer

Mehr

Lösungsvorschläge Blatt Z1

Lösungsvorschläge Blatt Z1 Theoretische Informatik Departement Informatik Prof. Dr. Juraj Hromkovič http://www.ita.inf.ethz.ch/theoinf16 Lösungsvorschläge Blatt Z1 Zürich, 2. Dezember 2016 Lösung zu Aufgabe Z1 Wir zeigen L qi /

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 3. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005

1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005 Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 2004/05 ILKD Prof. Dr. D. Wagner 24. Februar 2005 1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005 Aufkleber Beachten

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis Optimierungsprobleme Instanz eines Optimierungsproblems zulässiger Bereich (meist implizit definiert) Zielfunktion Optimierungsrichtung opt {max, min} Optimierungsproblem Menge von Instanzen meist implizit

Mehr

Berechenbarkeits- und Komplexitätstheorie

Berechenbarkeits- und Komplexitätstheorie Berechenbarkeits- und Komplexitätstheorie Verschiedene Berechenbarkeitsbegriffe, Entscheidbarkeit von Sprachen, Wachstumsordnungen und Komplexitätsklassen Inhaltsübersicht und Literatur Verschiedene Berechenbarkeitsbegriffe:

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 8.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2011 Lösungsblatt 11 1. August 2011 Einführung in die Theoretische Informatik

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Inforatik 1 Teil 6 Bernhard Nessler Institut für Grundlagen der Inforationsverabeitung TU Graz SS 2008 Übersicht 1 Reduktionen 2 Definition P- NP- 3 Sprachbeziehungen Klassenbeziehungen Turingreduktion

Mehr

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann

Mehr

Vorlesung Berechenbarkeit und Komplexität. Motivation, Übersicht und Organisatorisches

Vorlesung Berechenbarkeit und Komplexität. Motivation, Übersicht und Organisatorisches Berechenbarkeit und Komplexität: Motivation, Übersicht und Organisatorisches Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Berechenbarkeit die absoluten Grenzen

Mehr

Klausur Algorithmen und Datenstrukturen II 29. Juli 2013

Klausur Algorithmen und Datenstrukturen II 29. Juli 2013 Technische Universität Braunschweig Sommersemester 2013 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Stephan Friedrichs Klausur Algorithmen und Datenstrukturen

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 9 10.12.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T20 Beweisen Sie die

Mehr

6.3 Erfüllbarkeit von Wünschen

6.3 Erfüllbarkeit von Wünschen Einmal geschah dem Weihnachtsmann etwas Seltsames. Von Kathrinchen bekam er einen Wunschzettel, der anders war, als alle Wunschzettel, die er bisher bekommen hatte. Sein Problem war: Er verstand Kathrinchens

Mehr

8 Komplexitätstheorie und Kryptologie

8 Komplexitätstheorie und Kryptologie 8 Komplexitätstheorie und Kryptologie Verschlüsselung, Authentisierung,... müssen schnell berechenbar sein. Formal: polynomiell zeitbeschränkte Funktionen/Algorithmen Angreifer hat beschränkte Ressourcen.

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Das P versus N P - Problem

Das P versus N P - Problem Das P versus N P - Problem Dr. Michael Huber Habilitationsvortrag eines der sieben Milleniumsprobleme des Clay Mathematics Institute A gift to Mathematics from Computer Science (Steve Smale) Überblick

Mehr

Die Komplexität von Scrabble

Die Komplexität von Scrabble Bachelorarbeit Die Komplexität von Scrabble Christoph Hube 20.08.2012 Institut für Theoretische Informatik Leibniz Universität Hannover 1 Erklärung Hiermit versichere ich, dass ich diese Arbeit selbständig

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Beuth Hochschule Ist P gleich NP? Vermutlich nicht! WS15/16, S. 1

Beuth Hochschule Ist P gleich NP? Vermutlich nicht! WS15/16, S. 1 Beuth Hochschule Ist P gleich NP? Vermutlich nicht! WS15/16, S. 1 Ist P gleich NP? Vermutlich nicht! Komplexitätsklassen von algorithmischen Problemen Achtung: Das Wort "Klasse" bedeutet hier etwas ähnliches

Mehr

1 Raumwechsel: Gr. 19 (Fr 12-14, F-334) diese Woche in D Studie zum Arbeitsverhalten von Studierenden unter Leitung

1 Raumwechsel: Gr. 19 (Fr 12-14, F-334) diese Woche in D Studie zum Arbeitsverhalten von Studierenden unter Leitung Organisatorisches Algorithmen und Datenstrukturen Kapitel 6 Komplexitätstheorie in P und NP Frank Heitmann heitmann@informatik.uni-hamburg.de 1 Raumwechsel: Gr. 19 (Fr 12-14, F-334) diese Woche in D-129.

Mehr

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4 Syntax der Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Eine atomare Formel hat die Form A i (wobei i = 1, 2, 3,...). Definition (Formel)

Mehr

(Prüfungs-)Aufgaben zur Berechenbarkeits- und Komplexitätstheorie

(Prüfungs-)Aufgaben zur Berechenbarkeits- und Komplexitätstheorie (Prüfungs-)Aufgaben zur Berechenbarkeits- und Komplexitätstheorie 1) Schreiben Sie ein LOOP-Programm, das die Funktion f: N \ {0} N, f (n) = n n berechnet. Sie dürfen in Ihrem Programm die Multiplikation

Mehr

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13)

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) Berlin, 21. Februar 2013 Name:... Matr.-Nr.:... Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) 1 2 3 4 5 6 7 8 9 Σ Bearbeitungszeit: 90 min. max. Punktezahl:

Mehr

Einführung in die Weihnachtliche Informatik

Einführung in die Weihnachtliche Informatik Frohe Weihnachten! Einführung in die Weihnachtliche Informatik A. Clausing, Einführung in die Weihnachtliche Informatik, 23. 12. 2004 EWI 1 Kathrinchens Wunschzettel Weihnachtswünsche Vor langer, langer

Mehr

Komplexita tstheorie eine erste Ubersicht. KTV bedeutet: Details erfahren Sie in der Komplexitätstheorie-Vorlesung.

Komplexita tstheorie eine erste Ubersicht. KTV bedeutet: Details erfahren Sie in der Komplexitätstheorie-Vorlesung. Komplexita tstheorie eine erste Ubersicht KTV bedeutet: Details erfahren Sie in der Komplexitätstheorie-Vorlesung. Probleme Problem = Menge von unendlich vielen konkreten Einzelfragen (Instanzen) F n,

Mehr

Vorlesung Kombinatorische Optimierung (Wintersemester 2007/08)

Vorlesung Kombinatorische Optimierung (Wintersemester 2007/08) 1 Vorlesung Kombinatorische Optimierung (Wintersemester 2007/08) Kapitel 5: NP-schwierige Probleme Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 21. Dezember 2007) Rucksack Problem

Mehr

NP-vollständig - Was nun?

NP-vollständig - Was nun? Kapitel 4 NP-vollständig - Was nun? Wurde von einem Problem gezeigt, dass es NP-vollständig ist, ist das Problem damit nicht gelöst oder aus der Welt geschafft. In der Praxis muss es trotzdem gelöst werden.

Mehr

Algorithmen und Datenstrukturen Kapitel 6 Komplexitätstheorie

Algorithmen und Datenstrukturen Kapitel 6 Komplexitätstheorie Algorithmen und Datenstrukturen Kapitel 6 Komplexitätstheorie Einführung in P und NP Frank Heitmann heitmann@informatik.uni-hamburg.de 11. November 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Teil 5 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Problemklassen 2 NTM Nichtdeterministische Algorithmen 3 Problemarten Konstruktionsprobleme

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/07 24. Vorlesung 26.01.2007

Informatik III. Christian Schindelhauer Wintersemester 2006/07 24. Vorlesung 26.01.2007 Informatik III Christian Schindelhauer Wintersemester 26/7 24. Vorlesung 26..27 NP-Vollständigkeit Gegeben ein unbekanntes NP-Problem X, sollte man nicht nur nach einem Algorithmus mit polynomieller Laufzeit

Mehr

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14 Institut für Theoretische Informatik Prof. Dr. Jörn Müller-Quade Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 23/4 Vorname Nachname Matrikelnummer Hinweise Für die

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

Paper Computer Science Experiment. Computation (NP-Vollständigkeit) Traveling Salesman

Paper Computer Science Experiment. Computation (NP-Vollständigkeit) Traveling Salesman Paper Computer Science Experiment Great Principles of Computing Computation (NP-Vollständigkeit) Thema Traveling Salesman Unterrichtsform Lernen am Modell Voraussetzung Wahrscheinlich kennen viele Schüler/innen

Mehr

Freie Universität Berlin. Diskrete Mathematik. Ralf Borndörfer, Stephan Schwartz. Freie Universität. 08. April 2013

Freie Universität Berlin. Diskrete Mathematik. Ralf Borndörfer, Stephan Schwartz. Freie Universität. 08. April 2013 Diskrete Mathematik Ralf Borndörfer, Stephan Schwartz 08. April 2013 FUB VL Diskrete Mathematik SS 2013 1 Leonhard Euler (1707-1783) e i sin cos f(x) FUB VL Diskrete Mathematik SS 2013 2 Das Königsberger

Mehr

Einführung in Berechenbarkeit, Komplexität und formale Sprachen

Einführung in Berechenbarkeit, Komplexität und formale Sprachen Johannes Blömer Skript zur Vorlesung Einführung in Berechenbarkeit, Komplexität und formale Sprachen Universität Paderborn Wintersemester 2011/12 Inhaltsverzeichnis 1 Einleitung 2 1.1 Ziele der Vorlesung...................................

Mehr

Theoretische Informatik. Grammatiken. Grammatiken. Grammatiken. Rainer Schrader. 9. Juli 2009

Theoretische Informatik. Grammatiken. Grammatiken. Grammatiken. Rainer Schrader. 9. Juli 2009 Theoretische Informatik Rainer Schrader Institut für Informatik 9. Juli 2009 1 / 41 2 / 41 Gliederung die Chomsky-Hierarchie Typ 0- Typ 3- Typ 1- Die Programmierung eines Rechners in einer höheren Programmiersprache

Mehr

Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke

Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Steve Göring 13.07.2012 1/18 Gliederung Einleitung Grundlagen Vertex-Cover-Problem Set-Cover-Problem Lösungsalgorithmen

Mehr

Theoretische Informatik. Probabilistische Turingmaschinen PTM PTM. Rainer Schrader. 10. Juni 2009

Theoretische Informatik. Probabilistische Turingmaschinen PTM PTM. Rainer Schrader. 10. Juni 2009 Theoretische Informatik Rainer Schrader Probabilistische Turingmaschinen Institut für Informatik 10. Juni 009 1 / 30 / 30 Gliederung probabilistische Turingmaschinen Beziehungen zwischen und NDTM es stellt

Mehr

Speicherplatz-Komplexität 1 / 30

Speicherplatz-Komplexität 1 / 30 Speicherplatz-Komplexität 1 / 30 Speicherplatz-Komplexität Warum sollte uns die Ressource Speicherplatz interessieren? Um die Komplexität der Berechnung von Gewinnstrategien für viele nicht-triviale 2-Personen

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 23.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung Theoretische Informatik Rainer Schrader Zentrum für Angewandte Informatik Köln 14. Juli 2009 1 / 40 2 / 40 Beispiele: Aus den bisher gemachten Überlegungen ergibt sich: aus der Chomsky-Hierarchie bleiben

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014

Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014 Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014 Klausurnummer Nachname: Vorname: Matr.-Nr.: Aufgabe 1 2 3 4 5 6 7 max. Punkte 6 8 4 7 5 6 8 tats. Punkte Gesamtpunktzahl: Note: Punkte Aufgabe

Mehr

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Ausgabe 22. Dezember 2016 Abgabe 17. Januar 2017, 11:00 Uhr

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Wintersemester 2016/2017 2V, Mittwoch, 12:00-13:30 Uhr, F303 2Ü, Dienstag, 12:00-13:30 Uhr, BE08 2Ü, Dienstag, 15:00-16:30 Uhr, B212 2Ü, Mittwoch, 8:30-10:00 Uhr, B312 Fachprüfung:

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des

Mehr

Klausur Theoretische Informatik I WS 2004/2005

Klausur Theoretische Informatik I WS 2004/2005 Technische Universität Chemnitz Chemnitz, den 22.02.2005 Fakultät für Informatik Prof. Dr. Andreas Goerdt Klausur Theoretische Informatik I WS 2004/2005 Studiengang Mechatronik Aufgabe 1 (2+2+2 Punkte)

Mehr

Datenstrukturen und Algorithmen SS07

Datenstrukturen und Algorithmen SS07 Datenstrukturen und Algorithmen SS07 Datum: 27.6.2007 Michael Belfrage mbe@student.ethz.ch belfrage.net/eth Programm von Heute Online Algorithmen Update von Listen Move to Front (MTF) Transpose Approximationen

Mehr

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP Kap..1 Heuristiken Kap.. Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 3. VO DAP SS 008 14. Juli 009 Überblick

Mehr

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 23. VO DAP2 SS 2008 14. Juli 2009

Mehr

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen, Entscheidbarkeit, P 239/ 333 Einführung in die NP-Vollständigkeitstheorie

Mehr

Traveling Salesman Problem (TSP)

Traveling Salesman Problem (TSP) Traveling Salesman Problem (TSP) Das Traveling Salesman Problem (TSP) ist ein bekanntes Optimierungsproblem. Ein Handlungsreisender soll in einer Rundreise (auch Tour genannt) n vorgegebene Städte besuchen.

Mehr

Die Komplexität von Domino

Die Komplexität von Domino Die Komplexität von Domino - oder die Frage nach dem Problem, ob man ein Polygon mit einer Menge von Dominosteinen bedecken kann Referent: Thorsten Reinhardt Freie Universität Berlin / FB Informatik Seminar

Mehr

Klausuraufgaben. 1. Wir betrachten die folgende Sprache über dem Alphabet {a, b}

Klausuraufgaben. 1. Wir betrachten die folgende Sprache über dem Alphabet {a, b} Klausuraufgaben 1. Wir betrachten die folgende Sprache über dem Alphabet {a, b} L = {a n b m n > 0, m > 0, n m} a) Ist L kontextfrei? Wenn ja, geben Sie eine kontextfreie Grammatik für L an. Wenn nein,

Mehr

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III Name Vorname Matrikelnummer Universität Karlsruhe Institut für Theoretische Informatik o. Prof. Dr. P. Sanders 10.4.2007 Klausur: Informatik III Aufgabe 1. Multiple Choice 11 Punkte Aufgabe 2. Minimalautomaten

Mehr

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal 3. Kreis- und Wegeprobleme Kapitelübersicht 3. Kreis- und Wegeprobleme Eulerweg, Eulerkreis Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Definition

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Jochen Hoenicke Software Engineering Albert-Ludwigs-University Freiburg Sommersemester 2014 Jochen Hoenicke (Software Engineering) Einführung in die Informatik Sommersemester

Mehr

Grammatik konstruieren, Beispiel Ausdrücke der Aussagenlogik in zwei Prädikaten p und q und den Verknüpfungsoperationen. Produktionsregeln:

Grammatik konstruieren, Beispiel Ausdrücke der Aussagenlogik in zwei Prädikaten p und q und den Verknüpfungsoperationen. Produktionsregeln: Prüfungszusammenfassung Mathe 2 Begriffe DEA (Deterministischer endlicher Automat; DFA) NEA (Nichtdeterministischer endlicher Automat; NFA) regulär Ohne Mehrdeutigkeiten: Darf nicht vom gleichen Zustand

Mehr

Bäume und Wälder. Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann

Bäume und Wälder. Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann Bäume und Wälder Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann Ida Feldmann 2-Fach Bachelor Mathematik und Biologie 6. Fachsemester Inhaltsverzeichnis Einleitung 1 1. Bäume

Mehr

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Steinerbäume Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Verfasser Flamur Kastrati Betreuer Prof. Dr. habil. Thomas

Mehr

5 Logische Formalismen und Erfüllbarkeit

5 Logische Formalismen und Erfüllbarkeit R. Reischuk, ITCS 75 5 Logische Formalismen und Erfüllbarkeit 5.1 Das Erfüllbarkeitsproblem Das Erfüllbarkeitsproblem ist von außergewöhnlicher Bedeutung nicht nur für die Logik, sondern ebenso für die

Mehr

Es gibt drei unterschiedliche Automaten:

Es gibt drei unterschiedliche Automaten: Automatentheorie Es gibt drei unterschiedliche Automaten: 1. Deterministische Endliche Automaten (DEA) 2. Nichtdeterministische Endliche Automaten (NEA) 3. Endliche Automaten mit Epsilon-Übergängen (ε-

Mehr

5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation

5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation Theorie der Informatik 9. März 2015 5. Aussagenlogik III Theorie der Informatik 5. Aussagenlogik III 5.1 Inferenz Malte Helmert Gabriele Röger 5.2 Resolutionskalkül Universität Basel 9. März 2015 5.3 Zusammenfassung

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 10.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Kode-Erzeugung für Registersatz-Maschinen

Kode-Erzeugung für Registersatz-Maschinen Kode-Erzeugung für Registersatz-Maschinen Die meisten Maschinen sind heutzutage Registersatzmaschinen, die einen Satz von 16-32 Universalregistern besitzen. Üblich sind Dreiadress-Befehle OP DEST, SRC1,

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 15 Ziele vgl. AFS: Berechnungsmodelle für Typ-0- und Typ-1-Sprachen (Nicht-)Abschlußeigenschaften

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 3: Kodierung 1 Motivation 2 Exkurs Grundlagen formaler Sprachen 3 Grundlagen 4 Beispielkodierungen FM2 (WS 2014/15,

Mehr