Linearer und quadratischer Mittelwert

Größe: px
Ab Seite anzeigen:

Download "Linearer und quadratischer Mittelwert"

Transkript

1 Linearer und quadratischer ittelwert Erwartungswerte (auch Schar- oder Ensemblemittelwerte) betrachtet wird zunächst eine große Anzahl von Zufallssignalen; dabei ist x k (t) die k-te von insgesamt Realisierungen des Zufallsprozesses linearer ittelwert: m () x = E{x(t )} = lim x k (t ) k= quadratischer ittelwert: m (2) x = E{x 2 (t )} = lim k= x 2 k (t ) es ist zu beachten: um die Scharmittelwerte zu berechnen, müssen unter Umständen alle Realisierungen zur gleichen Zeit t betrachtet werden; zur Zeit t 2 t können sich andere ittelwerte ergeben stationäre Prozesse: hier sind die ittelwerte tatsächlich unabhängig von der Beobachtungszeit; die Ensemblemittelung kann zu jedem beliebigen Zeitpunkt t erfolgen Linearer und quadratischer ittelwert (Fortsetzung) Stationäre ergodische Prozesse Bei ergodischen Prozessen sind alle zeitlichen ittelwerte (auch die höherer Ordnung) gleich den entsprechenden Scharmittelwerten; zur essungen genügt demnach eine einzige usterfunktion, wobei in der Praxis häufig auch nur eine usterfunktion vorliegen wird. Ein Beispiel für einen nicht-ergodischen Prozeß liefert eine Quelle, deren Verhalten vom Initialisierungszustand bestimmt wird (Zustand beim Einschalten bestimmt das weitere Verhalten mit). für den linearen und quadratischen ittelwert stationärer ergodischer Prozesse gilt demnach: m () x = lim x k (t) dt k m (2) x = lim x 2 k (t) dt k

2 ittelwertung höherer Ordnung Für eine vollständigere Beschreibung von Zufallsprozessen ist es notwendig, auch die zeitlichen Wechselbeziehungen benachbarter Beobachtungswerte der einzelnen Zufallssignale x k (t) zu erfassen, wodurch z.b. Aussagen über die frequenzmäßige Zusammensetzung der Signale möglich werden. Zunächst wird wieder eine Schar von Zufallssignalen betrachtet diesmal aber zu den Zeitpunkten t und t 2. Der ittelwert ϕ xx (t, t 2 ) = E{x(t ) x(t 2 )} = x k (t ) x k (t 2 ) lim wird als Autokorrelationsfunktion (AKF) bezeichnet. Für t = t 2 ergibt sich wieder der quadratische ittelwert. k= ittelwertung höherer Ordnung (Fortsetzung) Für stationäre Prozesse sind nicht die Absolutwerte der Zeiten t und t 2 für die AKF entscheidend, sondern es ist nur die Zeitdifferenz τ = t 2 t ; liegen zusätzlich ergodische Prozesse vor, genügt die zeitliche ittelung: ϕ xx (τ) = lim Verteilungsfunktion x k (t) x k (t + τ) dt Eine noch bessere statistische Beschreibung von Zufallssignalen wird durch die Berücksichtigung der relativen Häufigkeit der im Zufallssignal enthaltenen Amplituden möglich. k

3 Verteilungsfunktion (Fortsetzung) Zunächst wird wieder eine Schar von Zufallssignalen s k (t) zum Zeitpunkt t betrachtet. Für die Ermittlung der Verteilungsfunktion wird ausgezählt, wieviele der insgesamt Beobachtungswerte einen Schwellwert x nicht überschreiten. Wird diese Anzahl mit x bezeichnet, folgt für die Verteilungsfunktion allgemein: P s (x, t ) = lim x = Prob{s(t ) x}, wobei Prob{ } für die relative Wahrscheinlichkeit steht, daß die Beobachtungswerte s(t ) kleiner/gleich x sind. Für stationäre, ergodische Prozesse läßt sich P s wieder über den zeitlichen Verlauf einer Realisierung s k (t) ermitteln. Gemäß folgender Skizze gilt P s (x) = lim t i (x) i Verteilungsfunktion (Fortsetzung) s k (t) x t t t 2 t 3 t 4 t 5

4 Verteilungsdichtefunktion Die Differenz P s (x + x) P s (x) sagt aus, mit welcher relativen Häufigkeit die Signalamplituden innerhalb des begrenzten Bereichs (x; x + x) liegen. Für den Grenzübergang x 0 folgt die Verteilungsdichtefunktion p s (x) P p s (x) = lim s (x+ x) P s (x) x 0 x Die Umkehrung lautet x P s (x) = p s (u) du = dp s(x) dx Von besonderer Wichtigkeit ist die Gaußverteilung mit ) ( ) p(x) = 2πσ exp ( (x m)2 x m 2σ und P (x) = 0,5erfc 2 2 σ Verteilungsdichtefunktion einer mittelwertfreien Gaußverteilung p(x) x/σ

5 Verteilungsfunktion einer mittelwertfreien Gaußverteilung P (x) x/σ

Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Sommersemester 2015 Prof. Dr. -Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff 1 Adaptive Systeme Adaptives System: ein System, das

Mehr

3. Leistungsdichtespektren

3. Leistungsdichtespektren Stochastische Prozesse: 3. Leistungsdichtespektren Wird das gleiche Geräusch mehrmals gemessen, so ergeben sich in der Regel unterschiedliche zeitliche Verläufe des Schalldrucks. Bei Geräuschen handelt

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

4. Empirische Momente von ZR. 4. Empirische Momente von ZR. 4. Empirische Momente von ZR. 4. Empirische Momente von ZR

4. Empirische Momente von ZR. 4. Empirische Momente von ZR. 4. Empirische Momente von ZR. 4. Empirische Momente von ZR Im Allgemeinen wird sich das Verhalten einer ZR über die Zeit ändern, z.b. Trend, saisonales Verhalten, sich verändernde Variabilität. Eine ZR wird als stationär bezeichnet, wenn sich ihr Verhalten über

Mehr

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Yannik Behr Gliederung 1 Stochastische Prozesse Stochastische Prozesse Ein stochastischer Prozess ist ein Phänomen, dessen

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am 5..201 von 10:00 bis 11:00 Uhr Bearbeiten Sie zwei der drei folgenden Aufgaben! Sätze aus der Vorlesung und den Übungen dürfen Sie ohne

Mehr

(8 + 2 Punkte) = = 0.75

(8 + 2 Punkte) = = 0.75 Aufgabe 1 (8 + 2 Punkte) Von 20 Teilnehmern einer Bergwanderung geben 8 Personen an Knieschmerzen zu haben. 6 Teilnehmer leiden an Sonnenbrand. 8 Teilnehmer blieben unversehrt. a) Wie groß ist die Wahrscheinlichkeit,

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Θ Mathematik Stochastik

Θ Mathematik Stochastik Θ Mathematik Stochastik Aufgabe 1: Als Spam-Nachricht wird eine unerwünschte E-Mail bezeichnet, die dem Empfänger unverlangt zugestellt wird. a) Statistische Untersuchungen an der Mailbox eines Benutzers

Mehr

1 2 x x x x x x2 + 83

1 2 x x x x x x2 + 83 Polynominterpolation Aufgabe 1 Gegeben sei die Wertetabelle i 0 1 2 3 x i 0 1 2 4 f i 3 1 2 7 a) Bestimmen Sie das Interpolationspolynom von Lagrange durch die obigen Wertepaare. b) Interpolieren Sie die

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren. Definition Ist X X,...,X p ein p-dimensionaler Zufallsvektor mit E X j < für alle j, so heißt

Mehr

Signale und Systeme II

Signale und Systeme II TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Wintersemester 204/205 Signale und Systeme II Übungsaufgaben Übung Datum Themen Aufgaben

Mehr

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten Dynamische Lasten 1. Kraft- und Weganregung 2. Deterministische Lasten 2.1 Allgemeine zeitabhängige Lasten 2.2 Periodische Lasten 2.3 Harmonische Lasten 3. Stochastische Lasten 3.1 Instationäre stochastische

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

Einige parametrische Familien für stochastische Prozesse

Einige parametrische Familien für stochastische Prozesse Einige parametrische Familien für stochastische Prozesse Seminar: Grundlagen der und Statistik von dynamischen Systemen 26. November 2014 Inhaltsverzeichnis 1 Einleitung 2 3 4 5 Einleitung Ziel des Vortrages:

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

Die Zylinderfunktionen

Die Zylinderfunktionen Die Zylinderfunktionen Betrachten Schwingungen einer Pauke. Auslenkung v = v(t, x, y) des Trommelfells ist Lösung der Wellengleichung 2 v t = v := 2 v 2 x + 2 v 2 y 2 als Produkt aus zeitabhängiger und

Mehr

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt.

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt. Normalverteilung Diskrete Stetige f(x) = 1 2πσ 2 e 1 2 ((x µ)2 σ 2 ) Gauß 91 / 169 Normalverteilung Diskrete Stetige Satz: f aus (1) ist Dichte. Beweis: 1. f(x) 0 x R und σ > 0. 2. bleibt z.z. lim F(x)

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 1. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 1. Übungsblatt Prof Dr M Gerdts Dr A Dreves J Michael Wintertrimester 216 Mathematische Methoden in den Ingenieurwissenschaften 1 Übungsblatt Aufgabe 1 : (Schwimmer Ein Schwimmer möchte einen Fluss der Breite b > überqueren,

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK Institut für Stochastik Prof. Dr. Daniel Hug Name: Vorname: Matr.-Nr.: Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK Datum: 08. Februar 0 Dauer:

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Die Verteilung einer Summe X +X +...+X n, wobei X,..., X n unabhängige standardnormalverteilte Zufallsvariablen sind, heißt χ -Verteilung mit n Freiheitsgraden. Eine N(, )-verteilte

Mehr

7. Die Brownsche Bewegung

7. Die Brownsche Bewegung 7. DIE BROWNSCHE BEWEGUNG 7 5 5 50 00 50 200 250 0 5 20 Abbildung 7.: Pfad einer Brownschen Bewegung 7. Die Brownsche Bewegung Definition 7.. Ein cadlag stochastischer Prozess {W t } mit W 0 = 0, unabhängigen

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr

0, t 0,5

0, t 0,5 XIII. Die Normalverteilung ==================================================================. Der lokale Grenzwertsatz --------------------------------------------------------------------------------------------------------------

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Gedämpftes Quantentunneln in makroskopischen Systemen

Gedämpftes Quantentunneln in makroskopischen Systemen Gedämpftes Quantentunneln in makroskopischen Systemen Kerstin Helfrich Seminar über konforme Feldtheorie, 27.06.06 Gliederung 1 Motivation 2 Voraussetzungen Allgemein Ungedämpfter Fall 3 Gedämpftes Tunneln

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 8. Funktionen von mehreren Variablen 8.2 Partielle Differentiation Prof. Dr. Erich Walter Farkas Mathematik I+II, 8.2 Part. Diff.

Mehr

Statistische Grundlagen

Statistische Grundlagen Statistische Grundlagen 2 2.1 Motivation Dieses Kapitel gibt eine kurze Übersicht über die im weiteren Verlauf des Buches benötigten mathematischen und statistischen Grundlagen. Zu Beginn wird der Begriff

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient 11.4 Korrelation Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient (X 1,X 2 ) = cov (X 1,X 2 ) σ X1 σ X2 Korrelationskoeffizient der Zufallsgrößen

Mehr

3 Evaluation als Beschreibung von Zuständen

3 Evaluation als Beschreibung von Zuständen Evaluation als Beschreibung von Zuständen 1 Sind die folgenden Aussagen richtig oder falsch? 1.1 In einer Klumpenstichprobe werden systematisch anfallende Cluster von Personen vollständig untersucht. Die

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

254 15. ORDNUNG UND UNORDNUNG

254 15. ORDNUNG UND UNORDNUNG 54 15. ORDNUNG UND UNORDNUNG 15.4 Ordnungsdomänen Da die verschiedenen Untergitter im llgemeinen gleichwertig sind, können die - oder B-tome bei einer an verschiedenen Stellen beginnenden Keimbildung das

Mehr

Die n-dimensionale Normalverteilung

Die n-dimensionale Normalverteilung U. Mortensen Die n-dimensionale Normalverteilung Es wird zunächst die -dimensionale Normalverteilung betrachtet. Die zufälligen Veränderlichen X und Y seien normalverteilt. Gesucht ist die gemeinsame Verteilung

Mehr

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Aufgabenstellung und Ergebnisse Dr. Martin Becker Hinweise für die

Mehr

Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik

Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik Universität Karlsruhe (TH) Institut für Stochastik Dr. Bernhard Klar Dipl.-Math. oec. Volker Baumstark Name Vorname Matr.-Nr.: Scheinklausur Stochastik für Studierende des Lehramts und der Diplom-Pädagogik

Mehr

Zeitreihenanalyse. Seminar Finanzmathematik. Andreas Dienst SS Einleitung - Begrüßung - Motivation - Inhaltsangabe. 2.

Zeitreihenanalyse. Seminar Finanzmathematik. Andreas Dienst SS Einleitung - Begrüßung - Motivation - Inhaltsangabe. 2. Seminar Finanzmathematik - Begrüßung - Motivation - Inhaltsangabe 3. Zusammen - fassung Zeitreihenanalyse Andreas Dienst SS 2006 Zeitreihen: Definition und Motivation - Begrüßung - Motivation - Inhaltsangabe

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:

Mehr

l p h (x) δw(x) dx für alle δw(x).

l p h (x) δw(x) dx für alle δw(x). 1.3 Potentielle Energie 5 In der modernen Statik benutzen wir statt dessen einen schwächeren Gleichheitsbegriff. Wir verlangen nur, dass die beiden Streckenlasten bei jeder virtuellen Verrückung dieselbe

Mehr

Inhaltsverzeichnis Determinierte Signale in linearen zeitinvarianten Systemen Fourier-Transformation

Inhaltsverzeichnis Determinierte Signale in linearen zeitinvarianten Systemen Fourier-Transformation Inhaltsverzeichnis 1. Determinierte Signale in linearen zeitinvarianten Systemen 1 1.1 Elementarsignale... 1 1.2 ZumBegriffdesSystems... 5 1.3 LinearezeitinvarianteSysteme... 6 1.4 DasFaltungsintegral...

Mehr

Übung (13) dx 3, 2x 1 dx arctan(x3 1).

Übung (13) dx 3, 2x 1 dx arctan(x3 1). Übung (3) () Bilden Sie folgende Ableitungen: d xe x dx x ln x, d dx +cos (x), d d dx 3, x dx arctan(x3 ). () Geben Sie die Näherung. Ordnung für den Ausdruck / p v /c für v

Mehr

Satz von Borel-Cantelli. Limes inferior von Mengen. Limes superior von Mengen. Stetigkeit. Konvergenz von Zufallsvariablen. Kolmogorow-Ungleichung

Satz von Borel-Cantelli. Limes inferior von Mengen. Limes superior von Mengen. Stetigkeit. Konvergenz von Zufallsvariablen. Kolmogorow-Ungleichung Satz von Borel-Cantelli Limes inferior von Mengen Limes superior von Mengen Stetigkeit Konvergenz von Zufallsvariablen Kolmogorow-Ungleichung Tschebyschow-Ungleichung Konvergenzkriterien Starkes Gesetz

Mehr

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern.

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern. 10. Stetige Zufallsvariable, Normalverteilung 55 Die in den folgenden Beispielen dargestellten Verteilungen haben ungefähr Glockenform. Sie können durch die sogenannte Normalverteilung oder Gaussverteilung

Mehr

6.1 Direktempfang. Blockschaltbild eines OOK-Empfängers. Photodiode

6.1 Direktempfang. Blockschaltbild eines OOK-Empfängers. Photodiode Blockschaltbild eines OOK-Empfängers rauschfreier opt. Verstärker s(t) g(t) w(t) Photodiode 2 R y k n(t) optisches Filter incl. Polfilter das Verhalten wird im äquivalenten Tiefpass-Bereich analysiert

Mehr

Prüfungsklausur Mathematik II für Wirtschaftsingenieure,

Prüfungsklausur Mathematik II für Wirtschaftsingenieure, HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Wirtschaftsingenieure, 15.7.2014 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 5 6 gesamt erreichbare P. 10

Mehr

Übungsaufgaben, Statistik 1

Übungsaufgaben, Statistik 1 Übungsaufgaben, Statistik 1 Kapitel 3: Wahrscheinlichkeiten [ 4 ] 3. Übungswoche Der Spiegel berichtet in Heft 29/2007 von folgender Umfrage vom 3. und 4. Juli 2007:,, Immer wieder werden der Dalai Lama

Mehr

Einführung in die Fehlerrechnung und Messdatenauswertung

Einführung in die Fehlerrechnung und Messdatenauswertung Grundpraktikum der Physik Einführung in die Fehlerrechnung und Messdatenauswertung Wolfgang Limmer Institut für Halbleiterphysik 1 Fehlerrechnung 1.1 Motivation Bei einem Experiment soll der Wert einer

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Wahrscheinlichkeitstheorie (Klausuraufgaben) Marcel Bliem Marco Boßle Jörg Hörner Mathematik Online Herbst 2010 Bliem/Boßle/Hörner (MO) PV-Kurs HM 3 1 / 7

Mehr

1 Autokorrelation, Leistung und Wahrscheinlichkeitsdichtefunktion eines Sinussignals

1 Autokorrelation, Leistung und Wahrscheinlichkeitsdichtefunktion eines Sinussignals Audiotechnik II Digitale Audiotechnik: 2. utorium Prof. Dr. Stefan Weinzierl 5. November 213 Musterlösung: 5. November 213, 18:25 1 Autokorrelation, Leistung und Wahrscheinlichkeitsdichtefunktion eines

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 8. Dezember 2010 Teil V Schließende Statistik 1 Parameterschätzung Erwartungstreue und Konsistenz Maximum-Likelihood

Mehr

Lösungsvorschläge zu Blatt 1 1) ZV X := Produkt der Augenzahlen bei einem Wurf mit 2 Würfeln. des Produktes Wurfergebnis P (X = k) 1 (1, 1) 1/36

Lösungsvorschläge zu Blatt 1 1) ZV X := Produkt der Augenzahlen bei einem Wurf mit 2 Würfeln. des Produktes Wurfergebnis P (X = k) 1 (1, 1) 1/36 Lösungsvorschläge zu Blatt ) ZV X := Produkt der Augenzahlen bei einem Wurf mit Würfeln Mögl. Werte k des Produktes Wurfergebnis P X = k), ) /6, ),, ) /6, ),, ) /6, ),, ),, ) /6 5, 5), 5, ) /6 6, 6),,

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag studienbegleitende Klausur Finanzmathematik I Aufgabe (7 Punkte) Vorgelegt sei ein Wahrscheinlichkeitsraum (Ω, F, P) und

Mehr

1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen

1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen 6.4 Hyergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln nicht rot. Wir entnehmen n Kugeln, d.h. eine Stichrobe des Umfangs n. Dabei

Mehr

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

8 Verteilungsfunktionen und Dichten

8 Verteilungsfunktionen und Dichten 8 Verteilungsfunktionen und Dichten 8.1 Satz und Definition (Dichten) Eine Funktion f : R R heißt Dichtefunktion, kurz Dichte, wenn sie (Riemann-) integrierbar ist mit f(t) 0 für alle t R und Setzt man

Mehr

Ü b u n g s b l a t t 13

Ü b u n g s b l a t t 13 Einführung in die Stochastik Sommersemester 06 Dr. Walter Oevel 5. 6. 006 Ü b u n g s b l a t t 3 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen

Mehr

Copula Funktionen. Eine Einführung. Nils Friewald

Copula Funktionen. Eine Einführung. Nils Friewald Copula Funktionen Eine Einführung Nils Friewald Institut für Managementwissenschaften Abteilung Finanzwirtschaft und Controlling Favoritenstraße 9-11, 1040 Wien friewald@imw.tuwien.ac.at 13. Juni 2005

Mehr

Lösungen zu Übung(11) Erster Teil A E=

Lösungen zu Übung(11) Erster Teil A E= Lösungen zu Übung Erster Teil a Betrachten Sie die Matrix A = Die Eigenwerte sind λ = mit algebraischer Vielfachheitundλ =mitalgebraischervielfachheit,unddiematrix A E= hatrang, alsokerndimensionnur, somitistdereigenraumzuλ

Mehr

8 Die Exponentialverteilung

8 Die Exponentialverteilung 8 Die Exponentialverteilung 8.1 Einführung Modelle Zuverlässigkeitsmodelle Lebensdauermodelle Bedienungsmodelle. 277 W.Kössler, Humboldt-Universität zu Berlin Def. 26 (Exponentialverteilung) Sei X eine

Mehr

Biomathematik für Mediziner, Klausur SS 2001 Seite 1

Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Aufgabe 1: Von den Patienten einer Klinik geben 70% an, Masern gehabt zu haben, und 60% erinnerten sich an eine Windpockeninfektion. An mindestens einer

Mehr

2. Eigenschaften digitaler Nachrichtensignale

2. Eigenschaften digitaler Nachrichtensignale FH OOW / Fachb. Technik / Studiengang Elektrotechnik u. Automatisierungstechnik Seite 2-2. Eigenschaften digitaler Nachrichtensignale 2. Abgrenzung zu analogen Signalen Bild 2.- Einteilung der Signale

Mehr

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln $Id: integral.tex,v.5 2009/05/05 4:57:29 hk Exp hk $ 2 Integralrechnung 2.3 Die Integrationsregeln Wir wollen noch eine letzte kleine Anmerkung zur Substitutionsregel machen. Der letzte Schritt bei der

Mehr

Monotone Approximationen durch die Stirlingsche Formel. Wir beginnen mit einem einfachen Beweis einer schwachen Form von Stirlings

Monotone Approximationen durch die Stirlingsche Formel. Wir beginnen mit einem einfachen Beweis einer schwachen Form von Stirlings Monotone Approximationen durch die Stirlingsche Formel Wir beginnen mit einem einfachen Beweis einer schwachen Form von Stirlings Formel für n!: e n n e n n! e n n+/2 e n Genauer zeigen wir, dass die Folge

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Ü b u n g s b l a t t 10

Ü b u n g s b l a t t 10 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel. 6. 2007 Ü b u n g s b l a t t 0 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Normalverteilung und Standardisierung

Normalverteilung und Standardisierung Normalverteilung und Standardisierung N(0,1) z 0 z N(µ,) }{{}}{{} µ µ z z z µ+z Die Normalverteilungen N(µ, ) ergeben sich aus der Standardnormalverteilung N(0, 1) (Gaussche Glockenkurve) durch strecken

Mehr

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016 Übungen zu Einführung in die Numerische Mathematik (VE) Sommersemester 6 Prof. Dr. Martin Rumpf Pascal Huber Sascha Tölkes Übungsblatt 8 Abgabe:.6.6 Aufgabe 5 (Elliptisches Randwertproblem auf einem Ring)

Mehr

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe

Mehr

Aufgabe des Monats Mai

Aufgabe des Monats Mai Aufgabe des Monats Mai 2013 1 Ein Monopolist produziere mit folgender Kostenfunktion: K(x) = x 3 12x 2 + 60x + 98 und sehe sich der Nachfragefunktion (Preis-Absatz-Funktion) p(x) = 10, 5x + 120 gegenüber.

Mehr

Zeit zum Kochen [in min] [10, 20[ [20, 30[ [30, 40[ [40, 50[ [50,60[ [60, 100] Hi

Zeit zum Kochen [in min] [10, 20[ [20, 30[ [30, 40[ [40, 50[ [50,60[ [60, 100] Hi 1. Susi und Fritzi bereiten ein Faschingsfest vor, dazu gehört natürlich ein Faschingsmenü. Ideen haben sie genug, aber sie möchten nicht zu viel Zeit fürs Kochen aufwenden. In einer Zeitschrift fanden

Mehr

ad Physik A VL2 (11.10.2012)

ad Physik A VL2 (11.10.2012) ad Physik A VL2 (11.10.2012) korrigierte Varianz: oder: korrigierte Stichproben- Varianz n 2 2 2 ( x) ( xi ) n 1 i1 1 n 1 n i1 1 Begründung für den Vorfaktor : n 1 Der Mittelwert der Grundgesamtheit (=

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr