Seminar Werkzeuggestütze. tze Softwareprüfung. fung. Slicing. Sebastian Meyer

Größe: px
Ab Seite anzeigen:

Download "Seminar Werkzeuggestütze. tze Softwareprüfung. fung. Slicing. Sebastian Meyer"

Transkript

1 Seminar Werkzeuggestütze tze Softwareprüfung fung Slicing Sebastian Meyer

2 Überblick Einführung und Begriffe Static Slicing Dynamic Slicing Erweiterte Slicing-Techniken Fazit 2

3 Was ist Slicing?? (I) Program slicing is a method for automatically decomposing programs by analyzing their data flow and control flow. Starting from a subset of a program s behavior, slicing reduces that program to a minimal form which still produces that behavior. The reduced program, called a slice, is an independent program guaranteed to represent faithfully the original program within the domain of the specified subset of behavior. Mark Weiser,

4 Was ist Slicing?? (II) Slicing wurde 1979 erstmals von Weiser definiert. Mark Weiser, Program slices, formals, psychological and practical investigation of an automatic program abstraction method. PhD thesis, University of Michigan, Ann Arbor, Slicing beantwortet allgemein die Frage welche Anweisung beeinflusst die Berechnung einer anderen Anweisung 4

5 Beispiel 1: int OddNumsSum(int n) 2: { 3: int i = 0; 4: int sum = 0; 5: while (i <= n) 6: { 7: if (i % 2 == 1) 8: sum++; 9: i++; 10: } 11: return sum; 12: } 5

6 Begriffe (I) Slice Ein Slice ist eine Menge von Anweisungen, eines Programms P, die eine Variable v an einem bestimmten Programmpunkt s beeinflussen oder von ihr beeinflusst werden. Slicing Slicing ist der Vorgang des Berechnens eines Slice. 6

7 Begriffe (II) Slicing-Kriterium Das Tupel aus Variable v und deren Programmpunkt s wird Slicing-Kriterium (v,s) genannt Startkonfiguration Die Menge der Werte aller Parameter eines Programms, welche beim Programmaufruf übergeben bzw. während des Programmablaufs eingelesen werden können. 7

8 Beispiel zu den Begriffen 1: int OddNumsSum(int n) 2: { int OddNumsSum(int n) { 3: int i = 0; int i = 0; 4: int sum = 0; while (i <= n) 5: while (i <= n) { 6: { Slicing i++; 7: if (i % 2 == 1) } 8: sum++; } 9: i++; 10: } Slice 11: return sum; (i,9) n=6 12: } Slicing-Kriterium Start-Konfiguration Programm 8

9 Arten von Slicing (I) Static Slicing Die Analyse erfolgt unabhängig von einer bestimmten Startkonfiguration (Exact) Dynamic Slicing Die Analyse erfolgt abhängig von einer bestimmten Startkonfiguration 9

10 Arten von Slicing (II) Backward Slicing Beinhaltet alle Anweisungen, die die Variable des Slicing-Kriteriums beeinflussen können. Forward Slicing Beinhaltet alle Anweisungen, die von der Variable des Slicing-Kriteriums beeinflusst werden. 10

11 Einsatzzwecke von Slicing Debuggen Testen Zusammenfügen zweier Programme Software Wartung Compilerbau 11

12 Static Slicing (I) Die Analyse erfolgt unabhängig von einer bestimmten Startkonfiguration. Berechnung des Control flow graphs (CFG) 12

13 Control flow graph (I) Ein CFG ist ein gerichteter Graph Die Knoten repräsentieren die Anweisungen des Programms Die Kanten repräsentieren den Kontrollfluss des Programms Zu jedem Knoten kann notiert werden, welche Variablen definiert oder geschrieben werden (def) und welche Variablen gelesen werden (ref). Bei Verzweigungen wird jede ausgehende Kante mit einem eindeutigen Label beschriftet. 13

14 Control flow graph (II) START int i = 0; def = {i} false int sum = 0; while (i <= n ) true if (i % 2 == 1) false i++; return sum; EXIT def = {sum} ref = {i,n} true ref = {i} sum++; def = {sum} def = {i} ref = {sum} 14

15 Static Slicing (II) Die Analyse erfolgt unabhängig von einer bestimmten Startkonfiguration. Berechnung des Control flow graphs (CFG) Berechnung des Program dependence graph (PDG) 15

16 Program dependence graph (I) Besteht aus dem Data dependence graph Ein gerichteter Graph G, dessen Knoten N die Anweisungen des Programms enthalten. Die Kanten K geben die Abhängigkeit der Variablenbenutzung an Berechnungsvorschrift: 1. Weg p von n nach m im CFG (n * m) 2. Variable v, mit v def(n) und v ref(m) 3. Knoten k n im Pfad p gilt: v def(k) 16

17 Program dependence graph (II) int i = 0; int sum = 0; while (i <= n ) return sum; if (i % 2 == 1) i++; sum++; 17

18 Program dependence graph (III) Besteht aus dem Control dependence graph Ein gerichteter Graph G, dessen Knoten N die Anweisungen des Programms plus den Startpunkt enthalten. Die Kanten geben die Abhängigkeiten der Anweisungen untereinander an. 18

19 Program dependence graph (IV) Control dependence graph: Berechnung Erweitern des CFG um eine Kante von Start zu Stop Berechnung der Post-Dominatoren Berechnung des CDG 1. Pfad p von n nach m im CFG (n * m) 2. m ist ein Post-Dominator für jeden Knoten in p, außer für n 3. m ist kein Post-Dominator für n. 19

20 Program dependence graph (V) 20

21 Program dependence graph (VI) Das Zusammenfügen des Control und des Data dependence graphs ergibt den Program dependence graph. 21

22 Static Slicing (III) Die Analyse erfolgt unabhängig von einer bestimmten Startkonfiguration. Berechnung des Control flow graphs (CFG) Berechnung des Program dependence graph (PDG) Berechnung des static slice aus dem PDG 22

23 Static Slicing (IV) Nach Berechnung des PDG lässt sich aus diesem ein static slice berechnen. Ein backward slice S(n) über den PDG am Knoten n besteht aus allen Knoten m, von denen n (transitiv) abhängt: S(n) = {m m * n} Ein forward slice S F (n) über den PDG am Knoten n besteht aus allen Knoten m, die (transitiv) von n abhängen: S F (n) = {m n * m} n ist dann das Slicing-Kriterium. 23

24 Static Slicing (V) 1: int OddNumsSum(int n) 2: { 3: int i = 0; 4: 5: while (i <= n) 6: { 7: 8: 9: i++; 10: } 11: 12: } 1: int OddNumsSum(int n) 2: { 3: 4: 5: while (i <= n) 6: { 7: if (i % 2 == 1) 8: sum++; 9: i++; 10: } 11: return sum; 12: } Static Backward Slice für (i,8) Static Forward Slice für (i,8) 24

25 Fortgeschrittenes Static Slicing Beachtung von Nebeneffekten bei Strukturen/Arrays Pointer-Arithmetik Slicing über mehrere Prozeduren Slicing von Vererbungen Slicing von Nebenläufigen Programmen 25

26 Fazit Static Slicing Aufwand hängt im wesentlichen von der Anzahl der verwendeten Variablen und den Knoten und Kanten im CFG ab. Die Überführung in einen PDC kann leicht mittels syntaktischer Analyse vorgenommen werden. Dies ist ein Vorteil bei der Berechnung von mehreren Slices Die Berechnung eines static backward slices kann immer in endlich vielen Schritten vorgenommen werden. Static Slicing liefert eine Abschätzung nach oben. 26

27 Dynamic Slicing Zusätzlich zum Slicing-Kriterium muss auch noch Startkonfiguration berücksichtigt werden. Abhängig von der Startkonfiguration kann für ein Kriterium verschiedene Slices berechnet werden Es muss eine semantische Analyse vorgenommen werden um einen vollständigen Program-Execution-Trace zu erhalten Probleme bei Endlosschleifen Aus dem Programm und dem Program-Execution-Trace kann für die spezielle Startkonfiguration zu einem Slicing-Kriterium der dynamic slice berechnet werden. 27

28 Unterschiedliche Startkonfigurationen 1: int OddNumsSum(int n) 2: { 3: int i = 0; 4: int sum = 0; 5: while (i <= n) 6: { 7: if (i % 2 == 1) 8: 9: i++; 10: } 11: return sum; 12: } 1: int OddNumsSum(int n) 2: { 3: int i = 0; 4: int sum = 0; 5: while (i <= n) 6: { 7: if (i % 2 == 1) 8: sum++; 9: i++; 10: } 11: return sum; 12: } Dynamic Backward Slice für (sum, 10) und n=0 Dynamic Backward Slice für (sum, 10) und n=1 28

29 Program execution trace Problem: Berechnung des PET Ideen: Ergänzung des Programms um Anweisungen zur Erzeugung eines PET Interpretation des Quellcodes Bei Anweisungen mit Nebeneffekten kann es aufgrund der schwierigen Berechnung zu Ungenauigkeiten kommen. 29

30 Fazit Dynamic Slicing Der Aufwand zur Berechnung des PET kann schnell sehr gross werden. Durch die unbedingte Ausführung des Programms kann der Aufwand so groß werden, dass er in keinem Verhältnis zur eingesetzten Zeit steht. Dynamic Slicing liefert eine Abschätzung nach unten. 30

31 Operationen auf Slices Schnitt zwischen zwei Slices Ergibt die gemeinsam genutzten Anweisungen. Schnitt zwischen Forward und Backward Slice Anweisungen, die eine Eingabe zu einer Ausgabe transformiert. 31

32 Approximate Dynamic Slicing Mischung aus Static Slicing und (Exact) Dynamic Slicing Zunächst wird der PET gebildet Darauf wird ein Static Slice für das Slicing-Kriterium berechnet 32

33 Fazit Static slicing kann mit geringem Aufwand berechnet werden, Slices sind jedoch nicht unbedingt minimal. Dynamic slicing liefert genauere Slices hat aber teilweise einen unverhältnismäßigen Berechnungsaufwand. Slicing ist immer noch Gegenstand aktueller Forschung. Static Slicing ist Handwerkszeug des Compilerbaus. 33

Software Maintenance. Program Slicing im Software Maintenance. Fehlerlokalisierung UNIV.-PROF. DIPL.-ING. DR. FRANZ WOTAWA

Software Maintenance. Program Slicing im Software Maintenance. Fehlerlokalisierung UNIV.-PROF. DIPL.-ING. DR. FRANZ WOTAWA Software Maintenance UNIV.-PROF. DIPL.-ING. DR. FRANZ WOTAWA Technische Universität Graz, Institut für Softwaretechnologie wotawa@ist.tugraz.at Program Slicing im Software Maintenance Program Slicing kann

Mehr

Software Engineering. Statische Analyse! Kapitel 11

Software Engineering. Statische Analyse! Kapitel 11 Martin Glinz Thomas Fritz Software Engineering Kapitel 11 Statische Analyse 2005, 2013 Martin Glinz. Alle Rechte vorbehalten. Speicherung und Wiedergabe für den persönlichen, nicht kommerziellen Gebrauch

Mehr

Programmierkurs Java

Programmierkurs Java Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen

Mehr

VBA-Programmierung: Zusammenfassung

VBA-Programmierung: Zusammenfassung VBA-Programmierung: Zusammenfassung Programmiersprachen (Definition, Einordnung VBA) Softwareentwicklung-Phasen: 1. Spezifikation 2. Entwurf 3. Implementierung Datentypen (einfach, zusammengesetzt) Programmablaufsteuerung

Mehr

Advanced Slicing of Sequential and Concurrent Programs

Advanced Slicing of Sequential and Concurrent Programs Advanced Slicing of Sequential and Concurrent Programs Jens Krinke Universität Passau Abstract: Program Slicing ist eine Technik zur Identifikation von Anweisungen, die andere Anweisungen beeinflussen

Mehr

Programmverstehen. Andreas Zeller Lehrstuhl für Softwaretechnik Universität des Saarlandes, Saarbrücken 2005-12-12

Programmverstehen. Andreas Zeller Lehrstuhl für Softwaretechnik Universität des Saarlandes, Saarbrücken 2005-12-12 Programmverstehen Andreas Zeller Lehrstuhl für Softwaretechnik Universität des Saarlandes, Saarbrücken 2005-12-12 Software Reengineering An der Universität lernen Sie in der Regel das Entwickeln eines

Mehr

SOMA Reverse Engineering

SOMA Reverse Engineering SOMA Reverse Engineering Univ.Prof. Dr. Franz Wotawa Institut für Softwaretechnologie wotawa@ist.tugraz.at Inhalt Was versteht man unter Reverse Engineering? Techniken/Methoden Probleme VU Software Maintenance

Mehr

13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems

13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems 13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems 13.1 Modellierung des Rucksackproblems 13.2 Lösung mit Greedy-Algorithmus 13.3 Lösung mit Backtracking 13.4 Lösung mit Dynamischer Programmierung

Mehr

Codes und Informationsgehalt

Codes und Informationsgehalt Aufgaben 2 Codes und Informationsgehalt Auf wie viele Dezimalziffern genau können vorzeichenlose ganze Zahlen in einem binären Code der Länge 32 bit dargestellt werden? 2 Codes und Informationsgehalt Auf

Mehr

PHP 5.4 ISBN 978-3-86249-327-2. Stephan Heller, Andreas Dittfurth 1. Ausgabe, September 2012. Grundlagen zur Erstellung dynamischer Webseiten GPHP54

PHP 5.4 ISBN 978-3-86249-327-2. Stephan Heller, Andreas Dittfurth 1. Ausgabe, September 2012. Grundlagen zur Erstellung dynamischer Webseiten GPHP54 PHP 5.4 Stephan Heller, Andreas Dittfurth 1. Ausgabe, September 2012 Grundlagen zur Erstellung dynamischer Webseiten ISBN 978-3-86249-327-2 GPHP54 5 PHP 5.4 - Grundlagen zur Erstellung dynamischer Webseiten

Mehr

Software Engineering. Statische Analyse! Kapitel 11

Software Engineering. Statische Analyse! Kapitel 11 Martin Glinz Harald Gall Software Engineering Kapitel 11 Statische Analyse! 2009-2011 Harald Gall. Alle Rechte vorbehalten. Speicherung und Wiedergabe für den persönlichen, nicht kommerziellen Gebrauch

Mehr

Klausurteilnehmer. Wichtige Hinweise. Note: Klausur Informatik Programmierung, 17.09.2012 Seite 1 von 8 HS OWL, FB 7, Malte Wattenberg.

Klausurteilnehmer. Wichtige Hinweise. Note: Klausur Informatik Programmierung, 17.09.2012 Seite 1 von 8 HS OWL, FB 7, Malte Wattenberg. Klausur Informatik Programmierung, 17.09.2012 Seite 1 von 8 Klausurteilnehmer Name: Matrikelnummer: Wichtige Hinweise Es sind keinerlei Hilfsmittel zugelassen auch keine Taschenrechner! Die Klausur dauert

Mehr

Softwaretechnik 1 Tutorium

Softwaretechnik 1 Tutorium Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Softwaretechnik 1 Tutorium 06. Juli 2009 Matthias Thoma (s_thoma@ira.uka.de) Heute Übungsblatt Nr. 4 + Übungsblatt Nr. 5 Softwarequalität

Mehr

Teil 2 - Softwaretechnik. Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2. Übersicht. Softwaretechnik

Teil 2 - Softwaretechnik. Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2. Übersicht. Softwaretechnik Grundlagen der Programmierung 1 Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2 Softwaretechnik Prof. Dr. O. Drobnik Professur Architektur und Betrieb verteilter Systeme Institut für

Mehr

4 Codierung nach Viginere (Lösung)

4 Codierung nach Viginere (Lösung) Kapitel 4 Codierung nach Viginere (Lösung) Seite 1/14 4 Codierung nach Viginere (Lösung) 4.1 Einführung Blaise de Vigenère lebte von 1523 bis 1596 in Frankreich und war nach dem Studium bei verschiedenen

Mehr

Übersicht. Schleifen. Schleifeninvarianten. Referenztypen, Wrapperklassen und API. 9. November 2009 CoMa I WS 08/09 1/15

Übersicht. Schleifen. Schleifeninvarianten. Referenztypen, Wrapperklassen und API. 9. November 2009 CoMa I WS 08/09 1/15 Übersicht Schleifen Schleifeninvarianten Referenztypen, Wrapperklassen und API CoMa I WS 08/09 1/15 CoMa I Programmierziele Linux bedienen Code umschreiben strukturierte Datentypen Anweisungen und Kontrollstrukturen

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 10 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Satz Sei G = (V, Σ, R, S) eine kontextfreie

Mehr

Java Einführung Operatoren Kapitel 2 und 3

Java Einführung Operatoren Kapitel 2 und 3 Java Einführung Operatoren Kapitel 2 und 3 Inhalt dieser Einheit Operatoren (unär, binär, ternär) Rangfolge der Operatoren Zuweisungsoperatoren Vergleichsoperatoren Logische Operatoren 2 Operatoren Abhängig

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

Kapitel MK:IV. IV. Modellieren mit Constraints

Kapitel MK:IV. IV. Modellieren mit Constraints Kapitel MK:IV IV. Modellieren mit Constraints Einführung und frühe Systeme Konsistenz I Binarization Generate-and-Test Backtracking-basierte Verfahren Konsistenz II Konsistenzanalyse Weitere Analyseverfahren

Mehr

Aufgabe 3: Übersetzen Sie die folgenden natürlich-sprachlichen Aussagen in die Sprache der

Aufgabe 3: Übersetzen Sie die folgenden natürlich-sprachlichen Aussagen in die Sprache der Aufgabe 1: Sind die folgenden Abbildungen jeweils injektiv, surjektiv und/oder bijektiv? (a) f 1 (x) = x, mit f 1 : R + R + (b) f (x) = x, mit f : R R (c) f 3 (x) = x, mit f 3 : R R (d) f 4 (x) = 3x, mit

Mehr

Programmiersprachen Einführung in C. Unser erstes C-Programm. Unser erstes C-Programm. Unser erstes C-Programm. Unser erstes C-Programm

Programmiersprachen Einführung in C. Unser erstes C-Programm. Unser erstes C-Programm. Unser erstes C-Programm. Unser erstes C-Programm Programmiersprachen Einführung in C Teil 2: Prof. Dr. int main (int argc, char *argv[]) int sum = 0; for (i = 0; i

Mehr

Beispiel 19. December 4, 2009

Beispiel 19. December 4, 2009 Beispiel 9 December 4, 2009 Computermathematik (für Informatik) 4. Übungsblatt (Musterlösung) 2. 2. 2009 Die heutigen Übungen sollen mit dem Computeralgebrasystem Sage gelöst werden. Die Lösung der Beispiele

Mehr

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de Wiederholung: Anfragegraph Anfragen dieses Typs können als Graph dargestellt werden: Der

Mehr

Die LogTrace-Bibliothek

Die LogTrace-Bibliothek Die LogTrace-Bibliothek Debugging-Hilfsmittel Weiteres Beispiel Motivation void Func() { FunktionLog var( Func );... Func2();... Ausgabe sollte hier sein: >Func > Func2 < Func2 < Func void Func2() { FunktionLog

Mehr

Whitebox-Tests: Allgemeines

Whitebox-Tests: Allgemeines -Tests: Allgemeines Andere Bezeichnungen Logic driven, Strukturelles Der Tester entwickelt Testfälle aus einer Betrachtung der Ablauflogik des Programms unter Berücksichtigung der Spezifikation Intuitiv

Mehr

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen Binäre Bäume 1. Allgemeines Binäre Bäume werden grundsätzlich verwendet, um Zahlen der Größe nach, oder Wörter dem Alphabet nach zu sortieren. Dem einfacheren Verständnis zu Liebe werde ich mich hier besonders

Mehr

Algorithmische Kernsprache. Zuweisung, einfache und bedingte Anweisung, Blöcke, Schleifen, return, debugging.

Algorithmische Kernsprache. Zuweisung, einfache und bedingte Anweisung, Blöcke, Schleifen, return, debugging. Algorithmische Kernsprache Zuweisung, einfache und bedingte Anweisung, Blöcke, Schleifen, return, debugging. Ausdrücke Anweisungen Ausdrücke bezeichnen einen Wert Kontext stellt Werte von Variablen Werte

Mehr

Kapitel 7: Formaler Datenbankentwurf

Kapitel 7: Formaler Datenbankentwurf 7. Formaler Datenbankentwurf Seite 1 Kapitel 7: Formaler Datenbankentwurf Die Schwierigkeiten der konzeptuellen Modellierung sind zu einem großen Teil dadurch begründet, dass sich die relevanten Strukturen

Mehr

1. LPC - Lehmanns Programmier Contest - Lehmanns Logo

1. LPC - Lehmanns Programmier Contest - Lehmanns Logo Aufgabe ist die Entwicklung einer vereinfachten Variante der beliebten Programmiersprache Logo. Die Aufgabe ist in drei Stufen zu erledigen, von der wir zunächst nur die erste Stufe bekannt geben. Die

Mehr

Einfache Arrays. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Einfache Arrays. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative student"

Mehr

Java 7. Elmar Fuchs Grundlagen Programmierung. 1. Ausgabe, Dezember 2011 JAV7

Java 7. Elmar Fuchs Grundlagen Programmierung. 1. Ausgabe, Dezember 2011 JAV7 Java 7 Elmar Fuchs Grundlagen Programmierung 1. Ausgabe, Dezember 2011 JAV7 5 Java 7 - Grundlagen Programmierung 5 Kontrollstrukturen In diesem Kapitel erfahren Sie wie Sie die Ausführung von von Bedingungen

Mehr

Contents. Abstract viii Kurzfassung ix. 1 Introduction Motivation Goals Outline 2

Contents. Abstract viii Kurzfassung ix. 1 Introduction Motivation Goals Outline 2 v Acknowledgements I want to thank my advisor Prof. H. Mössenböck for a liberal supervision of this project and for his ongoing encouragement and patience. The Oberon System was an excellent working tool

Mehr

Prozedurale Datenbank- Anwendungsprogrammierung

Prozedurale Datenbank- Anwendungsprogrammierung Idee: Erweiterung von SQL um Komponenten von prozeduralen Sprachen (Sequenz, bedingte Ausführung, Schleife) Bezeichnung: Prozedurale SQL-Erweiterung. In Oracle: PL/SQL, in Microsoft SQL Server: T-SQL.

Mehr

Maximizing the Spread of Influence through a Social Network

Maximizing the Spread of Influence through a Social Network 1 / 26 Maximizing the Spread of Influence through a Social Network 19.06.2007 / Thomas Wener TU-Darmstadt Seminar aus Data und Web Mining bei Prof. Fürnkranz 2 / 26 Gliederung Einleitung 1 Einleitung 2

Mehr

Ausgewählte Kapitel eingebetteter Systeme

Ausgewählte Kapitel eingebetteter Systeme Ausgewählte Kapitel eingebetteter Systeme Verfahren zur Bestimmung der WCET Andreas Kaiser Friedrich-Alexander University Erlangen-Nuremberg Übersicht Wieso WCET Berechnung? Methoden zur Bestimmung der

Mehr

Informatik. Studiengang Chemische Technologie. Michael Roth WS 2012/2013. michael.roth@h-da.de. Hochschule Darmstadt -Fachbereich Informatik-

Informatik. Studiengang Chemische Technologie. Michael Roth WS 2012/2013. michael.roth@h-da.de. Hochschule Darmstadt -Fachbereich Informatik- Informatik Studiengang Chemische Technologie Michael Roth michael.roth@h-da.de Hochschule Darmstadt -Fachbereich Informatik- WS 2012/2013 Inhalt Teil VII Einstieg in Java I Michael Roth (h_da) Informatik

Mehr

Information Systems Engineering Seminar

Information Systems Engineering Seminar Information Systems Engineering Seminar Algorithmische Prüfung der Planarität eines Graphen Marcel Stüttgen, 22.10.2012 FH AACHEN UNIVERSITY OF APPLIED SCIENCES 1 Planarität - Definition Ein Graph heißt

Mehr

Grundlagen der Programmierung 2. Bäume

Grundlagen der Programmierung 2. Bäume Grundlagen der Programmierung 2 Bäume Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 24. Mai 2006 Graphen Graph: Menge von Knoten undzugehörige (gerichtete oder ungerichtete)

Mehr

Modellierung biologischer. Christian Maidorfer Thomas Zwifl (Seminar aus Informatik)

Modellierung biologischer. Christian Maidorfer Thomas Zwifl (Seminar aus Informatik) Modellierung biologischer Prozesse Christian Maidorfer Thomas Zwifl (Seminar aus Informatik) Überblick Einführung Arten von Modellen Die stochastische Pi-Maschine Warum Modelle Die Biologie konzentriert

Mehr

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Rekursion Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-12-13/infoeinf WS12/13 Aufgabe 1: Potenzfunktion Schreiben Sie eine Methode, die

Mehr

Memory Models. 17. September 2012

Memory Models. 17. September 2012 Memory Models 17. September 2012 Here Be Dragons In addition, programming idioms used by some programmers and used within Sun s Java Development Kit is not guaranteed to be valid according the existing

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

Gliederung. Tutorium zur Vorlesung. Gliederung. Gliederung. 1. Gliederung der Informatik. 1. Gliederung der Informatik. 1. Gliederung der Informatik

Gliederung. Tutorium zur Vorlesung. Gliederung. Gliederung. 1. Gliederung der Informatik. 1. Gliederung der Informatik. 1. Gliederung der Informatik Informatik I WS 2012/13 Tutorium zur Vorlesung 1. Alexander Zietlow zietlow@informatik.uni-tuebingen.de Wilhelm-Schickard-Institut für Informatik Eberhard Karls Universität Tübingen 11.02.2013 1. 2. 1.

Mehr

Grundlagen zur nebenläufigen Programmierung in Java

Grundlagen zur nebenläufigen Programmierung in Java Grundlagen zur nebenläufigen Programmierung in Java Karlsruher Entwicklertag 2013 5. Juni 2013 Referent: Christian Kumpe Inhalt des Vortrags Was zeigt dieser Vortrag? Ein einfaches Beispiel mit allerlei

Mehr

Vorlesung Theoretische Informatik

Vorlesung Theoretische Informatik Vorlesung Theoretische Informatik Automaten und Formale Sprachen Hochschule Reutlingen Fakultät für Informatik Masterstudiengang Wirtschaftsinformatik überarbeitet von F. Laux (Stand: 09.06.2010) Sommersemester

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

Einführung Datentypen Verzweigung Schleifen Funktionen Dynamische Datenstrukturen. Java Crashkurs. Kim-Manuel Klein (kmk@informatik.uni-kiel.

Einführung Datentypen Verzweigung Schleifen Funktionen Dynamische Datenstrukturen. Java Crashkurs. Kim-Manuel Klein (kmk@informatik.uni-kiel. Java Crashkurs Kim-Manuel Klein (kmk@informatik.uni-kiel.de) May 7, 2015 Quellen und Editoren Internet Tutorial: z.b. http://www.java-tutorial.org Editoren Normaler Texteditor (Gedit, Scite oder ähnliche)

Mehr

Einführung in die Java- Programmierung

Einführung in die Java- Programmierung Einführung in die Java- Programmierung Dr. Volker Riediger Tassilo Horn riediger horn@uni-koblenz.de WiSe 2012/13 1 Rückblick Datentypen (int, long, double, boolean, String) Variablen und Variablendeklarationen

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme WBS5 Slide 1 Wissensbasierte Systeme Vorlesung 5 vom 17.11.2004 Sebastian Iwanowski FH Wedel WBS5 Slide 2 Wissensbasierte Systeme 1. Motivation 2. Prinzipien und Anwendungen 3. Logische Grundlagen 4. Suchstrategien

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung)

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) Wintersemester 2007/08 Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) (Vorlesung) Prof. Dr. Günter Rudolph Fakultät für Informatik Lehrstuhl

Mehr

Business Process Execution Language for Web Services (BPEL4WS)

Business Process Execution Language for Web Services (BPEL4WS) Hauptseminar und Vorlesung Web Services WS 2003/04 Business Process Execution Language for Web Services (BPEL4WS) Patrick Sauter 2/17 Vortrag - Überblick Definition, Zielsetzung und Allgemeines einfacher

Mehr

188.154 Einführung in die Programmierung für Wirtschaftsinformatik

188.154 Einführung in die Programmierung für Wirtschaftsinformatik Beispiel 1 Vererbung (Liste) Gegeben sind die beiden Klassen ListNode und PersonNode. 188.154 Einführung in die Programmierung für Wirtschaftsinformatik Wiederholung, Prüfungsvorbereitung Monika Lanzenberger

Mehr

Lehrstuhl Informatik VI Grundzüge der Informatik * WS 2008/2009 Prof. Dr. Joachim Biskup

Lehrstuhl Informatik VI Grundzüge der Informatik * WS 2008/2009 Prof. Dr. Joachim Biskup Universität Dortmund Lehrstuhl Informatik VI Grundzüge der Informatik * WS 28/29 Prof. Dr. Joachim Biskup Leitung der Übungen: Arno Pasternak Lösungs-Ideen Übungsblatt 6 A: Grammatiken, Syntaxdiagramme

Mehr

Nachweis der Verhaltensäquivalenz von Feldbus-Komponenten auf unterschiedlichen Abstraktionsebenen

Nachweis der Verhaltensäquivalenz von Feldbus-Komponenten auf unterschiedlichen Abstraktionsebenen Nachweis der Verhaltensäquivalenz von Feldbus-Komponenten auf unterschiedlichen Abstraktionsebenen Diplomarbeit Martin Pitt martin@piware.de Technische Universität Dresden 11. November 2004 1 Aufgabenstellung

Mehr

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Kapitel 4 Dynamische Optimierung Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Inhalt Inhalt 4 Dynamische Optimierung Allgemeiner Ansatz und Beispiele Stochastische dynamische

Mehr

Funktionale Programmierung. Funktionale Programmierung: Vorlesungsüberblick. Eigenschaften rein funktionaler Programmierung

Funktionale Programmierung. Funktionale Programmierung: Vorlesungsüberblick. Eigenschaften rein funktionaler Programmierung Funktionale Programmierung 1 Funktionale Programmierung: Vorlesungsüberblick 1. Funktionale Programmierung Prinzipien funktionaler Programmierung Funktionale Programmierung in prozeduralen Sprachen Rekursive

Mehr

Parallele und funktionale Programmierung Wintersemester 2013/14. 8. Übung Abgabe bis 20.12.2013, 16:00 Uhr

Parallele und funktionale Programmierung Wintersemester 2013/14. 8. Übung Abgabe bis 20.12.2013, 16:00 Uhr 8. Übung Abgabe bis 20.12.2013, 16:00 Uhr Aufgabe 8.1: Zeigerverdopplung Ermitteln Sie an folgendem Beispiel den Rang für jedes Listenelement sequentiell und mit dem in der Vorlesung vorgestellten parallelen

Mehr

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen aussagenlogischer Regeln: Wissensbasis (Kontextwissen): Formelmenge,

Mehr

Programmieren in C. Felder, Schleifen und Fließkommaarithmetik. Prof. Dr. Nikolaus Wulff

Programmieren in C. Felder, Schleifen und Fließkommaarithmetik. Prof. Dr. Nikolaus Wulff Programmieren in C Felder, Schleifen und Fließkommaarithmetik Prof. Dr. Nikolaus Wulff Addition von Zahlen 1 2 3 4 5 #include int main() { int x,y,z,sum; x = 1; y = 2; z = 4; sum = x + y + z;

Mehr

Reaktive Programmierung Vorlesung 16 vom 14.07.2015: Theorie der Nebenläufigkeit

Reaktive Programmierung Vorlesung 16 vom 14.07.2015: Theorie der Nebenläufigkeit 18:13:55 2015-07-14 1 [16] Reaktive Programmierung Vorlesung 16 vom 14.07.2015: Theorie der Nebenläufigkeit Christoph Lüth & Martin Ring Universität Bremen Sommersemester 2015 2 [16] Organisatorisches

Mehr

2015-06-11 Tagesprogramm

2015-06-11 Tagesprogramm 1 2015-06-11 Tagesprogramm Design-by-Contract 2 Vertragspartner Anbieter (Server) bietet Leistungen (Services) an Kunde (Client) nimmt von Anbietern angebotene Leistungen in Anspruch Details der Inanspruchnahme

Mehr

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Datenstruktur BDD 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen)

Mehr

Petri-Netze / Eine Einführung (Teil 2)

Petri-Netze / Eine Einführung (Teil 2) Manuel Hertlein Seminar Systementwurf Lehrstuhl Theorie der Programmierung Wiederholung (1) Petri-Netz = bipartiter, gerichteter Graph Aufbau: Plätze (passive Komponenten) Transitionen (aktive Komponenten)

Mehr

Dynamische Programmierung. Problemlösungsstrategie der Informatik

Dynamische Programmierung. Problemlösungsstrategie der Informatik als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung

Mehr

Grundlagen der Programmierung Prof. H. Mössenböck. 6. Methoden

Grundlagen der Programmierung Prof. H. Mössenböck. 6. Methoden Grundlagen der Programmierung Prof. H. Mössenböck 6. Methoden Parameterlose Methoden Beispiel: Ausgabe einer Überschrift class Sample { static void printheader() { // Methodenkopf Out.println("Artikelliste");

Mehr

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell):

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell): Was bisher geschah deklarative Programmierung funktional: Programm: Menge von Termgleichungen, Term Auswertung: Pattern matsching, Termumformungen logisch: Programm: Menge von Regeln (Horn-Formeln), Formel

Mehr

Steht in der ersten Zeile #!/usr/bin/python und hat man die Ausführungsrechte gesetzt kann man es direkt ausführen.

Steht in der ersten Zeile #!/usr/bin/python und hat man die Ausführungsrechte gesetzt kann man es direkt ausführen. Python Unter Windows empfiehlt sich der Download von Python unter folgender URL, http:// www.python.org/download/. Linux Distributionen wie z.b. Ubuntu liefern Python direkt in Ihrer Paketverwaltung mit:

Mehr

Binäre lineare Optimierung mit K*BMDs p.1/42

Binäre lineare Optimierung mit K*BMDs p.1/42 Binäre lineare Optimierung mit K*BMDs Ralf Wimmer wimmer@informatik.uni-freiburg.de Institut für Informatik Albert-Ludwigs-Universität Freiburg Binäre lineare Optimierung mit K*BMDs p.1/42 Grundlagen Binäre

Mehr

Customization (Zuschneiden)

Customization (Zuschneiden) Customization (Zuschneiden) Anpassen der (Graph)Datenstruktur an die Anwendung. I Ziel: schnell, kompakt. I benutze Entwurfsprinzip: make the common case fast I Listen vermeiden Mögliches Problem: Software-Engineering-Alptraum

Mehr

Kurs 1613 Einführung in die imperative Programmierung

Kurs 1613 Einführung in die imperative Programmierung Aufgabe 1 Gegeben sei die Prozedur BubbleSort: procedure BubbleSort(var iofeld:tfeld); { var hilf:integer; i:tindex; j:tindex; vertauscht:boolean; i:=1; repeat vertauscht := false; for j := 1 to N - i

Mehr

Universität Karlsruhe (TH)

Universität Karlsruhe (TH) Universität Karlsruhe (TH) Institut für Innovatives Rehnen und Programmstrukturen (IPD) Übersetzerbau WS 2007/08 http://www.info.uni-karlsruhe.de/ Dozent: Prof. Dr.rer.nat. G. Goos goos@ipd.info.uni-karlsruhe.de

Mehr

Klausur in Programmieren

Klausur in Programmieren Studiengang Sensorik/Sensorsystemtechnik Note / normierte Punkte Klausur in Programmieren Winter 2009/2010, 18. Februar 2010 Dauer: 1,5h Hilfsmittel: Keine (Wörterbücher sind auf Nachfrage erlaubt) Name:

Mehr

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen Was bisher geschah Lernen: überwachtes Lernen korrigierendes Lernen bestärkendes Lernen unüberwachtes Lernen biologisches Vorbild neuronaler Netze: Neuron (Zellkörper, Synapsen, Axon) und Funktionsweise

Mehr

Vorkurs C++ Programmierung

Vorkurs C++ Programmierung Vorkurs C++ Programmierung Klassen Letzte Stunde Speicherverwaltung automatische Speicherverwaltung auf dem Stack dynamische Speicherverwaltung auf dem Heap new/new[] und delete/delete[] Speicherklassen:

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 22. Constraint-Satisfaction-Probleme: Kantenkonsistenz Malte Helmert Universität Basel 14. April 2014 Constraint-Satisfaction-Probleme: Überblick Kapitelüberblick

Mehr

Objektbasierte Entwicklung

Objektbasierte Entwicklung Embedded Software Objektbasierte Entwicklung Objektorientierung in C? Prof. Dr. Nikolaus Wulff Objektbasiert entwickeln Ohne C++ wird meist C im alten Stil programmiert. => Ein endlose while-schleife mit

Mehr

php Hier soll ein Überblick über das Erstellen von php Programmen gegeben werden. Inhaltsverzeichnis 1.Überblick...2 2.Parameterübergabe...

php Hier soll ein Überblick über das Erstellen von php Programmen gegeben werden. Inhaltsverzeichnis 1.Überblick...2 2.Parameterübergabe... php Hier soll ein Überblick über das Erstellen von php Programmen gegeben werden. Inhaltsverzeichnis 1.Überblick...2 2.Parameterübergabe...7 3.Zugriff auf mysql Daten...11 Verteilte Systeme: php.sxw Prof.

Mehr

Einführung in die Programmierung

Einführung in die Programmierung : Inhalt Einführung in die Programmierung Wintersemester 2008/09 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering Fakultät für Informatik TU Dortmund - mit / ohne Parameter - mit / ohne Rückgabewerte

Mehr

Programmiervorkurs WS 2012/2013. Schleifen und Methoden

Programmiervorkurs WS 2012/2013. Schleifen und Methoden Programmiervorkurs WS 2012/2013 Schleifen und Methoden Ein Befehl soll mehrfach ausgeführt werden, z.b.: public class MyCounter { System.out.println(1); Ein Befehl soll mehrfach ausgeführt werden, z.b.:

Mehr

AutoSPARQL. Let Users Query Your Knowledge Base

AutoSPARQL. Let Users Query Your Knowledge Base AutoSPARQL Let Users Query Your Knowledge Base Christian Olczak Seminar aus maschinellem Lernen WS 11/12 Fachgebiet Knowledge Engineering Dr. Heiko Paulheim / Frederik Janssen 07.02.2012 Fachbereich Informatik

Mehr

Seminar über aktuelle Forschungsthemen in der Algorithmik, Dozent Prof. Dr. Alt;

Seminar über aktuelle Forschungsthemen in der Algorithmik, Dozent Prof. Dr. Alt; Seminar über aktuelle Forschungsthemen in der Algorithmik, Dozent Prof. Dr. Alt Referent Matthias Rost 1 Einleitung Definitionen Maximaler Dynamischer Fluss Algorithmus von Ford-Fulkerson Techniken zur

Mehr

Parallele Algorithmen mit OpenCL. Universität Osnabrück, Henning Wenke, 2013-05-08

Parallele Algorithmen mit OpenCL. Universität Osnabrück, Henning Wenke, 2013-05-08 Parallele Algorithmen mit OpenCL Universität Osnabrück, Henning Wenke, 2013-05-08 Aufräumen Ressourcen in umgekehrter Abhängigkeitsreihenfolge freigeben Objekte haben Reference-Count (RC), initial 1 clrelease

Mehr

Perzentile mit Hadoop ermitteln

Perzentile mit Hadoop ermitteln Perzentile mit Hadoop ermitteln Ausgangspunkt Ziel dieses Projektes war, einen Hadoop Job zu entwickeln, der mit Hilfe gegebener Parameter Simulationen durchführt und aus den Ergebnissen die Perzentile

Mehr

Infrastructure as a Service (IaaS) Solutions for Online Game Service Provision

Infrastructure as a Service (IaaS) Solutions for Online Game Service Provision Infrastructure as a Service (IaaS) Solutions for Online Game Service Provision Zielsetzung: System Verwendung von Cloud-Systemen für das Hosting von online Spielen (IaaS) Reservieren/Buchen von Resources

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Funktionales Programmieren in Python

Funktionales Programmieren in Python Wintersemester 2008/2009 1 Funktionen sind Objekte 2 lambda Funktionen 3 apply 4 map 5 zip 6 filter 7 reduce 8 List Comprehension Funktionales Programmieren Wer nicht funktional programmiert, programmiert

Mehr

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS / KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

Mehr

17.1.2014 Einführung in die Programmierung Laborübung bei Korcan Y. Kirkici. 12.Übung 13.1. bis 17.1.2014

17.1.2014 Einführung in die Programmierung Laborübung bei Korcan Y. Kirkici. 12.Übung 13.1. bis 17.1.2014 17.1.2014 Einführung in die Programmierung Laborübung bei Korcan Y. Kirkici 12.Übung 13.1. bis 17.1.2014 1 BEFRAGUNG http://1.bp.blogspot.com/- waaowrew9gc/tuhgqro4u_i/aaaaaaaaaey/3xhl 4Va2SOQ/s1600/crying%2Bmeme.png

Mehr

Towards Dynamic Attack Recognition for SIEM. Stefan Langeder

Towards Dynamic Attack Recognition for SIEM. Stefan Langeder Towards Dynamic Attack Recognition for SIEM Stefan Langeder Stefan Langeder 2009-2012: IT Security FH St. Pölten 2012-2014: Information Security FH St. Pölten Seit 2013: Security Consultant ANLX Überblick

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 20.12.07 Bastian Molkenthin E-Mail: infotut@sunshine2k.de Web: http://infotut.sunshine2k.de Rückblick Semi-Thue-Systeme Ein Semi-Thue-System besteht

Mehr

Überblick. Lineares Suchen

Überblick. Lineares Suchen Komplexität Was ist das? Die Komplexität eines Algorithmus sei hierbei die Abschätzung des Aufwandes seiner Realisierung bzw. Berechnung auf einem Computer. Sie wird daher auch rechnerische Komplexität

Mehr

Eine Klasse beschreibt Objekte mit gleichen Attributen und Methoden.

Eine Klasse beschreibt Objekte mit gleichen Attributen und Methoden. Grundwissen Informatik Objekt Attribut Methoden Als Objekte bezeichnet man alle Gegenstände, Dinge, Lebewesen, Begriffe oder Strukturen unserer Welt ( Autos, Räume, Bakterien, Lehrer, Schüler, Kunden,

Mehr

1 Syntax von Programmiersprachen

1 Syntax von Programmiersprachen 1 Syntax von Programmiersprachen Syntax ( Lehre vom Satzbau ): formale Beschreibung des Aufbaus der Worte und Sätze, die zu einer Sprache gehören; im Falle einer Programmier-Sprache Festlegung, wie Programme

Mehr

BABOK Knowledge Area Requirements Analysis Modeling Techniques - Process Models - - State Diagrams - Holger Dexel, 26.02.2011

BABOK Knowledge Area Requirements Analysis Modeling Techniques - Process Models - - State Diagrams - Holger Dexel, 26.02.2011 BABOK Knowledge Area Requirements Analysis Modeling Techniques - Process Models - - State Diagrams - Holger Dexel, 26.02.2011 This presentation is build upon material of the Business Analysis Body of Knowledge

Mehr

Softwaremetriken verstehen und nutzen

Softwaremetriken verstehen und nutzen Softwaremetriken verstehen und nutzen Manuel Pichler http://manuel-pichler.de PHP Unconference Hamburg 12. September 2009 Über mich Manuel Pichler Total stolzer Papa Jahrgang 1978 Diplom Informatiker Softwarearchitekt

Mehr

Fachgebiet Informationssysteme Prof. Dr.-Ing. N. Fuhr. Programmierung Prof. Dr.-Ing. Nobert Fuhr. Übungsblatt Nr. 6

Fachgebiet Informationssysteme Prof. Dr.-Ing. N. Fuhr. Programmierung Prof. Dr.-Ing. Nobert Fuhr. Übungsblatt Nr. 6 Gudrun Fischer Sascha Kriewel programmierung@is.informatik.uni-duisburg.de Anmeldung zur Klausur! Übungsblatt Nr. 6 Um an der Klausur teilzunehmen, müssen sich Studierende der angewandten Informatik in

Mehr

Ergebnisse der Untersuchung zur Eignung einer Programmiersprache für die schnelle Softwareentwicklung kann der Informatikunterricht davon profitieren?

Ergebnisse der Untersuchung zur Eignung einer Programmiersprache für die schnelle Softwareentwicklung kann der Informatikunterricht davon profitieren? Ergebnisse der Untersuchung zur Eignung einer Programmiersprache für die schnelle Softwareentwicklung kann der Informatikunterricht davon profitieren? Zur Diplomarbeit: Eignet sich die Skriptsprache Python

Mehr