Business Intelligence: Entwicklungstendenzen und Herausforderungen Ein Blick in die Zukunft des Themas BI

Größe: px
Ab Seite anzeigen:

Download "Business Intelligence: Entwicklungstendenzen und Herausforderungen Ein Blick in die Zukunft des Themas BI"

Transkript

1 Business Intelligence: Entwicklungstendenzen und Herausforderungen Ein Blick in die Zukunft des Themas BI Prof. Dr. Jürgen Jacobs / Prof. Dr. Sven Piechota November

2 Anwendungsorientierte Brennpunkte von BI Ausgangslage Planung Glied derung Reporting und Analyse Technisch-analytische Innovationschancen Real Time und Active Datawarehousing Integration von CM- und DW-Systemen Advanced Analytics 2

3 Die Ausgangslage: 80% der Nutzer traditioneller BI könnten ohne BI leben 3

4 aber wahrscheinlich nicht ohne EXCEL. Of the 150 million business users of Microsoft Excel worldwide, a large proportion p are devoted to entering data by hand, extracting data manually from other systems, including data warehouses and even BI reports and performing as report servers. In fact, a great deal of the BI usage in organizations is driven by the need to populate spreadsheets, not replace them. Quelle: Neil Raden, Hired Brains, Inc.:Guided and Open-ended Analytics: Serving the Real Users of Business Intelligence, Sept

5 Die Ausgangslage: wie Manager die Deckung ihrer Informationsbedarfe sehen Wir brauchen ein flexibles System, das auch für die Zukunft tragfähig ist 5

6 und welche Bedenken anwendungsorientierte Wissenschaftler zu diesem Thema haben. Theorie Praxis 6

7 und lässt die Controller die Sinnfrage des tradierten Planungs- und Reportingvorgehens überdenken. Quelle: WHU Controllerpanel 7

8 Insgesamt wird die Lage für alle Unternehmensfunktionen nicht entspannter: aber gerade IT-Investitionen müssen sich mehr denn je rechnen Quelle: manager magazin 6/2009, S.84 8

9 Sogar die Finanzbereiche kommen unter Druck: die Zeit der Financial Transformation ist da Qualität Zeit Kosten struktur Kostenniveau Zuverlässige Informationen Kompatibel mit internationalen Standards Schnelle, e, aber zuverlässige Berichte Flexible Ad hoc Analysen Verkürzte Planungs / Forecastzyklen Hohe esteuerungs u relevanz der Informationen Wettbewerbsfähige Kosten Finanz/ Controlling Rationalisiert die Rationalisierer Umsetzung von regulatorischen Vorschriften (IFRS, BilMoG, SOX, Steuern, ) erfordert Ressourcen und treibt Kosten 9

10 Aktionsfeld Planung: Potenzial dynamischer Planungen freisetzen Schwachstelle Transformationsziele Handlungsfelder Prinzipien Planungseffizienz Hohe Detaillierung Lange Planungszeiten Hoher Aufwand Geringe Aktualität Ineffiziente IT-Unterstützung Reduktion Planungsaufwand und Planungszeit Aktualität Zielvorgaben und volatiler Daten Planungseffizienz Refokussierung und Entfeinerung Straffung und Parallelisierung Prozesse Harmonisierte IT-Architektur Vereinfachung Standardisierung + + Harmonisierung i + + Industrialisierung + + Planungseffektivität Fehlende Kopplung der Planungsschichten Wenig Top-down-Ziele Geringe Bewertungsfestigkeit für strategische Aktionen/Budgets (Markt) Maßnahmenintegration Systemintegration Motivation für profitables Wachstum Planungseffektivität Redesign Planungsarchitektur Operational strategy systems Rollierendes Forecasting KPI-Steuerung Wachstumsorientierte Incentives Zentralisierung i + Outsourcing 10

11 Konzeptionelle Fundierung der analytischen IT statt Applikations-Platonismus Architektur statt Applikations-Zoo Analytischer Service Quantitative Daten in Modellen gespeichert und mit unterschiedlichen Methoden analysiert Content Service Qualitative Daten in multimedialen Dokumenten gespeichert und mit AS verbunden ( Content Intelligence ) Planung / Budgetierung als analytische Kollaboration (CAP collaborative analytical processing) Operational BI am Beispiel smarttags Prozess Service Unterstützung Managementprozesse und Aufbereitung der Vordaten sowie Logistik und Dokumentation der analytischen / Content Information 11

12 Wichtige Bausteine eines Operational Strategy Systems Wesentliche Planungskomponenten Sales and Operational Planning Dezentrale, hochaktuelle Marktdaten t Intelligente Anpassung der kapazitativen Pläne Programm Planung Projektanalytik (z.b. Earned Value Method) Integration Business Plan und Budgetierung Parametrische Planung Makro-Treiberebene (Dynamic Strategy) t Mikro-Treiberebene (prozessorientierte Budgetierung) g) 12

13 Makro-Treiberebene: Dynamische Strategieabbildung durch Treibermodelle 13

14 Mikro-Treiberebene: TDABC (Zeitgesteuerte t t Prozesskostenrechnung) Sales Plan als Masterplan Business-Logik (Aktivitäten basiert) Kapazitäten (analytisch abgeleitet) 14

15 Prozessorientierte (Outputorientierte) Budgetierung 15

16 Big Points für eine technisch effiziente Planung Einfache Modellierung Endbenutzerorientierte, rasche Modellierung Real Time Kalkulation Änderungen spiegeln sich sofort auf allen Ebenen wieder Splashing Verdichtete Eingabe auf allen Ebenen sowie Verteilung über Schlüsseln Multicube Architektur Realitätsnahe Abbildung der Controllingstrukturen (die Welt ist kein Würfel) Waterfall modelling Modellierung ist keine rein zentral benötigte Funktionalität Planung per Web Eingabe von Planzahlen über Web - Komponenten 16

17 Transformationsansätze in Reporting und Analyse Schwachstelle Transformationsziele Handlungsfelder Prinzipien Effizienz Inkonsistenz der Daten Hoher manueller Aufwand für die Datenaufbereitung Geringe Zeit zur Analyse der Daten Heterogen Datenquellen aus IT-Systemen Integrierte und harmonisierte Reportingplattformen Intelligentes XLS- Reenginering Effizienz Single point of truth Reengineering XLS Industrialisierung Standardreporting Prozessintegration Bildung von Analytical Experts Vereinfachung + Standardisierung Harmonisierung i + + Industrialisierung + + Effektivität Aussagelose Managementberichte Trennung legale und Führungssicht Unausgewogene Zusammenstellung der Performancedaten Konzern Blindflug Konsistente, einheitliche Standardreports Intelligente Sonderanalysen Reduktion Ressourceneinsatz Effektivität Corporate Report Design Standards Integriertes Stakeholderreporting Differenzierte Unternehmenssteuerung Metadatenmanagement Zentralisierung i + + Outsourcing 17

18 Reengineering XLS Beispiel: Integrierter Group Reporting Prozess/Steuerbilanzierung Änderungen des bisherigen Ablaufes Primärerfassung im Web Plausibilisierung vor Ort Weltweites Echtzeit-Monitoring der Abläufe Integration Managerment- und Legalstrukturen Hohe Automatisierung Einheitliches Standardreporting Anzeige der aktuellen Daten und Kommentierungen Hochglanzberichte 18

19 Reportdesign als schweres, aber sinnvolles Thema verstehen (Design-Regeln) Informationsdichte schaffen 19

20 Big Points für ein effizientes Reporting 1 Pushed Reports Automatisches ti Generieren und Verteilen von Standardberichten db an Endanwender 2 Mehrsprachigkeit Anwendung und Strukturdaten in unterschiedlichen Sprachen darstellbar Verknüpfen mit Kontextdaten Kommentieren und Verweisen auf allen Ebenen des Modells 3 p Freier Reportaufbau Endanwender d gestalten sich individualisierte id i Bericht aus OLAP-Datenräume Zentral gesteuertes Stakeholder-Reporting Strukturierte Reports aus einer Datenquelle Excel-Reengineering Transformation von Excel-Modellen auf zentrale Anwendungen 20

21 Business Analytics 21

22 Business Analytics 22

23 Business Analytics 23

24 Big Points für eine effiziente Analyse 1 Controlling Intelligence Was das Data Warehouse für die Daten ist eine OLAM-Komponente für die Methoden 2 Multidimensionale Methodenvielfalt Ranking, ABC-, Bewegungs-, Deckungsbeitragsfluß-, Portfolio-, Zeitreihenanalyse, Benchmarking u.v.m. auf Basis multidimensionaler Datenräume zu integrieren Interactive Modelling Erweiterungen des Datenmodells um neue Erkentnisse on the fly Wiederverwendung von Analysesitzungen Abspeichern von wichtigen Einsichten in Analysesitzungen und Publizieren als Kontext Publizieren von Einsichten, nicht von Daten oder Formen Publizieren von Analysesitzungen als Dokument oder im Intranet 24

25 Anwendungsorientierte Brennpunkte von BI Ausgangslage Planung Glied derung Reporting und Analyse Technisch-analytische Innovationschancen Real Time und Active Datawarehousing Integration von CM- und DW-Systemen Advanced Analytics 25

26 Real Time und Active Datawarehousing: Niveaus der Prozessunterstützung Quelle: Eckerson: BEST PRACTICES IN OPERATIONAL BI: Converging Analytical and Operational Processes, TDWI BEST PRACTICES REPORT, 3 rd quarter (2007) 26

27 Ereignis-gesteuerte Analytik Quelle: Stefanov et al.: Bridging the Gap between Data Warehouses and Business Processes, Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing Conference (2005) 27

28 Complex Event Processing und Datenstromverarbeitung Quelle: Heinz/Greiner: Business Activity Monitoring mit Stream Mining am Fallbeispiel TeamBank AG, HMD - Praxis der Wirtschaftsinformatik 268 (2009)

29 Datenbank-Managementsysteme vs. Datenstrom-Managementsysteme DBMS DSMS persistente Relationen gelegentliche Abfragen unbegrenzter Plattenplatz l t geringe Aktualisierungsrate keine Echtzeit-Dienste transiente Ströme kontinuierliche Abfragen begrenzter Hauptspeicher sehr hohe Aktualisierungsrate Echtzeit-Anforderungen 29

30 Real Time und Active Datawarehousing: technologische Hebel Neue Speichertechnologien hauptspeicherbasierte Systeme, spaltenorientierte Speicherung Analyse von Datenströmen kontinuierlich eintreffende Daten Service-orientierte Softwarearchitekturen (SOA) Kapselung von Funktionalitäten in einzelne Services (Pull-Prinzip) Prinzip) Ereignis-gesteuerte Softwarearchitekturen (EDA) Steuerung des Zusammenspiels von Komponenten durch Ereignisse (Push- Prinzip) 30

31 Integration von CM- und DW-Systemen: Nutzung von Content auf dem Vormarsch Quelle: Russom: BI SEARCH AND TEXT ANALYTICS: New Additions to the BI Technology Stack, TDWI BEST PRACTICES REPORT, 2 rd quarter (2007) 31

32 Beispiel: Analyse von Nutzerbeiträgen aus Support-Foren Quelle: Löser et al.: Web 2 Business Analytics, Datenbank Spektrum 25 (2008)

33 Kontextualisiertes DW Quelle: Pérez-Martínez et. al.: Contextualizing data warehouses with documents, Decision Support Systems 45 (2008)

34 R-Cube-Abfrage Quelle: Pérez-Martínez et. al.: Contextualizing data warehouses with documents, Decision Support Systems 45 (2008)

35 Automatische Metadatenextraktion (Calais von Thomson Reuters) Quelle: 35

36 Beispiel: Semantik RDF-Ausgabe Quellen: und 36

37 Analytics as a Service (IBM s BISON) Quelle: Maximilien et al.: Text analytics and data access as services - a case study in transforming a legacy client-server text analytics workbench and framework to SOA. ICEIS (1) (2007)

38 Integration von CM- und DW-Systemen: technologische Hebel Nutzung von XML-Technologien Formalisierung und Strukturierung von Wissensbereichen Analyse und Modellierung unstrukturierter Daten Text Analytics/Mining, Multimedia Mining, Ontologien Service-orientierte Softwarearchitekturen (SOA) Kapselung von Funktionalitäten in einzelne Services (Pull-Prinzip) Prinzip) 38

39 Advanced Analytics: Next Generation DW-Plattformen Quelle: Russom: Next generation Data Warehouse Platforms, TDWI BEST PRACTICES REPORT, 4 th quarter (2009) 39

40 Mining von Bildern im Web über Text, Layout und Link-Strukturen Quelle: Cai et al.: Hierarchical Clustering of WWW Image Search Results Using Visual, Textual and Link Analysis, 12th ACM International Conference on Multimedia (2004) 40

41 Advanced Analytics: Analyse komplexer Objekte Analyse von Datenströmen kontinuierlicher Fluss großer Datenmengen Analyse geordneter Daten Sequenzen, Zeitreihen, Geoinformationen Analyse von Daten mit komplexen Verknüpfungen WWW, soziale Netze Analyse unstrukturierter Daten Text Mining, Multimedia Mining 41

42 Ein Schlusswort Die Zukunft des Themas BI verspricht spannend zu werden. Alle Prognosen jedoch sind mit Vorsicht zu genießen. 42

Cockpits und Standardreporting mit Infor PM 10 09.30 10.15 Uhr

Cockpits und Standardreporting mit Infor PM 10 09.30 10.15 Uhr Cockpits und Standardreporting mit Infor PM 10 09.30 10.15 Uhr Bernhard Rummich Presales Manager PM Schalten Sie bitte während der Präsentation die Mikrofone Ihrer Telefone aus, um störende Nebengeräusche

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

Komplexität der Information - Ausgangslage

Komplexität der Information - Ausgangslage Intuition, verlässliche Information, intelligente Entscheidung ein Reisebericht Stephan Wietheger Sales InfoSphere/Information Management Komplexität der Information - Ausgangslage Liefern von verlässlicher

Mehr

Business Intelligence

Business Intelligence Business Intelligence TOP Priorität für CIOs? Köln 08. Mai 2007 Dr. Wolfgang Martin Analyst, ibond Partner, Ventana Research Advisor und Research Advisor am Institut für Business Intelligence BI TOP Priorität

Mehr

Datawarehouse Architekturen. Einheitliche Unternehmenssicht

Datawarehouse Architekturen. Einheitliche Unternehmenssicht Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA

Mehr

Andreas Emhart Geschäftsführer Alegri International Group

Andreas Emhart Geschäftsführer Alegri International Group Andreas Emhart Geschäftsführer Alegri International Group Agenda Vorstellung Alegri International Überblick Microsoft Business Intelligence Sharepoint Standard Business Intelligence Tool Excel Service

Mehr

Big Data: Nutzen und Anwendungsszenarien. CeBIT 2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC

Big Data: Nutzen und Anwendungsszenarien. CeBIT 2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data: Nutzen und Anwendungsszenarien CeBIT 2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data steht für den unaufhaltsamen Trend, dass immer mehr Daten in Unternehmen anfallen und von

Mehr

Betrugserkennung mittels Big Data Analyse Beispiel aus der Praxis TDWI München, Juni 2014

Betrugserkennung mittels Big Data Analyse Beispiel aus der Praxis TDWI München, Juni 2014 Betrugserkennung mittels Big Data Analyse Beispiel aus der Praxis TDWI München, Juni 2014 Beratung Business Analytics Software Entwicklung Datenmanagement AGENDA Der Kreislauf für die Betrugserkennung

Mehr

Michael Bauer Niederlassungsleiter Köln

Michael Bauer Niederlassungsleiter Köln Click to edit Master title style 1 Michael Bauer Niederlassungsleiter Köln Hamburg, 18. Juni 2009 2009 IBM Corporation Agenda Click to edit Master title style 2 zur Person Wo, Warum.., Was - CPM liefert

Mehr

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle 40. Congress der Controller, Themenzentrum C, München Steffen Vierkorn, Geschäftsführer Qunis GmbH, Neubeuern Die

Mehr

IBM Smart Analytics System und IBM Cognos BI: Vom Single Point of Truth zum mobilen Cockpit - ein Praxisbericht beim Unternehmen Theo Förch

IBM Smart Analytics System und IBM Cognos BI: Vom Single Point of Truth zum mobilen Cockpit - ein Praxisbericht beim Unternehmen Theo Förch IBM Smart Analytics System und IBM Cognos BI: Vom Single Point of Truth zum mobilen Cockpit - ein Praxisbericht beim Unternehmen Theo Förch Markus Ruf, Geschäftsführer mip GmbH Jens Kretzschmar, Senior

Mehr

The Need for Speed. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor

The Need for Speed. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor The Need for Speed CeBIT 2011 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor The Need for Speed Industrialisierung, Agilität und Compliance die Rolle von Performance Management

Mehr

Business Intelligence - Wie passt das zum Mainframe?

Business Intelligence - Wie passt das zum Mainframe? Business Intelligence - Wie passt das zum Mainframe? IBM IM Forum, 15.04.2013 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Ressourcen bei BARC für Ihr Projekt Durchführung von internationalen Umfragen,

Mehr

Roundtable. Dashboards und Management Information. Rüdiger Felke / Christian Baumgarten 29.11.2011

Roundtable. Dashboards und Management Information. Rüdiger Felke / Christian Baumgarten 29.11.2011 Roundtable Dashboards und Management Information Rüdiger Felke / Christian Baumgarten 29.11.2011 Agenda Behind the Dashboards Was ist ein Dashboard und was ist es nicht? SAP BusinessObjects Dashboards

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

Business Intelligence Meets SOA

Business Intelligence Meets SOA Business Intelligence Meets SOA Microsoft People Ready Conference, München, Nov. 2007 Dr. Wolfgang Martin Analyst, ibond Partner, Ventana Research Advisor und Research Advisor am Institut für Business

Mehr

SOA im Zeitalter von Industrie 4.0

SOA im Zeitalter von Industrie 4.0 Neue Unterstützung von IT Prozessen Dominik Bial, Consultant OPITZ CONSULTING Deutschland GmbH Standort Essen München, 11.11.2014 OPITZ CONSULTING Deutschland GmbH 2014 Seite 1 1 Was ist IoT? OPITZ CONSULTING

Mehr

amball business-software SharePoint 2010 think big start small Marek Czarzbon marek@madeinpoint.com

amball business-software SharePoint 2010 think big start small Marek Czarzbon marek@madeinpoint.com amball business-software SharePoint 2010 think big start small Marek Czarzbon marek@madeinpoint.com Agenda Dipl. Inf. Marek Czarzbon marek@madeinpoint.com [Tschaschbon] Software Architekt, Consulting Workflow

Mehr

SPoT Agenda. Begrüßung und Vorstellung CAS AG. Markttrends aus Analystensicht. Big Data Trusted Information

SPoT Agenda. Begrüßung und Vorstellung CAS AG. Markttrends aus Analystensicht. Big Data Trusted Information SPoT Agenda Begrüßung und Vorstellung CAS AG Markttrends aus Analystensicht Big Data Trusted Information Lars Iffert, BARC GmbH Dr. Oliver Adamczak, IBM Deutschland GmbH Factory Ansatz für ETL-Prozesse

Mehr

Social Media trifft Business

Social Media trifft Business Social Media trifft Business Intelligence Social Media Analysis als Teil der Unternehmenssteuerung Tiemo Winterkamp, VP Global Marketing Agenda Social Media trifft Business Intelligence Business Intelligence

Mehr

Intelligente Unternehmens- und Prozesssteuerung durch CPM

Intelligente Unternehmens- und Prozesssteuerung durch CPM Intelligente Unternehmens- und Prozesssteuerung durch CPM 5. IIR Forum BI, Mainz, Sept. 2006 Dr. Wolfgang Martin Analyst, ibond Partner, Ventana Research Advisor und Research Advisor am Institut für Business

Mehr

Durchblick im Self-Service-Dschungel. Hannover, 16.03.2015 Patrick Keller, Senior Analyst

Durchblick im Self-Service-Dschungel. Hannover, 16.03.2015 Patrick Keller, Senior Analyst Durchblick im Self-Service-Dschungel Hannover, 16.03.2015 Patrick Keller, Senior Analyst Business Application Research Center (BARC) B Europas führendes IT-Analysten- und -Beratungshaus für Business Software

Mehr

Microsoft Office SharePoint 2007

Microsoft Office SharePoint 2007 Inhalt 1 Erstellen von Workflows für Microsoft Office SharePoint 2007 15 June 2009 Sebastian Gerling Sebastian.gerling@spiritlink.de COPYRIGHT 2003 SPIRIT LINK GMBH. ALL RIGHTS RESERVED Inhalt 1 Dipl.

Mehr

Business Intelligenceein Überblick

Business Intelligenceein Überblick Exkurs Business Intelligenceein Überblick Folie 1 Januar 06 Literatur Kemper, Hans-Georg; Mehanna, Walid; Unger, Carsten (2004): Business Intelligence: Grundlagen und praktische Anwendungen Eine Einführung

Mehr

Non-Profit-Organisationen: Vom Controlling zum Strategischen Management

Non-Profit-Organisationen: Vom Controlling zum Strategischen Management Non-Profit-Organisationen: Vom Controlling zum Strategischen Management Einordnung der Begriffe Business Intelligence Strategic Association Management Controlling and Data Warehousing Data Mining, Knowledge

Mehr

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII Vorwort zur zweiten Auflage...V Vorwort zur ersten Auflage... VIII 1 Management Support Systeme und Business Intelligence Anwendungssysteme zur Unterstützung von Managementaufgaben...1 1.1 Computergestützte

Mehr

Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr

Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr Copyright 2007 Infor. Alle Rechte vorbehalten. Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr Hubertus Thoma Presales Consultant PM Schalten Sie bitte während

Mehr

Anwendertage WDV2012

Anwendertage WDV2012 Anwendertage WDV2012 28.02.-01.03.2013 in Pferdingsleben Thema: Business Intelligence mit Excel 2010 Referent: Dipl. Wirtsch.-Inf. Torsten Kühn PRAXIS-Consultant Alles ist möglich! 1 Torsten Kühn Dipl.

Mehr

Erfolgreiche Unternehmensführung durch den Einsatz von Corporate Performance Management

Erfolgreiche Unternehmensführung durch den Einsatz von Corporate Performance Management Andrei Buhrymenka Erfolgreiche Unternehmensführung durch den Einsatz von Corporate Performance Management Für Unternehmen mit Business Intelligence Diplomica Verlag Andrei Buhrymenka Erfolgreiche Unternehmensführung

Mehr

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Konrad Linner, solvistas GmbH Nürnberg, 20.November 2012 Inhaltsverzeichnis Vorstellung solvistas

Mehr

1Ralph Schock RM NEO REPORTING

1Ralph Schock RM NEO REPORTING 1Ralph Schock RM NEO REPORTING Bereit für den Erfolg Business Intelligence Lösungen Bessere Entscheidungen Wir wollen alle Mitarbeiter in die Lage versetzen, bessere Entscheidungen schneller zu treffen

Mehr

Big Data in Marketing und IT

Big Data in Marketing und IT Big Data in Marketing und IT Chancen erkennen, Strategien entwickeln und Projekte erfolgreich umsetzen T-Systems Hacker Day 30. September 2015 Prof. Dr. Alexander Rossmann Reutlingen University Big Data

Mehr

Big Data Herausforderungen und Chancen für Controller. ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC

Big Data Herausforderungen und Chancen für Controller. ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data Herausforderungen und Chancen für Controller ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC BARC: Expertise für datengetriebene Organisationen Beratung Strategie

Mehr

INVEST projects. Besseres Investitionscontrolling mit INVESTprojects

INVEST projects. Besseres Investitionscontrolling mit INVESTprojects Besseres Investitionscontrolling mit Der Investitionsprozess Singuläres Projekt Idee, Planung Bewertung Genehmigung Realisierung Kontrolle 0 Zeit Monate, Jahre Perioden Der Investitionsprozess Singuläres

Mehr

PROZESSCONTROLLING MIT MICROSOFT TOOLS

PROZESSCONTROLLING MIT MICROSOFT TOOLS PROZESSCONTROLLING MIT MICROSOFT TOOLS AGENDA In eigener Sache Processcontrolling mit Office Demo Excel Maps Processcontrolling mit SQL Server Rolle von SharePoint 2013 Demo Praxisbeispiel Einkaufsprozess

Mehr

REAL-TIME DATA WAREHOUSING

REAL-TIME DATA WAREHOUSING REAL-TIME DATA WAREHOUSING Lisa Wenige Seminarvortrag Data Warehousing und Analytische Datenbanken Friedrich-Schiller-Universität Jena - 19.01.12 Lisa Wenige 19.01.2012 2 Agenda 1. Motivation 2. Begriffsbestimmung

Mehr

Microsoft Office SharePoint Server 2007 Überblick. Gernot Kühn Partner Technical Specialist Microsoft Deutschland Gmbh Gernotk@microsoft.

Microsoft Office SharePoint Server 2007 Überblick. Gernot Kühn Partner Technical Specialist Microsoft Deutschland Gmbh Gernotk@microsoft. Microsoft Office SharePoint Server 2007 Überblick Gernot Kühn Partner Technical Specialist Microsoft Deutschland Gmbh Gernotk@microsoft.com 30. Juli 2006 Munich, Germany 2007 Microsoft Office System Investitionen

Mehr

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

Big Data Vom Hype zum Geschäftsnutzen

Big Data Vom Hype zum Geschäftsnutzen Big Data Vom Hype zum Geschäftsnutzen IBM IM Forum, Berlin, 16.04.2013 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Hype 15.04.2013 BARC 2013 2 1 Interesse an Big Data Nature 09-2008 Economist 03-2010

Mehr

Titel1. Titel2. Business Analytics als Werkzeug zur. Unternehmenssteuerung. Business Excellence Day 2015. Michael Shabanzadeh, 10.

Titel1. Titel2. Business Analytics als Werkzeug zur. Unternehmenssteuerung. Business Excellence Day 2015. Michael Shabanzadeh, 10. Titel1 Business Analytics als Werkzeug zur Titel2 Unternehmenssteuerung Business Excellence Day 2015 Michael Shabanzadeh, 10. Juni 2015 World Communication GmbH 2015 Seite 1 Definition Business Analytics

Mehr

ibpm - intelligent Business Process Management: WWW.AXONIVY.COM

ibpm - intelligent Business Process Management: WWW.AXONIVY.COM ibpm - intelligent Business Process Management: ein neues Zeitalter bricht an. Peter Wiedmann 14.11.2014 WWW.AXONIVY.COM AGENDA 2 Vorstellung und Einführung Produktvorstellung ibpm die neue Dimension Anwendungsszenario

Mehr

Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence

Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence IBM Netezza Roadshow 30. November 2011 Carsten Bange Gründer & Geschäftsführer BARC Die Krise hat die Anforderungen

Mehr

spezial Productivity Monitor Alle Artikel zu unseren Fokusthemen finden Sie unter comlineag.de/infocenter

spezial Productivity Monitor Alle Artikel zu unseren Fokusthemen finden Sie unter comlineag.de/infocenter infoline spezial Productivity Monitor Alle Artikel zu unseren Fokusthemen finden Sie unter comlineag.de/infocenter Productivity Monitor COMLINE Productivity Monitor ist eine generische Lösung für die Aufnahme,

Mehr

Sicherstellung der Strategiekonformität von IT-Projekten

Sicherstellung der Strategiekonformität von IT-Projekten MKWI 2006, Passau am 21.02.2006 Sicherstellung der Strategiekonformität von IT-Projekten Michael Durst, Jochen Gary Track: IT-Beratung - Aufgaben und Herausforderungen Prof. Dr. Freimut Bodendorf Agenda

Mehr

Geschäftsprozessmodellierung und implementierung am Beispiel SAP ERP

Geschäftsprozessmodellierung und implementierung am Beispiel SAP ERP Geschäftsprozessmodellierung und implementierung am Beispiel SAP ERP V04 02. Mai 2011, 16.15-17.45 Uhr, ITS-Pool nur zugelassene Teilnehmer Niedersächsisches Hochschulkompetenzzentrum für SAP (CCC) Aktuelles

Mehr

Loren Heilig, Steffen Karch. SAP NetWeaver 8. Galileo Press. Bonn Boston

Loren Heilig, Steffen Karch. SAP NetWeaver 8. Galileo Press. Bonn Boston Loren Heilig, Steffen Karch SAP NetWeaver 8 Galileo Press Bonn Boston Geleitwort 17 Danksagung 19 2.1 Anforderungen an eine IT-Landschaft 29 2.1.1 Flexibilität als Erfolgsfaktor 29 2.1.2 Kostenbewusstsein

Mehr

Business Performance Management Next Generation Business Intelligence?

Business Performance Management Next Generation Business Intelligence? Business Performance Management Next Generation Business Intelligence? München, 23. Juni 2004 Jörg Narr Business Application Research Center Untersuchung von Business-Intelligence-Software am Lehrstuhl

Mehr

LOG AND SECURITY INTELLIGENCE PLATFORM

LOG AND SECURITY INTELLIGENCE PLATFORM TIBCO LOGLOGIC LOG AND SECURITY INTELLIGENCE PLATFORM Security Information Management Logmanagement Data-Analytics Matthias Maier Solution Architect Central Europe, Eastern Europe, BeNeLux MMaier@Tibco.com

Mehr

Richtige und schnelle Entscheidungen trotz sich änderner Anforderungen mit Microsoft Dynamics AX und Microsoft SQL Server Reporting Services

Richtige und schnelle Entscheidungen trotz sich änderner Anforderungen mit Microsoft Dynamics AX und Microsoft SQL Server Reporting Services Launch Microsoft Dynamics AX 4.0 Richtige und schnelle Entscheidungen trotz sich änderner Anforderungen mit Microsoft Dynamics AX und Microsoft SQL Server Reporting Services Sonia Al-Kass Partner Technical

Mehr

Von BI zu Analytik. bessere Entscheidungen basiert auf Fakten. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor

Von BI zu Analytik. bessere Entscheidungen basiert auf Fakten. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Von BI zu Analytik bessere Entscheidungen basiert auf Fakten Webinar Mai 2010 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Von Business Intelligence zu Analytik Die Bedeutung

Mehr

Business Intelligence im Krankenhaus

Business Intelligence im Krankenhaus Business Intelligence im Krankenhaus Dr. Thomas Lux Holger Raphael IT-Trends in der Medizin 03.September 2008 Essen Gliederung Herausforderungen für das Management im Krankenhaus Business Intelligence

Mehr

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zettabyte CeBIT 2011 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zetabyte: analytische Datenbanken Die Datenflut. Analytische Datenbanken: Was ist neu? Analytische Datenbanken:

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

Prozess- und Datenmanagement Kein Prozess ohne Daten

Prozess- und Datenmanagement Kein Prozess ohne Daten Prozess- und Datenmanagement Kein Prozess ohne Daten Frankfurt, Juni 2013 Dr. Wolfgang Martin Analyst und Mitglied im Boulder BI Brain Trust Prozess- und Datenmanagement Erfolgreiche Unternehmen sind Prozessorientiert.

Mehr

Business Intelligence & professionelles Datenmanagement als Erfolgsfaktor

Business Intelligence & professionelles Datenmanagement als Erfolgsfaktor Yves-Deniz Obermeier Sales Manager Financial Services Ing. Thomas Heinzmann Division Management BI Mag. Martin Feith Senior Expert Business Intelligence & professionelles Datenmanagement als Erfolgsfaktor

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery Kapitel II Datenbereitstellung 2004 AIFB / FZI 1 II. Datenbereitstellung 2004 AIFB / FZI 2 II. Datenbereitstellung Collect Initial Data identify relevant attributes identify inconsistencies between sources

Mehr

GESCHÄFTSZAHLEN SCHMACKHAFT ZUBEREITET Franke Kitchen Systems erhöht mit IBM Cognos die Flexibilität bei der Analyse von SAP-Daten

GESCHÄFTSZAHLEN SCHMACKHAFT ZUBEREITET Franke Kitchen Systems erhöht mit IBM Cognos die Flexibilität bei der Analyse von SAP-Daten GESCHÄFTSZAHLEN SCHMACKHAFT ZUBEREITET Franke Kitchen Systems erhöht mit IBM Cognos die Flexibilität bei der Analyse von SAP-Daten Thomas Ehret, Franke Kitchen Systems Group (Aarburg, Schweiz), email:

Mehr

Orientierungsvorlesung. Vertiefungsrichtung Datenbanksysteme. Richard Lenz Februar 2014

Orientierungsvorlesung. Vertiefungsrichtung Datenbanksysteme. Richard Lenz Februar 2014 Orientierungsvorlesung Vertiefungsrichtung Datenbanksysteme Februar 2014 Lehrstuhl für Informatik 6 (Datenmanagement) Friedrich-Alexander-Universität Erlangen-Nürnberg Datenbanksysteme (1) 2 Techniken

Mehr

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung 2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung Reporting, Analyse und Data Mining André Henkel, initions AG 22. und 23. Oktober 2013 in Hamburg

Mehr

Webinar: Mit TIBCO Spotfire wird Business Intelligence jetzt kollaborativ, mobil und social

Webinar: Mit TIBCO Spotfire wird Business Intelligence jetzt kollaborativ, mobil und social Webinar: Mit TIBCO Spotfire wird Business Intelligence jetzt kollaborativ, mobil und social Mit TIBCO Spotfire können nun Geschäftsanwender jederzeit und überall ihre Analytics-Anwendungen selbst entwickeln,

Mehr

Visual Business Intelligence Eine Forschungsperspektive

Visual Business Intelligence Eine Forschungsperspektive Visual Business Intelligence Eine Forschungsperspektive Dr. Jörn Kohlhammer Fraunhofer-Institut für Graphische Datenverarbeitung IGD Fraunhoferstraße 5 64283 Darmstadt Tel.: +49 6151 155 646 Fax.: +49

Mehr

Integrierte Planung mit SAP Business Intelligence: Konzeption und Projektvorgehensweise

Integrierte Planung mit SAP Business Intelligence: Konzeption und Projektvorgehensweise Integrierte Planung mit SAP Business Intelligence: Konzeption und Projektvorgehensweise Martin Herde Principal Consultant SAP Consulting Berlin, 24. November 2006 Planung mit SAP Business Intelligence

Mehr

Big Data Herausforderungen für Rechenzentren

Big Data Herausforderungen für Rechenzentren FINANCIAL INSTITUTIONS ENERGY INFRASTRUCTURE, MINING AND COMMODITIES TRANSPORT TECHNOLOGY AND INNOVATION PHARMACEUTICALS AND LIFE SCIENCES Big Data Herausforderungen für Rechenzentren RA Dr. Flemming Moos

Mehr

SAP HANA eine Plattform für innovative Anwendungen

SAP HANA eine Plattform für innovative Anwendungen SAP HANA eine Plattform für innovative Anwendungen Top Intelligence: Big Data & SAP HANA Zürich, Frankfurt, Hamburg, München, Mülheim/R Februar 2014 Dr. Wolfgang Martin Analyst und Mitglied im Boulder

Mehr

software, hardware und wissen für business intelligence lösungen software, hardware and knowledge for business intelligence solutions

software, hardware und wissen für business intelligence lösungen software, hardware and knowledge for business intelligence solutions software, hardware und wissen für business intelligence lösungen software, hardware and knowledge for business intelligence solutions Vom OLAP-Tool zur einheitlichen BPM Lösung BI orientiert sich am Business

Mehr

Zukunftsträchtige Potentiale: Predictive Analysis mit SAP HANA & SAP BO

Zukunftsträchtige Potentiale: Predictive Analysis mit SAP HANA & SAP BO innovation@work Zukunftsträchtige Potentiale: Predictive Analysis mit SAP HANA & SAP BO thinkbetter AG Florian Moosmann 8. Mai 2013 1 Agenda Prädiktive Analyse Begriffsdefinition Herausforderungen Schwerpunktbereiche

Mehr

David gegen Goliath Excel 2010 in Verbindung mit Datawarehouse und im Vergleich zu Business Objects

David gegen Goliath Excel 2010 in Verbindung mit Datawarehouse und im Vergleich zu Business Objects Thema: David gegen Goliath Excel 2010 in Verbindung mit Datawarehouse und im Vergleich zu Business Objects Autor: Dipl. Wirtsch.-Inf. Torsten Kühn PRAXIS-Consultant PRAXIS EDV- Betriebswirtschaft- und

Mehr

Business Intelligence Governance

Business Intelligence Governance Business Intelligence Governance von der Vision zur Realität im Unternehmensalltag Webinar September 2011 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das intelligente Unternehmen

Mehr

BI WIKI START-UP YOUR DWH PARTIZIPATIVE BI IM ZEITALTER VON BIG DATA

BI WIKI START-UP YOUR DWH PARTIZIPATIVE BI IM ZEITALTER VON BIG DATA BI WIKI START-UP YOUR DWH PARTIZIPATIVE BI IM ZEITALTER VON BIG DATA Agenda VORSTELLUNG B.TELLIGENT WIE ENTSTEHT EINE KENNZAHL? WAS SIND METADATEN? AUFBAU UND FUNKTIONSWEISE DES BI WIKI LIVE DEMO ZUSAMMENFASSUNG

Mehr

Software EMEA Performance Tour 2013. 17.-19 Juni, Berlin

Software EMEA Performance Tour 2013. 17.-19 Juni, Berlin Software EMEA Performance Tour 2013 17.-19 Juni, Berlin Accenture s High Performance Analytics Demo-Umgebung Dr, Holger Muster (Accenture), 18. Juni 2013 Copyright 2012 Hewlett-Packard Development Company,

Mehr

Oracle 10g revolutioniert Business Intelligence & Warehouse

Oracle 10g revolutioniert Business Intelligence & Warehouse 10g revolutioniert Business Intelligence & Warehouse Marcus Bender Strategisch Technische Unterstützung (STU) Hamburg 1-1 BI&W Market Trends DWH werden zu VLDW Weniger Systeme, mehr Daten DWH werden konsolidiert

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

Vorstellung IBM Cognos 10.2. Oliver Linder Client Technical Professional Business Analytics

Vorstellung IBM Cognos 10.2. Oliver Linder Client Technical Professional Business Analytics Vorstellung IBM Cognos 10.2 Oliver Linder Client Technical Professional Business Analytics Agenda IBM Cognos 10.2 Architektur User Interfaces IBM Cognos Workspace IBM Cognos Workspace Advanced IBM Cognos

Mehr

COGNOS PERFORMANCE MANAGEMENT. Jörg Fuchslueger, COGNOS Austria Manager Professional Services

COGNOS PERFORMANCE MANAGEMENT. Jörg Fuchslueger, COGNOS Austria Manager Professional Services COGNOS PERFORMANCE MANAGEMENT Jörg Fuchslueger, COGNOS Austria Manager Professional Services Agenda Cognos Performance Management Unternehmensweites Berichtswesen AdHoc Analysen Überwachung und Steuerung

Mehr

Human Capital Management

Human Capital Management Human Capital Management Peter Simeonoff Nikolaus Schmidt Markt- und Technologiefaktoren, die Qualifikation der Mitarbeiter sowie regulatorische Auflagen erfordern die Veränderung von Unternehmen. Herausforderungen

Mehr

Was gibt es Neues in der BI Welt

Was gibt es Neues in der BI Welt BI-Kongress 2015 COMBINED THINKING FOR SUCCESS. Was gibt es Neues in der BI Welt Daniel Stecher, Stephan Weber, Adrian Bourcevet Frankfurt, 09. Juni 2015 Zürich, 11. Juni 2015 CubeServ BI-Kongress 2015

Mehr

Geschäftsstrategie und SOA - ein Thema für den Mittelstand? Prof. Dr. Gunther Piller

Geschäftsstrategie und SOA - ein Thema für den Mittelstand? Prof. Dr. Gunther Piller Geschäftsstrategie und SOA - ein Thema für den Mittelstand? Prof. Dr. Gunther Piller Aktuelles 2 Langfristige strategische IT- Planung existiert [im Mittelstand] in vielen Fällen nicht Bitkom: IuK im Mittelstand,

Mehr

Infografik Business Intelligence

Infografik Business Intelligence Infografik Business Intelligence Top 5 Ziele 1 Top 5 Probleme 3 Im Geschäft bleiben 77% Komplexität 28,6% Vertrauen in Zahlen sicherstellen 76% Anforderungsdefinitionen 24,9% Wirtschaflicher Ressourceneinsatz

Mehr

vinsight BIG DATA Solution

vinsight BIG DATA Solution vinsight BIG DATA Solution München, November 2014 BIG DATA LÖSUNG VINSIGHT Datensilos erschweren eine einheitliche Sicht auf die Daten...... und machen diese teilweise unmöglich einzelne individuelle Konnektoren,

Mehr

Ist das Big Data oder kann das weg? Outsourcing ja, aber geistiges Eigentum muss im Unternehmen bleiben

Ist das Big Data oder kann das weg? Outsourcing ja, aber geistiges Eigentum muss im Unternehmen bleiben Ist das Big Data oder kann das weg? Outsourcing ja, aber geistiges Eigentum muss im Unternehmen bleiben Jürgen Boiselle, Managing Partner 16. März 2015 Agenda Guten Tag, mein Name ist Teradata Wozu Analytics

Mehr

TRACK II Datenmanagement Strategien & Big Data Speicherkonzepte. TRACK I Big Data Analytics & Self Service BI

TRACK II Datenmanagement Strategien & Big Data Speicherkonzepte. TRACK I Big Data Analytics & Self Service BI 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

Aktuelle Lösungen zum Umgang mit regulatorischen Anforderungen. ifb group 27. November 2013

Aktuelle Lösungen zum Umgang mit regulatorischen Anforderungen. ifb group 27. November 2013 Aktuelle Lösungen zum Umgang mit regulatorischen Anforderungen ifb group 27. November 2013 Vorstellung Johannes Balling Johannes.Balling@ifb-group.com Tel +41 44 318 70 00 Fax +41 44 318 70 10 Mobile +41

Mehr

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller Was ist? Hannover, CeBIT 2014 Patrick Keller Business Application Research Center Historie 1994: Beginn der Untersuchung von Business-Intelligence-Software am Lehrstuhl Wirtschaftsinformatik der Universität

Mehr

Mehr Visibility. Wie Sie täglich mehr aus Ihren Daten machen.

Mehr Visibility. Wie Sie täglich mehr aus Ihren Daten machen. Mehr Visibility. Wie Sie täglich mehr aus Ihren Daten machen. Definitionen Business Intelligence (BI) bezeichnet Verfahren, Prozesse und Techniken zur systematischen Analyse von Daten in elektronischer

Mehr

Maximieren Sie Ihr Informations-Kapital

Maximieren Sie Ihr Informations-Kapital Maximieren Sie Ihr Informations-Kapital Zürich, Mai 2014 Dr. Wolfgang Martin Analyst, Mitglied im Boulder BI Brain Trust Maximieren des Informations-Kapitals Die Digitalisierung der Welt: Wandel durch

Mehr

Self Service BI. - Business Intelligence im Mittelstand - schnelle Ergebnisse, nachhaltige Erfolge

Self Service BI. - Business Intelligence im Mittelstand - schnelle Ergebnisse, nachhaltige Erfolge Self Service BI - Business Intelligence im Mittelstand - schnelle Ergebnisse, nachhaltige Erfolge 04. Juli 2013 Cubeware GmbH zu Gast im Hause der Raber+Märcker GmbH Referent: Uwe van Laak Presales Consultant

Mehr

Die Rolle von Stammdaten-Management in einer SOA

Die Rolle von Stammdaten-Management in einer SOA Die Rolle von Stammdaten-Management in einer SOA Frankfurt, Sept. 2007 Dr. Wolfgang Martin Analyst, ibond Partner, Ventana Research Advisor und Research Advisor am Institut für Business Intelligence Rolle

Mehr

Neue Strategien und Innovationen im Umfeld von Kundenprozessen

Neue Strategien und Innovationen im Umfeld von Kundenprozessen Neue Strategien und Innovationen im Umfeld von Kundenprozessen BPM Forum 2011 Daniel Liebhart, Dozent für Informatik an der Hochschule für Technik Zürich, Solution Manager, Trivadis AG Agenda Einleitung:

Mehr

Spezialisierungskatalog

Spezialisierungskatalog Spezialisierungskatalog Inhaltsverzeichnis: 1. Friedrich Schiller Universität 2. TU Ilmenau 3. FH Erfurt 4. FH Jena 5. FH Nordhausen 6. FH Schmalkalden 7. BA Gera 8. BA Eisenach 1. Friedrich-Schiller-Universität

Mehr

Prozess- und Service-Orientierung im Unternehmen mehr als Technologie

Prozess- und Service-Orientierung im Unternehmen mehr als Technologie Prozess- und Service-Orientierung im Unternehmen mehr als Technologie Presse Talk CeBIT 2007 Dr. Wolfgang Martin Analyst, ibond Partner, Ventana Research Advisor und Research Advisor am Institut für Business

Mehr

BIG ANALYTICS AUF DEM WEG ZU EINER DATENSTRATEGIE. make connections share ideas be inspired. Wolfgang Schwab SAS D

BIG ANALYTICS AUF DEM WEG ZU EINER DATENSTRATEGIE. make connections share ideas be inspired. Wolfgang Schwab SAS D make connections share ideas be inspired BIG ANALYTICS AUF DEM WEG ZU EINER DATENSTRATEGIE Wolfgang Schwab SAS D Copyright 2013, SAS Institute Inc. All rights reserved. BIG DATA: BEDROHUNG ODER CHANCE?

Mehr

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit BI Konsolidierung: Anspruch & Wirklichkeit Jacqueline Bloemen in Kooperation mit Agenda: Anspruch BI Konsolidierung Treiber Was sind die aktuellen Treiber für ein Konsolidierungsvorhaben? Kimball vs. Inmon

Mehr

Technische Integration des Informationssystems über SAP (1/6)

Technische Integration des Informationssystems über SAP (1/6) Technische Integration des Informationssystems über SAP (1/6) Software Systemsoftware Anwendungssoftware Betriebssysteme Standardsoftware Individualsoftware Übersetzungsprogramme Dienstprogramme andere

Mehr

Proaktive Entscheidungsunterstützung für Geschäftsprozesse durch neuronale Netze

Proaktive Entscheidungsunterstützung für Geschäftsprozesse durch neuronale Netze Proaktive Entscheidungsunterstützung für Geschäftsprozesse durch neuronale Netze INAUGURALDISSERTATION zur Erlangung des akademischen Grades eines Doktors der Wirtschaftswissenschaften an der Wirtschaftswissenschaftlichen

Mehr

O-BIEE Einführung mit Beispielen aus der Praxis

O-BIEE Einführung mit Beispielen aus der Praxis O-BIEE Einführung mit Beispielen aus der Praxis Stefan Hess Business Intelligence Trivadis GmbH, Stuttgart 2. Dezember 2008 Basel Baden Bern Lausanne Zürich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg

Mehr

TransConnect - Anwendertag

TransConnect - Anwendertag TransConnect - Anwendertag Master Data Management mit TransConnect - neu oder nicht? Jürgen Bittner Realität eines Unternehmens Zahlreiche Softwaresysteme bzw. Datenbestände, die Daten der gleichen Objekte

Mehr

Mehrwerte schaffen durch den Einsatz von Business Intelligence

Mehrwerte schaffen durch den Einsatz von Business Intelligence Mehrwerte schaffen durch den Einsatz von Business Intelligence 1 Menschen beraten Menschen beraten BTC zeigt Wege auf - Sie entscheiden BTC zeigt Wege auf - Sie entscheiden Martin Donauer BTC Business

Mehr

Best Practice Infor PM 10 auf Infor Blending

Best Practice Infor PM 10 auf Infor Blending Best Practice Infor PM 10 auf Infor Blending, 11.11.2008 Infor Performance Management Best Practice Infor PM 10 auf Infor Blending Leistungsübersicht Infor PM 10 auf Infor Blending eine Data Warehouse

Mehr