2. Übungsblatt zur Differentialgeometrie

Größe: px
Ab Seite anzeigen:

Download "2. Übungsblatt zur Differentialgeometrie"

Transkript

1 Institut für Mathematik Prof. Dr. Helge Glöckner Dipl. Math. Rafael Dahmen SoSe Übungsblatt zur Differentialgeometrie (Aufgaben und Lösungen) Gruppenübung Aufgabe G3 (Atlanten) (a) In der Vorlesung wurde mithilfe von vier Karten gezeigt, dass S 1 = { x R 2 : x = 1 } eine topologische Mannigfaltigkeit ist. Zeigen Sie, dass diese vier Karten einen C - Atlas bilden. (b) Wie gewöhnlich bezeichne R die reellen Zahlen mit der gewöhnlichen Topologie. Wir definieren: ψ 1 : R R : x x + 1 ψ 2 : R R : x x 3. Zeigen Sie, dass sowohl A 1 := {ψ 1 }, als auch A 2 := {ψ 2 } beide C -Atlanten für R sind, aber dass A 1 A 2 = {ψ 1,ψ 2 } kein C -Atlas ist. Insbesondere sind die beiden C -Atlanten A 1 und A 2 in keinem gemeinsamen maximalen C -Atlas enthalten. (c) Sei M :=] 2,2[ mit der gewöhnlichen Topologie. Wir definieren: φ 1 : ] 1,2[ ] 2,4[: x 2x φ 2 : ] 2,1[ ] 8,3[: x x( x + 2). Zeigen Sie, dass {φ 1,φ 2 } ein C 1 -Atlas, aber kein C 2 -Atlas ist. Lösung: (a) Die Kreisscheibe S 1 wird überdeckt von folgenden vier offenen Mengen: U 1 := { (x,y) S 1 : x > 0 }, U 2 := { (x,y) S 1 : x < 0 }, U 3 := { (x,y) S 1 : y > 0 }, U 4 := { (x,y) S 1 : y < 0 }.

2 Auf diesen vier offenen Mengen definieren wir die folgenden Abbildungen: φ 1 : U 1 ] 1,1[: (x,y) y, φ 2 : U 2 ] 1,1[: (x,y) y, φ 3 : U 3 ] 1,1[: (x,y) x, φ 4 : U 4 ] 1,1[: (x,y) x. In der Vorlesung wurde bereits (für den allgemeineren Fall der S n gezeigt, dass diese Abbildungen Homömorphismen sind. Somit ist S 1 eine topologische Mannigfaltigkeit. Wir wollen nun zeigen, dass A := {φ 1,φ 2,φ 3,φ 4 } ein C -Atlas ist. Dazu müssen wir zeigen, dass die Kartenwechsel φ i φ 1 j : φ j (U i U j ) φ i (U i U j ) glatte Abbildungen sind. Es gibt hierbei drei Fälle zu untersuchen: 1.Fall: i = j: In diesem Fall ist der Kartenwechsel die Identität und es gibt nichts zu tun. 2.Fall: U i U j = : In diesem Fall gibt es keinen Kartenwechsel und es ist nichts zu zeigen. (Beziehungsweise der Kartenwechsel ist die leere Abbildung von der leeren Menge in die leere Menge und die ist immer glatt) 3.Fall: i j und U i U j : Dies sind eigentlich immer noch viele Einzelfälle, je nachdem wie i und j gewählt sind. Allerdings ist es aus Symmetriegründen möglich, sich auf einen der Fälle zu beschränken. Wir betrachten von nun an i = 1 und j = 3. Dann ist U 1 U 3 der obere rechte Viertelkreis. Der Definitionsbereich des Kartenwechsels φ 2 (U 1 U 2 ) ist gerade ]0,1[ und der Kartenwechsel ist gegeben durch: φ 1 φ 1 3 :]0, 1[ ]0, 1[ x 1 x 2 Diese Funktion ist glatt, weil die Wurzelfunktion für alle Argumente größer 0 glatt ist und die Funktion nur als Verkettung von glatten Funktionen entsteht. (b) Zuerst einmal müssen wir überprüfen, dass ψ 1 und ψ 2 Homöomorphismen sind. Dies ist aber klar, weil sie beide streng monotone stetige Funktionen von R nach R sind. Die einelementigen Mengen A 1 und A 2 sind C -Atlanten, weil die Karten global auf ganz R definiert sind und somit jede Karte allein bereits den ganzen Raum überdeckt und weil Kartenwechsel egal sind bei einelementigen Mengen (hier ist der einzige Kartenwechsel die Identität, die immer glatt ist). Die Vereinigung der beiden Atlanten ist kein C -Atlas, weil der Kartenwechsel ψ 1 ψ 1 2 an der Stelle 0 nicht differenzierbar und somit insbesondere nicht glatt ist. 2

3 Dies zeigt, dass der maximale Atlas, der von A 1 erzeugt wird ein anderer maximaler Atlas als der von A 2 ist. Insbesondere sind erzeugen die beiden Atlanten A 1 und A 2 also zwei unterschiedliche glatte Strukturen (glatte Mannigfaltigkeitsstrukturen) auf R. Es kann also auf einem topologischen Raum mehr als eine glatte Mannigfaltigkeitstruktur geben. (c) Die zu beweisende Aussage folgt aus dem folgenden Lemma 1 Die Funktion φ 2 : ] 2,1[ ] 8,3[: x x( x +2) ist ein C 1 -Diffeomorphismus, aber an der 0 nicht zweimal diffbar. Wenn nämlich das Lemma gilt, dann ist φ 2 insbesondere ein Homömorphismus. Die Abbildung φ 1 ist offensichtlich ein Homöomorphismus. Die beiden Karten überdecken M und die Kartenwechsel sind als Verkettungen von C 1 -Abbildungen wieder C 1 -Abbildungen. Dies zeigt, dass {φ 1,φ 2 } ein C 1 -Atlas ist. Dieser Atlas ist kein C 2 -Atlas, weil dann die Kartenwechsel C 2 sein müssten. Da φ 1 glatt ist, würde aus der C 2 -Eigenschaft der Kartenwechsel die C 2 -Eigenschaft von φ 1 folgen, was aber nach Lemma an der 0 schief geht. Es bleibt, nun das Lemma zu zeigen, was aber nur Analysis 1 ist: Zuerst stellen wir fest, dass φ 2 : t sgn(x) x 2 +2x überall stetig und außerhalb der 0 diffbar ist mit Ableitung φ 2(x) = 2sgn(x) x + 2 = 2( x + 1). Die Ableitung lässt sich stetig an der 0 fortsetzen und somit können wir (mit der Stetigkeit von φ 2 ) schließen, dass φ 2 auch an der 0 diffbar ist mit Ableitung φ 2 (0) = 2. (Alternativ kann man die Ableitung an der 0 auch direkt mit dem Diffquotienten ausrechnen) Also ist φ 2 diffbar mit stetiger Ableitung, also C 1. Die Ableitung ist immer 2 > 0 und somit ist φ 2 streng monoton steigend, also injektiv. Aus der Stetigkeit von φ 2, der Monotonie und den Grenzwerten lim φ 2(t) = 3 und lim φ 2(t) = 8 t 1 t 2 folgt die Surjektivität. Also ist φ 2 eine bijektive C 1 -Abbildung. Weil die Ableitung an jedem Punkt ungleich 0 ist, folgt aus dem Satz über die Umkehrfunktion, dass die Umkehrfunktion ebenfalls C 1 ist, also ein Diffeo. Aus der obigen Formel für φ 2 folgt sofort, dass φ 2 nicht diffbar bei 0 ist. Das beweist das Analysis1-Lemma. Aufgabe G4 (Topologie) (a) Sei X ein topologischer Raum. Zeigen Sie: X ist genau dann hausdorffsch, wenn es eine stetige injektive Abbildung g: X Y in einen Hausdorff-Raum Y gibt. 3

4 2. Übung Differentialgeometrie (b) Gegeben seien drei topologische Räume X, Y, Z und stetige Abbildungen q: X Y und h: Y Z. Wir nehmen an, dass q: X Y surjektiv ist. Zeigen Sie: Wenn h q: X Z eine offene Abbildung ist, dann ist auch h: Y Z eine offene Abbildung. Lösung: q X Y h q h (a) Wenn X hausdorffsch ist, setze Y := X und g := id X. Dann ist g eine injektive stetige Abbildung in einen Hausdorff-Raum. Sei umgekehrt eine solche Abbildung g: X Y gegeben und x x seien zwei zu trennende verschiedene Punkte in X. Dann folgt aus der Injektivität, dass g(x) und g(x ) in Y verschieden sind. Weil Y hausdorffsch ist, gibt es dort zwei disjunkte offene Umgebungen U und U. Aus der bis jetzt noch nicht benutzten Stetigkeit von g folgt, dass g 1 (U) und g 1 (U ) offene Umgebungen von x und x sind und weil Urbilder von disjunkten Mengen wieder disjunkt sind, sind g 1 (U) und g 1 (U ) disjunkt. Das war zu zeigen. (b) Sei U Y eine offene Teilmenge. Es ist zu zeigen, dass h(u) offen in Z ist. Hierzu betrachten wir zuerst das Urbild q 1 (U) X. Dies ist offen, weil q stetig ist. Nun ist nach Voraussetzung h q offen, d.h. ( ) h q q 1 (U) ist offen in Z. Weil aber q surjektiv ist, ist q(q 1 (U)) = U. (Achtung: ohne Surjektivität gilt nur die eine Inklusion,,.) Z Hausübung Aufgabe H3 (Nochmal die Ein-Punkt-Kompaktifizierung) Wir verwenden die Notationen aus Aufgabe (G2): Sei also d N und X := R d { }, wobei X versehen ist mit der Topologie { O := U R d : U ist offen in R d} { X\K : K ist kompakt in R d}. Finden Sie einen C -Atlas für X. 4

5 Lösung: In der Aufgabe (G2b) wurde gezeigt, dass die Teilmenge U 1 := R d eine offene Teilmenge von X ist, die die gewöhnliche Topologie induziert. Folglich ist die Abbildung φ 1 : U 1 R d : x x ein Homöomorphismus. Da der Punkt von dieser Karte nicht getroffen wird (auf der Karte nicht verzeichnet ist), brauchen wir eine weitere Karte. Die Abbildung x f(x) falls x R d \ {0} F : X X : 0 0 ist ein Homömorphismus nach Aufgabe (G2d). Dieser bildet die offene Menge U 1 auf U 2 := X\ {0} abbildet. Also ist auch U 2 offen in X. Wir definieren: φ 2 : U 2 R d : x F(x) = F 1 (x) Dies ist ebenfalls ein Homöomorphismus. Somit ist A := {φ 1,φ 2 } ein Atlas für eine topologische Mannigfaltigkeit. Wir wollen nun zeigen, dass die Kartenwechsel C sind. Dies läuft darauf hinaus, zu zeigen, dass die Abbildung f : R d \ {0} R d \ {0} x x x 2 aus (G2c) glatt ist. In Koordinaten lässt sich die Funktion schreiben als: Dies ist offensichtlich glatt. f(x 1,...,x d ) = 1 x x2 d (x 1,...,x d ). Aufgabe H4 (R/Z = S 1 ) Wir wollen in dieser Aufgabe S 1 als Teilmenge von C verstehen. Wir definieren die Funktion f : R S 1 : t e 2πit Aus der Analysis ist bekannt, dass f stetig und surjektiv ist. (a) Zeigen Sie, dass für alle s,t R mit s < t eine offene Halbebene H C existiert, sodass f(]s,t[) = S 1 H ist. (b) Folgern Sie, dass f : R S 1 eine offene Abbildung ist. (c) Wir setzen q: R R/Z := {t + Z : t R} : t t + Z. Zeigen Sie, dass es eine eindeutige Abbildung f : R/Z S 1 gibt, sodass f = f q. (d) Wir versehen nun die Menge R/Z mit der Quotiententopologie (in diesem Fall identisch mit der Finaltopologie), bezüglich der Abbldung q: R R/Z. Zeigen Sie, 5

6 2. Übung Differentialgeometrie Lösung: dass f : R/Z S 1 ein Homöomorphismus ist. Hinweis: Verwenden Sie Aufgabe (G4b). q R R/Z (a) Hier gibt es mehrere Fälle zu unterscheiden: f ef 1.Fall: t s > 1 In diesem Fall ist f(]s,t[) = S 1. Es reicht nun eine Halbebene anzugeben, die den Einheitskreis vollständig enthält, z.b. H := {z C : R(z) > 2}. 2.Fall: t s = 1 Da f eine 1-periodische Funktion ist, gilt f(s) = f(t) und f(]s,t[) = S 1 \ {f(s)}. Das heißt: Es gibt genau einen Punkt auf dem Einheitskreis, der nicht in der Menge f(]s,t[) liegt. Wir wählen nun eine Tangente an den Einheitskreis, die den Einheitskreis am Punkt f(s) berührt und wählen H als die offene Halbebende, die von der Tangente begrenzt wird und die den Rest des Einheitskreises enthält. 3.Fall: t s < 1 Die Menge f(]s, t[) ist ein zusammenhängendes Stück vom Kreis mit unterschiedlichen Endpunkten x und y, d.h. f(s) = x und f(t) = y. Wir betrachten nun die Gerade (Sekante), die x und y verbindet. Die Gerade teilt C in zwei Halbebenen. Wir nehmen H als diejenige der beiden, in der die Menge f(]s,t[) liegt. Diese Argumentationen lassen sich auch mathematisch einwandfrei formalisieren, aber ich denke, die geometrische Idee sollte klar sein. (b) Wir wollen zeigen, dass f offen ist, d.h. für alle offenen U R ist f(u) offen in S 1. Aus der Vorlesung ist bekannt, dass es ausreicht, dies für alle U aus einer Basis der Topologie zu zeigen und dass die Intervalle {]s, t[: s < t} eine solche Basis der gewöhnlichen Topologie auf R bilden. Sei also U :=]s,t[ mit s < t. Nach (a) gibt es eine offene Halbebene H C mit f(]s,t[) = H S 1. Die Menge H ist offen in C. Also ist H S 1 offen in S 1. (Spurtopologie) (c) Wir definieren: f : R/Z S 1 t + Z f(t). Dies ist wohldefiniert, weil aus t + Z = s + Z folgt, dass k := t s Z ist und somit f(t) = f(s + k) = e 2πi(s+k) = e 2πis e 2πik = f(s) (e 2πi) k = f(s). }{{} =1 S 1 6

7 Per Konstruktion gilt: f = f q. Diese Abbildung ist auch eindeutig mit dieser Eigenschaft, weil für eine andere Funktion g: R/Z S 1 mit f = g q sofort folgt: g(t + Z) = g(q(t)) = g q(t) = f(t) = f q(t) = f(t + Z). (d) Die Quotiententopologie auf R/Z ist bekanntlich definiert als: { V R/Z : q 1 (V ) ist offen in R }. Wir wollen nun zeigen, dass f : R/Z S 1 : t + Z f(t) ein Homöomorphismus ist. Surjektivität: Sei z S 1. Wir dürfen annehmen, dass f surjektiv ist, d.h. es gibt ein t R mit f(t) = z. Dann ist f(q(t)) = f(t) = z. Also ist f sujektiv. Injektivität: Seien s + Z und t + Z R/Z mit f(s) = f(t). Dann gilt f(s) = f(t) und somit e 2πis = e 2πit. Daraus folt e 2πi(s t) = 1 und somit ist frm eπi(s t) ker exp = 2πiZ. Also gilt s t Z und somit ist s + Z = t + Z und die Injektivität von f ist bewiesen. Stetigkeit: Sei U S 1 eine offene Teilmenge des Einheitskreises. Wir wollen zeigen, dass f 1 (U) offen in R/Z ist. Nach Definition ( der ) Quotiententopologie ist dies bewiesen, wenn wir zeigen können, dass q 1 f 1 (U) offen in R ist. Dies ist aber das Gleiche wie ( f q) 1 (U) = f 1 (U). Diese Menge f 1 (U) ist nun aber offen in R, weil f : R S 1 stetig ist. Offenheit: Die Quotientenabbildung q: R R/Z ist insbesondere stetig und surjektiv. Somit dürfen wir (G4b) verwenden und die Offenheit von f folgt aus der Offenheit von f, die wir im Aufgabenteil (b) gezeigt haben. Also ist f : R/Z S 1 ein Homömorphismus. Die Räume R/Z und S 1 sind also bzgl. topologischer Fragen als gleich zu betrachten. Bemerkung: Man sieht auch einfach ein, dass beide Räume eine kanonische Gruppenstruktur tragen und f auch ein Isomorphismus von Gruppen ist, also nicht nur die topologische Struktur, sondern auch die algebraische Struktur erhält. Bemerkung: Außerdem kann man die kanonische C -Mannigfaltigkeitsstruktur von R mittels q: R R/Z auf R/Z übertragen und dann sehen, dass f auch ein Diffeomorphismus von C -Mannigfaltigkeiten ist. Wir sehen also: In jeder sinnvollen Art und Weise gilt:r/z = S 1. 7

10 Untermannigfaltigkeiten

10 Untermannigfaltigkeiten 10. Untermannigfaltigkeiten 1 10 Untermannigfaltigkeiten Definition. Eine Menge M R n heißt k-dimensionale Untermannigfaltigkeit des R n, 1 k n, falls es zu jedem a M eine offene Umgebung U R n von a und

Mehr

Vorlesung 27. Der projektive Raum. Wir werden den projektiven Raum zunehmend mit mehr Strukturen versehen.

Vorlesung 27. Der projektive Raum. Wir werden den projektiven Raum zunehmend mit mehr Strukturen versehen. Vorlesung 27 Der projektive Raum Definition 1. Sei K ein Körper. Der projektive n-dimensionale Raum P n K besteht aus allen Geraden des A n+1 K durch den Nullpunkt, wobei diese Geraden als Punkte aufgefasst

Mehr

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Dietmar A. Salamon ETH-Zürich 23. Februar 2015 1 Topologische Grundbegriffe Sei (X, d) ein metrischer Raum, d.h. X ist eine Menge und d : X X R ist

Mehr

3 Topologische Gruppen

3 Topologische Gruppen $Id: topgr.tex,v 1.2 2010/05/26 19:47:48 hk Exp hk $ 3 Topologische Gruppen Als letztes Beispiel eines topologischen Raums hatten wir die Zariski-Topologie auf dem C n betrachtet, in der die abgeschlossenen

Mehr

Topologieseminar. Faserbündel. Michael Espendiller. 16. Oktober 2010 Universität Münster - 3 Faserbündel oder lokal triviale Bündel 4

Topologieseminar. Faserbündel. Michael Espendiller. 16. Oktober 2010 Universität Münster - 3 Faserbündel oder lokal triviale Bündel 4 Wintersemester 2010/2011 Topologieseminar Faserbündel Michael Espendiller 16. Oktober 2010 Universität Münster - Inhaltsverzeichnis 1 Allgemeine Bündel 1 2 Morphismen und Schnitte 2 3 Faserbündel oder

Mehr

Topologische Aspekte: Eine kurze Zusammenfassung

Topologische Aspekte: Eine kurze Zusammenfassung Kapitel 1 Topologische Aspekte: Eine kurze Zusammenfassung Wer das erste Knopfloch verfehlt, kommt mit dem Zuknöpfen nicht zu Rande J. W. Goethe In diesem Kapitel bringen wir die Begriffe Umgebung, Konvergenz,

Mehr

Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann

Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Etwas Topologie Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Literatur Abraham, Marsden, Foundations of Mechanics, Addison Wesley 1978, Seiten 3 17 Definition. Ein topologischer

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

1 Loesungen zu Analysis 1/ 1.Uebung

1 Loesungen zu Analysis 1/ 1.Uebung Loesungen ausgewaehlter Beispiele zu Analysis I, G. Bergauer, Seite 1 1 Loesungen zu Analysis 1/ 1.Uebung 1.1 Einleitung Gegeben Mengen X, A mit A X. Sei die Menge durch A = {a X : a erfuellt B} gegeben,

Mehr

Vorlesung. Funktionen/Abbildungen

Vorlesung. Funktionen/Abbildungen Vorlesung Funktionen/Abbildungen 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

2. Stetige Abbildungen

2. Stetige Abbildungen 4 Andreas Gathmann 2. Stetige Abbildungen Nachdem wir im letzten Kapitel topologische Räume eingeführt haben, wollen wir nun Abbildungen zwischen solchen Räumen untersuchen. Wie schon in der Einleitung

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

Topologische Räume und stetige Abbildungen Teil 2

Topologische Räume und stetige Abbildungen Teil 2 TU Dortmund Mathematik Fakultät Proseminar zur Linearen Algebra Ausarbeitung zum Thema Topologische Räume und stetige Abbildungen Teil 2 Anna Kwasniok Dozent: Prof. Dr. L. Schwachhöfer Vorstellung des

Mehr

1 Eingebettete Untermannigfaltigkeiten des R d

1 Eingebettete Untermannigfaltigkeiten des R d $Id: unter.tex,v 1.2 2014/04/14 13:19:35 hk Exp hk $ 1 Eingebettete Untermannigfaltigkeiten des R d In diesem einleitenden Paragraphen wollen wir Untermannigfaltigkeiten des R d studieren, diese sind die

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Überlagerung I. Überlagerung für z z 2 : komplexe Quadratwurzel. Christoph Schweigert, Garben p.1/19

Überlagerung I. Überlagerung für z z 2 : komplexe Quadratwurzel. Christoph Schweigert, Garben p.1/19 Überlagerung I Überlagerung für z z 2 : komplexe Quadratwurzel Christoph Schweigert, Garben p.1/19 Überlagerung II Überlagerung für z z 3 : komplexe dritte Wurzel Christoph Schweigert, Garben p.2/19 Überlagerung

Mehr

Vorkurs Mathematik Abbildungen

Vorkurs Mathematik Abbildungen Vorkurs Mathematik Abbildungen Philip Bell 19. September 2016 Diese Arbeit beruht im Wesentlichen auf dem Vortrag Relationen, Partitionen und Abbildungen von Fabian Grünig aus den vorangehenden Jahren.

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

Beispiel 3. Jede abgeschlossene Untergruppe von GL n (R) ist eine Lie-Gruppe

Beispiel 3. Jede abgeschlossene Untergruppe von GL n (R) ist eine Lie-Gruppe In diesem Seminarvortrag wollen wir Möglichkeiten vorstellen, aus vorhandenen Lie-Gruppen neue Lie-Gruppen zu konstruieren. Unser Hauptwerkzeug hierfür wird Satz 5 sein, welcher uns erlaubt eine Mannigfaltigkeitstruktur,

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

3 Vektorbündel und das Tangentialbündel

3 Vektorbündel und das Tangentialbündel $Id: vektor.tex,v 1.6 2014/06/30 10:20:57 hk Ex $ $Id: fluss.tex,v 1.2 2014/06/30 12:36:06 hk Ex hk $ 3 Vektorbündel und das Tangentialbündel 3.4 Ableitungen von C q -Funktionen In der letzten Sitzung

Mehr

4. Vortrag - Garben. Ling Lin, Kristijan Cule Datum: 26. April 2009

4. Vortrag - Garben. Ling Lin, Kristijan Cule Datum: 26. April 2009 4. Vortrag - Garben Datum: 26. April 2009 1 Graduierte Ringe Definition 4.1.1. Eine k-algebra R heißt graduiert, wenn sie dargestellt werden kann als eine direkte Summe R = R n, wobei die R n als k-unterräume

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

Analysis III. Vorlesung 87. Mannigfaltigkeiten mit Rand

Analysis III. Vorlesung 87. Mannigfaltigkeiten mit Rand Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Analysis III Vorlesung 87 Mannigfaltigkeiten mit Rand Eine zweidimensionale Mannigfaltigkeit mit Rand. Der Rand besteht aus den vier geschlossenen Bögen. Definition

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

4.1 Definition. Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn. = y 1. = y 2. xfy 1. xfy 2

4.1 Definition. Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn. = y 1. = y 2. xfy 1. xfy 2 4.1 Definition Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn xfy 1 xfy 2 = y 1 = y 2 Y heißt Zielbereich oder Zielmenge von f. Statt (x, y) f oder xfy schreibt man y = f(x). Vollständige

Mehr

Mathematik I. Zusammenhängende Räume

Mathematik I. Zusammenhängende Räume Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 21 Die beiden nächsten Vorlesungen kann man unter dem Aspekt sehen, welche topologischen Eigenenschaften die reellen Zahlen gegenüber

Mehr

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4)

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4) FU Berlin: WiSe 13-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5 Aufgabe 18 (siehe Musterlösung Zettel 4) Aufgabe 20 In der Menge R der reellen Zahlen sei die Relation 2 R 2 definiert durch: x 2 y :

Mehr

13 Die trigonometrischen Funktionen

13 Die trigonometrischen Funktionen 13 Die trigonometrischen Funktionen Wir schreiben die Werte der komplexen Exponentialfunktion im Folgenden auch als e z = exp(z) (z C). Geometrisch definiert man üblicherweise die Werte der Winkelfunktion

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Auf dem R n gibt es sehr viele verschiedene Normen, allerdings hängen sehr viele wichtige Begriffe wie die Konvergenz

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7 Warum Mathe? IG/StV-Mathematik der KFU-Graz März 2011 Inhalt 1 Mengen 1 1.1 Mengenoperationen.............................. 2 1.2 Rechenregeln.................................. 3 2 Übungsbeispiele zum

Mehr

Mathematik III. Vorlesung 76. Das Konzept einer Mannigfaltigkeit

Mathematik III. Vorlesung 76. Das Konzept einer Mannigfaltigkeit Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 76 Das Konzept einer Mannigfaltigkeit In der zweiten Hälfte dieses Kurses werden wir den Begriff der Mannigfaltigkeit entwickeln. Als

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: A. Kirchhoff, T. Pfrommer, M. Kutter, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester Prof. Dr. M. Stroppel Prof. Dr. A. Sändig Lösungshinweise zu den Hausaufgaben: Aufgabe H.

Mehr

Wiederholung: lineare Abbildungen

Wiederholung: lineare Abbildungen Wiederholung: lineare Abbildungen Def Es seien (V,+, ) und (U, +, ) zwei Vektorräume Eine Abbildung f : V U heißt linear, falls für alle Vektoren v 1, v 2 V und für jedes λ R gilt: (a) f (v 1 + v 2 ) =

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Diskrete Strukturen Vorlesungen 5 und 6

Diskrete Strukturen Vorlesungen 5 und 6 Sebastian Thomas RWTH Aachen, WS 2016/17 07.11.2016 09.11.2016 Diskrete Strukturen Vorlesungen 5 und 6 3 Abbildungen In diesem Abschnitt führen wir Abbildungen zwischen Mengen ein. Während Mengen von der

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

Skript zur Vorlesung Topologie I

Skript zur Vorlesung Topologie I Skript zur Vorlesung Topologie I Carsten Lange, Heike Siebert Richard-Sebastian Kroll Faszikel 1 Fehler und Kommentare bitte an clange@math.fu-berlin.de Stand: 15. Juni 2010 Fachbereich Mathematik und

Mehr

Vorlesung 2. Tilman Bauer. 6. September 2007

Vorlesung 2. Tilman Bauer. 6. September 2007 Vorlesung 2 Universität Münster 6. September 2007 Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 tbauer@uni-muenster.de Zimmer 504, Einsteinstr. 62 (Hochhaus) für alle

Mehr

Lineare Algebra 6. Übungsblatt

Lineare Algebra 6. Übungsblatt Lineare Algebra 6. Übungsblatt Fachbereich Mathematik M. Schneider 16.05.01 Konstantin Pertschik, Daniel Körnlein Gruppenübung Aufgabe G19 Berechnen Sie das inverse Element bzgl. Multiplikation in der

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

Übungen Mathematik I, M

Übungen Mathematik I, M Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0) 09.0.0. Kommissar K hat 3 Tatverdächtige P, Q und R. Er weiß: (a) Wenn sich Q oder R als Täter herausstellen, dann ist P unschuldig.

Mehr

Musterlösung zu Blatt 11, Aufgabe 1

Musterlösung zu Blatt 11, Aufgabe 1 Musterlösung zu Blatt 11, Aufgabe 1 I Aufgabenstellung Es sei I =[a, b] ein kompaktes Intervall. (a) Zeigen Sie, daß eine stetige Funktion f : I R genau dann injektiv ist, wenn sie strikt monoton ist.

Mehr

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $ $Id: stetig.tex,v 1.11 2012/06/26 15:40:18 hk Exp $ 9 Stetigkeit 9.1 Eigenschaften stetiger Funktionen Am Ende der letzten Sitzung hatten wir eine der Grundeigenschaften stetiger Funktionen nachgewiesen,

Mehr

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 5 (WS 2015/16) 1. Abgabetermin: Donnerstag, 26. November.

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 5 (WS 2015/16) 1. Abgabetermin: Donnerstag, 26. November. Algebra I Prof. Dr. M. Rost Übungen Blatt 5 (WS 2015/16) 1 Abgabetermin: Donnerstag, 26. November http://www.math.uni-bielefeld.de/~rost/a1 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

Analysis II. Vorlesung 52. Diffeomorphismen

Analysis II. Vorlesung 52. Diffeomorphismen Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 52 Diffeomorphismen Der Satz über die lokale Umkehrbarkeit gibt Anlass zu folgender Definition. Definition 52.1. EsseienV 1 undv 2 endlichdimensionalereellevektorräume

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 8. September 2011 Für die Mathematik zentral sind Abbildungen und Funktionen. Häufig wird zwischen beiden Begriffen nicht unterschieden.

Mehr

x 2 + y 2 = f x y = λ

x 2 + y 2 = f x y = λ Lineare Abbildungen Def Es seien (V 1,+, ) und (V 2,+, ) zwei Vektorräume Eine Abbildung f : V 1 V 2 heißt linear, falls für alle Vektoren u,v V 1 und für jedes λ R gilt: f (u + v) = f (u) + f (v), f (λu)

Mehr

2. Relationen und Funktionen

2. Relationen und Funktionen 2. Relationen und Funktionen 15 2. Relationen und Funktionen Nachdem wir Mengen eingeführt haben, wollen wir nun auch mehrere von ihnen miteinander in Beziehung setzen können. Das Grundkonzept hierfür

Mehr

1 Linearkombinationen

1 Linearkombinationen Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Linearkombinationen Unter einer Linearkombination versteht man in der linearen Algebra einen Vektor, der sich durch

Mehr

Thema: Klassifikation von 1-Mannigfaltigkeiten (mit Beweis) und von abgeschlossenen 2-Mannigfaltigkeiten (ohne Beweis)

Thema: Klassifikation von 1-Mannigfaltigkeiten (mit Beweis) und von abgeschlossenen 2-Mannigfaltigkeiten (ohne Beweis) Westfälische Wilhelms-Universität Münster Thema: Klassifikation von 1-Mannigfaltigkeiten (mit Beweis) und von abgeschlossenen 2-Mannigfaltigkeiten (ohne Beweis) Ausarbeitung im Rahmen des Seminars Einführung

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Analysis auf Mannigfaltigkeiten

Analysis auf Mannigfaltigkeiten Analysis auf Mannigfaltigkeiten SS 2016 Franz Schuster franz.schuster@tuwien.ac.at Einleitung Diese Vorlesung soll als eine Einführung in die Theorie glatter Mannigfaltigkeiten dienen. Mannigfaltigkeiten

Mehr

17 Lineare Abbildungen

17 Lineare Abbildungen Chr.Nelius: Lineare Algebra II (SS2005) 1 17 Lineare Abbildungen Wir beginnen mit der Klärung des Abbildungsbegriffes. (17.1) DEF: M und N seien nichtleere Mengen. Eine Abbildung f von M nach N (in Zeichen:

Mehr

Konvergenz, Filter und der Satz von Tychonoff

Konvergenz, Filter und der Satz von Tychonoff Abschnitt 4 Konvergenz, Filter und der Satz von Tychonoff In metrischen Räumen kann man topologische Begriffe wie Stetigkeit, Abschluss, Kompaktheit auch mit Hilfe von Konvergenz von Folgen charakterisieren.

Mehr

Abbildung 10.1: Das Bild zu Beispiel 10.1

Abbildung 10.1: Das Bild zu Beispiel 10.1 Analysis 3, Woche Mannigfaltigkeiten I. Definition einer Mannigfaltigkeit Die Definition einer Mannigfaltigkeit braucht den Begriff Diffeomorphismus, den wir in Definition 9.5 festgelegt haben. Seien U,

Mehr

Analysis I - Einige Lösungen und Ergänzungen

Analysis I - Einige Lösungen und Ergänzungen Christian-Albrechts-Universität zu Kiel Mathematisch-Naturwissenschaftliche Fakultät Mathematisches Seminar Analysis I - Einige Lösungen und Ergänzungen von Dipl.-Math. Joscha Prochno Dipl.-Math. Dennis

Mehr

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b. Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und

Mehr

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Lösungsvorschlag Serie 12

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Lösungsvorschlag Serie 12 Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen Übungsaufgaben zur Vorlesung ANALYSIS I (WS 2/3) Lösungsvorschlag

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

4 Messbare Funktionen

4 Messbare Funktionen 4 Messbare Funktionen 4.1 Definitionen und Eigenschaften Definition 4.1. Seien X eine beliebige nichtleere Menge, M P(X) eine σ-algebra in X und µ ein Maß auf M. Das Paar (X, M) heißt messbarer Raum und

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe Kapitel 5 Abbildungen 5.1 Definition: (Abbildung) Eine Abbildung zwischen zwei Mengen M und N ist eine Vorschrift f : M N, die jedem Element x M ein Element f(x) N zuordnet. Schreibweise: x f(x) 5. Beispiel:

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

Kapitel 8 - Kompakte Räume

Kapitel 8 - Kompakte Räume Kapitel 8 - Kompakte Räume Ein Vortrag von Philipp Dittrich nach B.v.Querenburg: Mengentheoretische Topologie Inhalt 8.1 Definition Kompaktheit....................... 2 Beispiel - das Intervall (0,1).....................

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

Unkämmbarkeit der Sphäre

Unkämmbarkeit der Sphäre Unkämmbarkeit der Sphäre Michela Riganti März 2010 1 2 BEISPIELE 1 Einführung In diesem Text geht es darum, folgenden Satz zu beweisen: Satz 1. Jedes glatte Vektorfeld auf einer Sphäre S n gerader Dimension

Mehr

Mengentheoretische Topologie

Mengentheoretische Topologie Mengentheoretische Topologie Michael Heusener 1 Uwe Kaiser 2 25. April 2002 1 verwendet im SS 94 und SS 96 2 verwendet im WS 96 Inhaltsverzeichnis Einleitung 1 1 Topologische Räume und Stetige Abbildungen

Mehr

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : Ê Ê systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

3.2 Implizite Funktionen

3.2 Implizite Funktionen 3.2 Implizite Funktionen Funktionen können explizit als y = f(x 1, x 2,..., x n ) oder implizit als F(x 1, x 2,..., x n ;y) = 0 gegeben sein. Offensichtlich kann man die explizite Form immer in die implizite

Mehr

Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen)

Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen) Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen) Fachbereich Mathematik Wintersemester 0/0 Prof. Dr. Burkhard Kümmerer./3. November 0 Andreas Gärtner Walter Reußwig

Mehr

Übungsblatt 2 - Analysis 2, Prof. G. Hemion

Übungsblatt 2 - Analysis 2, Prof. G. Hemion Tutor: Martin Friesen, martin.friesen@gmx.de Übungsblatt 2 - Analysis 2, Prof. G. Hemion Um die hier gestellten Aufgaben zu lösen brauchen wir ein wenig Kentnisse über das Infimum bzw. Supremum einer Menge.

Mehr

Analysis II. Prof. Dr. H. Brenner Osnabrück SS 2014

Analysis II. Prof. Dr. H. Brenner Osnabrück SS 2014 Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 51 Für eine stetig differenzierbare Funktion ϕ: R R mit ϕ (P) > 0 in einem Punkt P R gibt es ein offenes Intervall P I =]P δ,p +δ, auf dem ϕ

Mehr

1.6 Implizite Funktionen

1.6 Implizite Funktionen 1 1.6 Implizite Funktionen Wir werden uns jetzt mit nichtlinearen Gleichungen beschäftigen, f(x) = 0, wobei f = (f 1,..., f m ) stetig differenzierbar auf einem Gebiet G R n und m < n ist. Dann hat man

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 2008/2009 Übung 11 Einleitung Es wird eine 15-minütige Mikroklausur geschrieben. i) Sei D R oderd C. Wann heißt

Mehr

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Reelle Zahlen sind ideale Objekte, die es uns ermöglichen, eine transparente und leistungsfähige Theorie aufzubauen. Ein Computer kann jedoch nur mit Approximationen

Mehr

Übungen zur Diskreten Mathematik I Blatt 6

Übungen zur Diskreten Mathematik I Blatt 6 1 Blatt 6 Aufgabe 19 Es sei M := {n N : n 2} und R := {(n, m) M M : n teilt m}. a) Zeigen Sie, dass R eine Ordnungsrelation auf M ist. b) Überprüfen Sie, ob R eine totale Ordnung auf M ist. c) Zeigen Sie,

Mehr

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C Kapitel 5. Die trigonometrischen Funktionen 5.1. Die komplexen Zahlen 5.. Folgen und Reihen in C 5.10. Definition. Eine Folge (c n n N komplexer Zahlen heißt konvergent gegen c C, falls zu jedem ε > 0

Mehr

LIE GRUPPEN EMANUEL SCHEIDEGGER

LIE GRUPPEN EMANUEL SCHEIDEGGER LIE GRUPPEN EMANUEL SCHEIDEGGER Zusammenfassung. Definition einer Lie-Gruppe, Beispiele, invariante Vektorfelder, Lie-Klammer, Lie-Algebra (einer Lie-Gruppe), 1. Definition und erste Beispiele Wir beginnen

Mehr

Das Banach-Tarski-Paradox

Das Banach-Tarski-Paradox Das Banach-Tarski-Paradox Thomas Neukirchner Nicht-messbare Mengen verdeutlichen auf eindrucksvolle Weise, dass es keinen additiven - geschweige denn σ-additiven Volumenbegriff auf der Potenzmenge P(R

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

Analysis II. Vorlesung 44. Partielle Ableitungen

Analysis II. Vorlesung 44. Partielle Ableitungen Prof. Dr. H. Brenner Osnabrück SS 2015 Analysis II Vorlesung 44 Sei f: K n K eine durch Partielle Ableitungen (x 1,...,x n ) f(x 1,...,x n ) gegebene Abbildung. Betrachtet man für einen fixierten Index

Mehr

von Intervallen, wie sie als Definitionsmengen von Funktionen auftreten können. 1 x Q f : R R ; x

von Intervallen, wie sie als Definitionsmengen von Funktionen auftreten können. 1 x Q f : R R ; x 18 Stetigkeit Den Begriff der Funktion oder Abbildung haben wir bereits im ersten Semester kennengelernt und er hat uns stets begleitet. In der Analysis untersucht man reelle Funktionen f : D R mit Definitionsbereich

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 12 1. Dezember 2009 Kapitel 3. Differenzialrechnung einer Variablen (Fortsetzung) Satz 19. Es seien M und N zwei nichtleere Teilmengen von R,

Mehr

ALGEBRAISCHE VARIETÄTEN. gute Funktionen auf den offenen Mengen von V definieren. Dabei orientieren wir uns an folgenden Gegebenheiten: (1) Die

ALGEBRAISCHE VARIETÄTEN. gute Funktionen auf den offenen Mengen von V definieren. Dabei orientieren wir uns an folgenden Gegebenheiten: (1) Die ALGEBRAISCHE VARIETÄTEN MARCO WEHNER UND MAXIMILIAN KREMER 1. Strukturgarben Sei V k n. Wir wollen nur gute Funktionen auf den offenen Mengen von V definieren. Dabei orientieren wir uns an folgenden Gegebenheiten:

Mehr

Seminarvortrag über die Euler-Charakteristik einer Fläche

Seminarvortrag über die Euler-Charakteristik einer Fläche Dies ist eine Ausarbeitung für einen Seminarvortrag, den ich im Sommersemester 2013/14 an der Humboldt-Universität im Proseminar Differentialgeometrie von Kurven und Flächen bei Christoph Stadtmüller gehalten

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen

Mehr

1.1 Mengen und Abbildungen

1.1 Mengen und Abbildungen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 3 1.1 Mengen und Abbildungen In diesem Abschnitt stellen wir die grundlegende mathematische Sprache und Notation zusammen, die für jede Art von heutiger Mathematik

Mehr