Marketing Intelligence Übersicht über Business Intelligence. Josef Kolbitsch Manuela Reinisch

Größe: px
Ab Seite anzeigen:

Download "Marketing Intelligence Übersicht über Business Intelligence. Josef Kolbitsch Manuela Reinisch"

Transkript

1 Marketing Intelligence Übersicht über Business Intelligence Josef Kolbitsch Manuela Reinisch

2 Übersicht Beispiel: Pantara Holding Der Begriff Business Intelligence Übersicht über ein klassisches BI-System BI-Begriffe

3 Pantara Holding 1/11 Willkommen in der Pantara Holding! Wir sind ein multinationaler Autohandel: Kontinentaleuropa: 7 Gesellschaften, Vereinigtes Königreich: 2 Gesellschaften, Nordamerika: 4 Gesellschaften, Australien: 2 Gesellschaften Wir sind seit im Geschäft

4 Pantara Holding 2/11 Willkommen in der Pantara Holding! Wir führen: Modelle von rund 50 Herstellern Neu- und Gebrauchtwagen, Oldtimer und Firmenwägen

5 Pantara Holding 3/11 Willkommen in der Pantara Holding! Wir haben sehr moderne IT-Systeme: CRM (Customer Relationship Management) ERP (Enterprise Resource Planning) E-Commerce, etc.

6 Pantara Holding 4/11 Willkommen in der Pantara Holding! Der Vorstand hat eine Sitzung in drei Tagen Der Vorstand glaubt: Das Geschäft ist im vergangenen Jahr nicht so gut gelaufen Bild:

7 Pantara Holding 5/11 Willkommen in der Pantara Holding! Der Vorstand fordert einen Bericht von Ihnen Sie sind: im Informationsmanagement (Software-Entwickler) oder im Controlling und Marketing (Maschinenbau- Wirtschaft)

8 Pantara Holding 6/11 Willkommen in der Pantara Holding! Sie haben drei Tage Zeit Was tun Sie? Was können Sie selbst überhaupt tun?

9 Pantara Holding 7/11 Kurzes Brainstorming

10 Pantara Holding 8/11 Was brauchen wir? Architekten, die: möglichst genaue Anforderungen stellen (Kennzahlen, etc.), die Quelldaten kennen, das BI-System planen und die Berichte planen. Implementierer, die: die Quelldaten laden, daraus Kennzahlen erstellen, Berichte erstellen und Berichte auswerten und aufbereiten.

11 Pantara Holding 9/11 Was brauchen wir? Daten (Beispiele): In welchem Land wurden von welchem Modell an welchem Tag von welcher Gesellschaft (und welchem Händler) wieviele Stück verkauft? Etc.

12 Pantara Holding 10/11 Was brauchen wir? Kennzahlen (Beispiele): Anzahl verkaufter Fahrzeuge Einkaufspreis, Verkaufspreis,, Gewinn Deckungsbeiträge, Soll-Ist-Abweichungen, etc.

13 Pantara Holding 11/11 Was brauchen wir? Die Pantara Holding braucht Business Intelligence

14 Business Intelligence 1/4 Was ist Business Intelligence? Business Intelligence (BI) liefert Erkenntnisse über das (eigene) Geschäft Erkenntnisse: Informationen (Zahlen) über finanzielle Lage, Informationen über Kerngeschäft (Verkauf), Trends, Entscheidungsgrundlagen für Strategien, etc.

15 Business Intelligence 2/4 Was ist Business Intelligence? Der Begriff Business Intelligence (deutsch etwa Geschäftsanalytik), Abk. BI, wurde Anfang bis Mitte der 1990er Jahre populär und bezeichnet Verfahren und Prozesse zur systematischen Analyse (Sammlung, Auswertung und Darstellung) von Daten in elektronischer Form. Ziel ist die Gewinnung von Erkenntnissen, die in Hinsicht auf die Unternehmensziele bessere operative oder strategische Entscheidungen ermöglichen. Wikipedia Analyse Erkenntnisse Bessere Entscheidungen Siehe:

16 Business Intelligence 3/4 Zielgruppen für BI: Sales: Wie läuft das tägliche Geschäft? Business Development: Wo muss welches Geschäft ausgebaut werden? Controlling: Gesamtsicht des Unternehmens Management: verdichtete Management-Sicht Executive-Level: weiter verdichtete Executive-Sicht Etc. Grundlage: immer dieselben Zahlen Berichte: immer andere Sicht auf diese Zahlen

17 Business Intelligence 4/4 Marketing Intelligence Einordnung von Business Intelligence Vielfalt von Intelligence-Begriffen Der Stakeholderansatz als Ordnungsrahmen Business Intelligence (BI) Marketing Intelligence (MI) - externe Stakeholder Market Intelligence Schuldner Customer Intelligence Mitarbeiter Kunden, Käufer, Supplier Intelligence Lieferanten Unternehmen Competitive Intelligence (CI) - externe Stakeholder Konkurrenten, Mitbewerber, Investoren und Gläubiger Quelle: in Anlehnung an Freeman 1984 TU Graz I Institut für Betriebswirtschaftslehre und Betriebssoziologie I o. Univ.-Prof. Dipl.-Ing. Dr. techn. Ulrich Bauer Quelle: in Anlehnung an Freeman 1984

18 Klassisches BI-System 1/7 Online Transaction Processing (OLTP) Berichte ERP-System Executive-Bericht CRM-System Management- Bericht Datenbank XY Sales-Bericht Daten von externen Anbietern Procurement- Bericht Quellsysteme Reporting Vom Quellsystem (Online Transaction Processing, OLTP) zu fertigen Berichten (Reporting)

19 Klassisches BI-System 2/7 Online Transaction Processing (OLTP) Enterprise Data Warehouse (DWH) Berichte ERP-System Executive-Bericht CRM-System Datenbank XY Data Warehouse (DWH) Management- Bericht Sales-Bericht Daten von externen Anbietern Procurement- Bericht Quellsysteme Data Warehouse Reporting Data Warehouse (DWH) als zentrales Fundament: führt Daten aus Quellsystem zusammen ist zentrale Quelle für Reporting

20 Klassisches BI-System 3/7 Online Transaction Processing (OLTP) Enterprise Data Warehouse (DWH) Berichte ERP-System Executive-Bericht CRM-System Datenbank XY Data Warehouse (DWH) Management- Bericht Sales-Bericht Daten von externen Anbietern Procurement- Bericht Quellsysteme Data Warehouse Reporting Aufbau des Data Warehouses durch ETL-Prozess: Extract: Daten aus Quellsystem laden Transform: Daten(strukturen) anpassen Load: DWH mit angepassten Daten beladen

21 Klassisches BI-System 4/7 Online Transaction Processing (OLTP) Enterprise Data Warehouse (DWH) Reporting Berichte ERP-System Executive-Bericht CRM-System Datenbank XY Data Warehouse (DWH) Reporting-System X Management- Bericht Sales-Bericht Daten von externen Anbietern Reporting-Tool Y Procurement- Bericht Quellsysteme Data Warehouse Reporting Für spezielle Aufgaben können unterschiedliche Reporting- Werkzeuge zum Einsatz kommen

22 Klassisches BI-System 5/7 Online Transaction Processing (OLTP) Enterprise Data Warehouse (DWH) Data Marts Reporting Berichte ERP-System Executive-Bericht CRM-System Datenbank XY Data Warehouse (DWH) Data Mart Sales Reporting-System X Management- Bericht Sales-Bericht Daten von externen Anbietern Data Mart Procurement Reporting-Tool Y Procurement- Bericht Quellsysteme Data Warehouse Reporting Um spezielle Reporting-Anforderungen besser (schneller) erfüllen zu können, können Data Marts erstellt werden. Data Mart: inhaltlicher Auszuge aus dem zentralen DWH

23 Klassisches BI-System 6/7 Online Transaction Processing (OLTP) Operational Data Store (ODS) Enterprise Data Warehouse (DWH) Data Marts Reporting Berichte ERP-System Integrate, Transform Executive-Bericht Operational Data Store (ODS) ETL Data Warehouse (DWH) Reporting-System X CRM-System Datenbank XY Integrate, Transform Data Mart Sales Management- Bericht Sales-Bericht Daten von externen Anbietern Data Mart Procurement Reporting-Tool Y Procurement- Bericht Quellsysteme Data Warehouse Reporting Teilweise werden Daten aus Quellsystemen bereits vor dem DWH in Operational Data Stores (ODS) zusammengeführt Das kann den Aufbau des DWHs erleichtern

24 Klassisches BI-System 7/7 Online Transaction Processing (OLTP) Operational Data Store (ODS) Enterprise Data Warehouse (DWH) Data Marts Reporting Berichte ERP-System Integrate, Transform Executive-Bericht Operational Data Store (ODS) ETL Data Warehouse (DWH) Reporting-System X CRM-System Datenbank XY Integrate, Transform Data Mart Sales Management- Bericht Sales-Bericht Daten von externen Anbietern Data Mart Procurement Reporting-Tool Y Procurement- Bericht Quellsysteme Data Warehouse Reporting BI-System Das BI-System deckt neben dem DWH auch einen Teil der Quellsysteme (Datenanalyse) und des Berichtswesens (Reporting-Systeme) ab

25 BI-Begriffe 1/14 Online Transaction Processing (OLTP) Transaktionssysteme IT-Systeme, in denen das tägliche Geschäft abgewickelt wird Beispiele: Online Transaction Processing (OLTP) Operational Data Store (ODS) Enterprise Data Warehouse (DWH) Da E-Commerce, CRM-System ERP-System Integrate, Transform Operational Data Store (ODS) ETL Data Warehouse (DWH) ERP-System CRM-System Datenbank XY Integrate, Transform Data M Daten von externen Anbietern Dat Procu Siehe: processing Quellsysteme Data Warehouse

26 BI-Begriffe 2/14 Online Transaction Processing (OLTP) Daten in OLTP-Systemen sind teilweise flüchtig: Daten werden entfernt, wenn ein Kunde nicht mehr Kunde ist Daten werden gelöscht, wenn Transaktion beendet ist OLTP-Systeme sind oft nicht unmittelbar geeignet für Reporting Performance in OLTP-Systemen ist optimiert für das Tagesgeschäft nicht für Reporting

27 BI-Begriffe 3/14 Operational Data Store (ODS) Daten aus mehreren OLTP-Systemen werden in einem System zusammengeführt Oft sinnvoll, um Daten einfacher miteinander verknüpfen zu ERP-System können Online Transaction Processing (OLTP) Integrate, Transform Operational Data Store (ODS) Operational Data Store (ODS) ETL Enterprise Data Warehouse (DWH) Data Warehouse (DWH) Data Marts Reportin Reporting-Sy CRM-System ODS kann bereits Ausgangspunkt Datenbank für Reporting sein XY Integrate, Transform Data Mart Sales Daten von externen Anbietern Data Mart Procurement Reporting-T Siehe: issues/ /469-1.html Quellsysteme Data Warehouse

28 BI-Begriffe 4/14 Data Warehouse (DWH) Daten aus mehreren OLTP-Systemen oder ODS werden in einem System zusammengeführt Online Transaction Daten im DWH sind aufbereitet für Processing (OLTP) Reporting ERP-System Integrate, Transform Operational Data Store (ODS) Operational Data Store (ODS) ETL Enterprise Data Warehouse (DWH) Data Warehouse (DWH) Data Marts Reporting Reporting-System X B Execu CRM-System Daten im DWH sind nicht mehr flüchtig Datenbank XY Integrate, Transform Data Mart Sales Man B Sale Daten von externen Anbietern Data Mart Procurement Reporting-Tool Y Proc B Quellsysteme Siehe: Data Warehouse Reporting

29 BI-Begriffe 5/14 Data Warehouse (DWH) Ein Data-Warehouse ist eine themenorientierte, integrierte, chronologisierte und persistente Sammlung von Daten, um das Management bei seinen Entscheidungsprozessen zu unterstützen. Wikipedia Das Data Warehouse ist die (technische) Grundlage für Reporting und Analyse Siehe:

30 BI-Begriffe 6/14 Data Warehouse (DWH) Das Data Warehouse ist eine Datenbank: nicht relational sondern multidimensional besteht nicht aus zweidimensionalen Tabellen sondern aus multidimensionalen Würfeln besteht nicht aus Spalten und Zeilen sondern aus Dimensionen enthält Datenelemente in Form von Fakten

31 BI-Begriffe 7/14 Data Warehouse (DWH) Wenn das Data Warehouse funktioniert, ist es für das Unternehmen der Single Point of Truth

32 BI-Begriffe 8/14 Reporting Online Transaction Processing (OLTP) ERP-System Berichtswesen: Informationen aus dem Data Warehouse werden dargestellt Enterprise Data Operational Data Store (ODS) Analyse und Warehouse Quantifizierung (DWH) des Geschäftsverlaufs Integrate, Transform Operational Data Store (ODS) ETL Data Warehouse (DWH) Data Marts Reporting Reporting-System X Berichte Executive-Bericht CRM-System Datenbank XY Integrate, Transform Data Mart Sales Management- Bericht Sales-Bericht Daten von externen Anbietern Data Mart Procurement Reporting-Tool Y Procurement- Bericht Quellsysteme Data Warehouse Reporting

33 BI-Begriffe 9/14 Reporting Standardberichte: Struktur wird einmal erstellt Bericht wird mit jeweils aktuellen Daten befüllt Berichte, die regelmäßig von größeren Benutzergruppen verwendet werden Beispiel: Sales-Report

34 BI-Begriffe 10/14 Reporting Ad-Hoc Berichte: Eine spezielle Auswertung wird für eine bestimmte Anforderung erstellt Berichte werden einmalig oder selten wiederkehrend verwendet Beispiel: spezielle Auswertung für eine Marketing Kampagne

35 BI-Begriffe 11/14 Online Analytical Processing (OLAP) Gegenstück zu OLTP: OLTP: Transaktionen aus dem operativen Tagesgeschäft werden abgewickelt Optimierung für operatives Geschäft (E-Commerce) OLAP: Analyse und Quantifizierung des Tagesgeschäftes technisch unabhängig vom Tagesgeschäft

36 BI-Begriffe 12/14 Key Performance Indicators (KPIs) Kennzahlen, auf deren Basis eine Analyse durchgeführt werden kann Beispiele: Anzahl der verkauften Fahrzeuge, Deckungsbeiträge, Bruttogehalt, Etc.

37 BI-Begriffe 13/14 Typen von Reporting-Systemen Immer wieder neue Trends : Business Performance Management (BPM) Management Information System (MIS) Executive Information System (EIS) Decision Support Systems Dashboards Etc.

38 BI-Begriffe 14/14 Typen von Reporting-Systemen Beispiel für ein Dashboard Bild:

39 Fragen?

40 Ausblick Nächste Schritte: Architektur und Konzepte der BI-Systeme Multidimensionale Datenmodellierung

41 Danke für die Aufmerksamkeit!

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Vorstellung der Softwarekomponenten Josef Kolbitsch Manuela Reinisch Übersicht Übersicht über die Systemlandschaft Übersicht über die Werkzeuge Workshop Systemlandschaft 1/8 Klassische

Mehr

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Architektur und Konzepte Josef Kolbitsch Manuela Reinisch Übersicht Mehrstufiges BI-System Architektur eines Data Warehouses Architektur eines Reporting-Systems Benutzerrollen in

Mehr

Marketing Intelligence Vorstellung der Übungsaufgabe. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Vorstellung der Übungsaufgabe. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Vorstellung der Übungsaufgabe Josef Kolbitsch Manuela Reinisch Übersicht Ausgangssituation Ist-Situation Aufgabenstellung Vorgeschlagene Herangehensweise Ausgangssituation 1/2 Willkommen

Mehr

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator Agenda Was ist Business Intelligence? Was ist OLAP? Unterschied zwischen OLAP und OLTP? Bestandteile

Mehr

Marketing Intelligence Schwierigkeiten bei der Umsetzung. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Schwierigkeiten bei der Umsetzung. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Schwierigkeiten bei der Umsetzung Josef Kolbitsch Manuela Reinisch Übersicht Schwierigkeiten bei der Umsetzung eines BI-Systems Schwierigkeiten der Umsetzung 1/13 Strategische Ziele

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

Corporate Performance Management als Weiterentwicklung von Business Intelligence

Corporate Performance Management als Weiterentwicklung von Business Intelligence Martin Kobrin Corporate Performance Management als Weiterentwicklung von Business Intelligence Grundlagen, Implementierungskonzept und Einsatzbeispiele Diplomica Verlag Martin Kobrin Corporate Performance

Mehr

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII Vorwort zur zweiten Auflage...V Vorwort zur ersten Auflage... VIII 1 Management Support Systeme und Business Intelligence Anwendungssysteme zur Unterstützung von Managementaufgaben...1 1.1 Computergestützte

Mehr

Datawarehouse Architekturen. Einheitliche Unternehmenssicht

Datawarehouse Architekturen. Einheitliche Unternehmenssicht Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA

Mehr

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware 14. März 2013, IHK Osnabrück-Emsland-Grafschaft Bentheim Geschichte Kassenbuch des Liederkranz, 1886 Hutmachergesangvereins

Mehr

tdwi E U R D P E OPEN SOURCE BUSINESS INTELLIGENCE HANSER MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN

tdwi E U R D P E OPEN SOURCE BUSINESS INTELLIGENCE HANSER MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN OPEN SOURCE BUSINESS INTELLIGENCE MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN uwehaneke Stephan TRAHASCH tobias HAGEN tobias LAUER (Hrsg.)' tdwi E U R D P E HANSER Vorwort 9 Einführung

Mehr

Self Service BI. - Business Intelligence im Mittelstand - schnelle Ergebnisse, nachhaltige Erfolge

Self Service BI. - Business Intelligence im Mittelstand - schnelle Ergebnisse, nachhaltige Erfolge Self Service BI - Business Intelligence im Mittelstand - schnelle Ergebnisse, nachhaltige Erfolge 04. Juli 2013 Cubeware GmbH zu Gast im Hause der Raber+Märcker GmbH Referent: Uwe van Laak Presales Consultant

Mehr

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher

Mehr

Erfolgreiche Unternehmensführung durch den Einsatz von Corporate Performance Management

Erfolgreiche Unternehmensführung durch den Einsatz von Corporate Performance Management Andrei Buhrymenka Erfolgreiche Unternehmensführung durch den Einsatz von Corporate Performance Management Für Unternehmen mit Business Intelligence Diplomica Verlag Andrei Buhrymenka Erfolgreiche Unternehmensführung

Mehr

Cockpits und Standardreporting mit Infor PM 10 09.30 10.15 Uhr

Cockpits und Standardreporting mit Infor PM 10 09.30 10.15 Uhr Cockpits und Standardreporting mit Infor PM 10 09.30 10.15 Uhr Bernhard Rummich Presales Manager PM Schalten Sie bitte während der Präsentation die Mikrofone Ihrer Telefone aus, um störende Nebengeräusche

Mehr

Objektorientierte Datenbanken

Objektorientierte Datenbanken OODB 11 Slide 1 Objektorientierte Datenbanken Vorlesung 11 vom 01.07.2004 Dr. Sebastian Iwanowski FH Wedel OODB 11 Slide 2 Inhalt heute: Datenbanken in betriebswirtschaftlichen Anwendungen OTLP (SAP) Data

Mehr

Zeitgemäße Verfahren für ganzheitliche Auswertungen

Zeitgemäße Verfahren für ganzheitliche Auswertungen Intelligente Vernetzung von Unternehmensbereichen Zeitgemäße Verfahren für ganzheitliche Auswertungen Sächsische Industrie- und Technologiemesse Chemnitz, 27. Juni 2012, Markus Blum 2012 TIQ Solutions

Mehr

DWH Best Practices das QUNIS Framework 80 Jahre Erfahrung bei der Modellierung & dem Betrieb von DWH. Referent: Ilona Tag

DWH Best Practices das QUNIS Framework 80 Jahre Erfahrung bei der Modellierung & dem Betrieb von DWH. Referent: Ilona Tag DWH Best Practices das QUNIS Framework 80 Jahre Erfahrung bei der Modellierung & dem Betrieb von DWH Referent: Ilona Tag Agenda 10.00 10.30 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.30 11.00 11.00

Mehr

PROZESSCONTROLLING MIT MICROSOFT TOOLS

PROZESSCONTROLLING MIT MICROSOFT TOOLS PROZESSCONTROLLING MIT MICROSOFT TOOLS AGENDA In eigener Sache Processcontrolling mit Office Demo Excel Maps Processcontrolling mit SQL Server Rolle von SharePoint 2013 Demo Praxisbeispiel Einkaufsprozess

Mehr

Folien zum Textbuch. Kapitel 6: Managementunterstützungssysteme. Teil 2: Textbuch-Seiten 794-825

Folien zum Textbuch. Kapitel 6: Managementunterstützungssysteme. Teil 2: Textbuch-Seiten 794-825 Folien zum Textbuch Kapitel 6: Managementunterstützungssysteme Teil 2: Managementunterstützung auf strategischer Ebene Datenverwaltung und -auswertung Textbuch-Seiten 794-825 WI 1 MUS MUS auf strategischer

Mehr

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle 40. Congress der Controller, Themenzentrum C, München Steffen Vierkorn, Geschäftsführer Qunis GmbH, Neubeuern Die

Mehr

Raus aus der Bl-Falle

Raus aus der Bl-Falle Ronald Bachmann, Dr. Guido Kemper Raus aus der Bl-Falle Wie Business Intelligencezum Erfolg wird mitp Die Autoren 13 Vorwort 15 1 Einleitung 21 1.1 Was ist Business Intelligence (BI)? 21 1.2 Motive zur

Mehr

Data Warehouse. Komponente der Business Intelligence und Qualitätsfaktor des Reportings

Data Warehouse. Komponente der Business Intelligence und Qualitätsfaktor des Reportings Wirtschaft Simon Schäfer Data Warehouse. Komponente der Business Intelligence und Qualitätsfaktor des Reportings Bachelorarbeit Bachelor Thesis Data Warehouse - Komponente der Business Intelligence und

Mehr

Data Warehouse Architekturtrends

Data Warehouse Architekturtrends Data Warehouse Architekturtrends Dr. Bodo Hüsemann Informationsfabrik GmbH Münster Schlüsselworte Architektur, Business Intelligence, Data Warehouse, Realtime Data Warehouse, Operational BI, Selfservice

Mehr

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit BI Konsolidierung: Anspruch & Wirklichkeit Jacqueline Bloemen in Kooperation mit Agenda: Anspruch BI Konsolidierung Treiber Was sind die aktuellen Treiber für ein Konsolidierungsvorhaben? Kimball vs. Inmon

Mehr

Intelligence (BI): Von der. Nürnberg, 29. November 2011

Intelligence (BI): Von der. Nürnberg, 29. November 2011 Modelle für Business Intelligence (BI): Von der Anforderung zum Würfel Nürnberg, 29. November 2011 Warum Modelle für Business Intelligence (BI)? Warum Modelle für Business Intelligence (BI)? Bis zur Auswertung

Mehr

IT-basierte Kennzahlenanalyse im Versicherungswesen

IT-basierte Kennzahlenanalyse im Versicherungswesen Angelina Jung IT-basierte Kennzahlenanalyse im Versicherungswesen Kennzahlenreporting mit Hilfe des SAP Business Information Warehouse Diplomica Verlag Angelina Jung IT-basierte Kennzahlenanalyse im Versicherungswesen:

Mehr

Michael Bauer Niederlassungsleiter Köln

Michael Bauer Niederlassungsleiter Köln Click to edit Master title style 1 Michael Bauer Niederlassungsleiter Köln Hamburg, 18. Juni 2009 2009 IBM Corporation Agenda Click to edit Master title style 2 zur Person Wo, Warum.., Was - CPM liefert

Mehr

DWH Szenarien. www.syntegris.de

DWH Szenarien. www.syntegris.de DWH Szenarien www.syntegris.de Übersicht Syntegris Unser Synhaus. Alles unter einem Dach! Übersicht Data-Warehouse und BI Projekte und Kompetenzen für skalierbare BI-Systeme. Vom Reporting auf operativen

Mehr

Business Intelligence im Krankenhaus

Business Intelligence im Krankenhaus Business Intelligence im Krankenhaus Dr. Thomas Lux Holger Raphael IT-Trends in der Medizin 03.September 2008 Essen Gliederung Herausforderungen für das Management im Krankenhaus Business Intelligence

Mehr

Social Media trifft Business

Social Media trifft Business Social Media trifft Business Intelligence Social Media Analysis als Teil der Unternehmenssteuerung Tiemo Winterkamp, VP Global Marketing Agenda Social Media trifft Business Intelligence Business Intelligence

Mehr

3. Integrationsdimensionen, u. a. Integrationsrichtungen (vgl. 1 und 2) 4. Vertikale und horizontale Integrationsrichtung (vgl.

3. Integrationsdimensionen, u. a. Integrationsrichtungen (vgl. 1 und 2) 4. Vertikale und horizontale Integrationsrichtung (vgl. Anwendungssysteme 1. Vertikal: unterstützte organisationale Ebene Informationsdichtegrad 2. Horizontal: unterstützter Funktionsbereich betriebliche Grundfunktion 3. Integrationsdimensionen, u. a. Integrationsrichtungen

Mehr

Komponenten und Architekturen von Analytischen Informationssystemen

Komponenten und Architekturen von Analytischen Informationssystemen Komponenten und Architekturen von Analytischen Informationssystemen Sommersemester 2013 Prof Dr. Peter Gluchowski Literatur zur Vorlesung AIS/BIS Gluchowski, Peter; Gabriel, Roland; Dittmar, Carsten: Management

Mehr

GESCHÄFTSSTELLENERÖFFNUNG HAMBURG, 25. APRIL 2013

GESCHÄFTSSTELLENERÖFFNUNG HAMBURG, 25. APRIL 2013 OPEN SYSTEMS CONSULTING IT-KOMPLETTDIENSTLEISTER IM MITTELSTAND GESCHÄFTSSTELLENERÖFFNUNG HAMBURG, 25. APRIL 2013 Business Analytics Sascha Thielke AGENDA Die Geschichte des Reporting Begriffe im BA Umfeld

Mehr

Management Cockpits. Business Intelligence für Entscheider. Oliver Röniger EMEA Business Intelligence ORACLE Deutschland GmbH

Management Cockpits. Business Intelligence für Entscheider. Oliver Röniger EMEA Business Intelligence ORACLE Deutschland GmbH Management Cockpits Business Intelligence für Entscheider Oliver Röniger EMEA Business Intelligence ORACLE Deutschland GmbH email: oliver.roeniger@oracle.com Tel.: 0211 / 74839-588 DOAG, Mannheim, 15.

Mehr

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Datei: Asklepius DA Flyer_Leistung_2 Seite: 1 von:5 1 Umfassende Datenanalyse Mit Asklepius-DA

Mehr

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 MIS Glossar by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 Aggregat Data Cube Data Marts Data Mining Data Warehouse (DWH) Daten Decision Support Systeme (DSS)

Mehr

Business Intelligence für Controller

Business Intelligence für Controller Controllers Best Practice Fachbuch Business Intelligence für Controller Hermann Hebben und Dr. Markus Kottbauer Verlag für ControllingWissen ÄG, Freiburg und Wörthsee Ein Unternehmen der Haufe Mediengruppe

Mehr

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Prof. Dr. Anett Mehler-Bicher Fachhochschule Mainz, Fachbereich Wirtschaft Prof. Dr. Klaus Böhm health&media GmbH 2011 health&media

Mehr

Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung

Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung Profil Andy Sydow Persönliche Daten Nationalität Sprachen Abschluss deutsch Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung Profil Herr Sydow verfügt über mehrjährige Erfahrung als DWH/BI

Mehr

Data Warehouse und Data Mining

Data Warehouse und Data Mining Einführungsseminar Data Mining Seminarvortrag zum Thema: Data Warehouse und Data Mining Von gehalten am Betreuer: Dr. M. Grabert Einführung Problemstellung Seite 2 Einführung Unternehmen bekommen eine

Mehr

Master-Thesis (m/w) für unseren Standort Stuttgart

Master-Thesis (m/w) für unseren Standort Stuttgart Master-Thesis (m/w) für unseren Standort Abschlussarbeit im Bereich Business Process Management (BPM) Effizienzsteigerung von Enterprise Architecture Management durch Einsatz von Kennzahlen Braincourt

Mehr

WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE'

WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE' Take control of your decision support WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE' Sommersemester 2008 Gliederung Business Intelligence und Data Warehousing On-Line Analytical Processing Ziel

Mehr

Adobe FSI Breakfast. Frankfurt, 09.06.2015. 2015 icompetence

Adobe FSI Breakfast. Frankfurt, 09.06.2015. 2015 icompetence Adobe FSI Breakfast Frankfurt, 09.06.2015 2015 icompetence Gründung 1994 Firmensitz: Quickborn bei Hamburg 200 Mio Page Impressions/Monat mehr als 1,8 Millionen Privatkunden. über 2,8 Millionen Kunden

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

FRT Consulting GmbH. Projekt KATEGO Komfortable SAP-Datenanalyse. Gustav Sperat FRT Consulting GmbH. www.frt.at. Wir machen aus Daten Wissen.

FRT Consulting GmbH. Projekt KATEGO Komfortable SAP-Datenanalyse. Gustav Sperat FRT Consulting GmbH. www.frt.at. Wir machen aus Daten Wissen. FRT Consulting GmbH Projekt KATEGO Komfortable SAP-Datenanalyse Gustav Sperat FRT Consulting GmbH 1 FRT Consulting das Unternehmen Spin off der TU Graz von langjährigen IT Experten Hauptsitz Graz, Büro

Mehr

AKWI-Fachtagung 2014. SAP HANA Live als Basis für operatives Reporting in Echtzeit. Customizing und Anwendung

AKWI-Fachtagung 2014. SAP HANA Live als Basis für operatives Reporting in Echtzeit. Customizing und Anwendung AKWI-Fachtagung 2014 Darius Nowak Prof. Dr. Harald Ritz Jörg Wolf SAP HANA Live als Basis für operatives Reporting in Echtzeit Customizing und Anwendung 1 Agenda 1. Einleitung 2. Motivation 3. SAP HANA

Mehr

Innovative Ansätze für den Gesundheitsmarkt. Mainz, 10. Mai 2011

Innovative Ansätze für den Gesundheitsmarkt. Mainz, 10. Mai 2011 Business Intelligence und Geovisualisierung Innovative Ansätze für den Gesundheitsmarkt Mainz, 10. Mai 2011 Prof. Dr. Anett Mehler-Bicher Prof. Dr. Klaus Böhm Inhalt Ausgangssituation und Motivation Motivation

Mehr

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Praxistag für die öffentliche Verwaltung 2012 Titel Präsentation Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Referenten-Info Gerhard Tschantré, Leiter Controllerdienste

Mehr

Von der spezialisierten Eigenentwicklung zum universellen Analysetool. Das Controlling-Informationssystem der WestLB Systems

Von der spezialisierten Eigenentwicklung zum universellen Analysetool. Das Controlling-Informationssystem der WestLB Systems Von der spezialisierten Eigenentwicklung zum universellen Analysetool Das Controlling-Informationssystem der WestLB Systems Begriffe und Definitionen Data Warehouse - Datensammlung oder Konzept?! Data

Mehr

Business Intelligenceein Überblick

Business Intelligenceein Überblick Exkurs Business Intelligenceein Überblick Folie 1 Januar 06 Literatur Kemper, Hans-Georg; Mehanna, Walid; Unger, Carsten (2004): Business Intelligence: Grundlagen und praktische Anwendungen Eine Einführung

Mehr

Modellbasierte Business Intelligence in der Praxis. Nürnberg, 10.11.2009

Modellbasierte Business Intelligence in der Praxis. Nürnberg, 10.11.2009 Modellbasierte Business Intelligence in der Praxis Nürnberg, 10.11.2009 I N H A L T 1. Warum Modelle für Business Intelligence (BI)? 2. Inhalte von Datenmodellen für BI 3. Inhalte von Prozessmodellen 4.

Mehr

1Ralph Schock RM NEO REPORTING

1Ralph Schock RM NEO REPORTING 1Ralph Schock RM NEO REPORTING Bereit für den Erfolg Business Intelligence Lösungen Bessere Entscheidungen Wir wollen alle Mitarbeiter in die Lage versetzen, bessere Entscheidungen schneller zu treffen

Mehr

Modellierung agiler Data Warehouses mit Data Vault Dani Schnider, Trivadis AG DOAG Konferenz 2015

Modellierung agiler Data Warehouses mit Data Vault Dani Schnider, Trivadis AG DOAG Konferenz 2015 Modellierung agiler Data Warehouses mit Data Vault Dani Schnider, Trivadis AG DOAG Konferenz 2015 BASEL BERN BRUGG DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. GENEVA HAMBURG COPENHAGEN LAUSANNE MUNICH STUTTGART

Mehr

Entwicklung eines Abrechnungsmodells für SAP-Business-Information-Warehouse-Systeme

Entwicklung eines Abrechnungsmodells für SAP-Business-Information-Warehouse-Systeme FHDW-Schriftenreihe Band 4/2002 Stefan Nieland, Mathias Pöhling Entwicklung eines Abrechnungsmodells für SAP-Business-Information-Warehouse-Systeme. Shaker Verlag Aachen 2002 Die Deutsche Bibliothek -

Mehr

Business Intelligence Center of Excellence

Business Intelligence Center of Excellence Center of Excellence Eine Businessinitiative von Systematika und Kybeidos Werner Bundschuh Was ist das? In der Praxis versteht man in den meisten Fällen unter die Automatisierung des Berichtswesens (Reporting).

Mehr

Management Support Systeme

Management Support Systeme Folie 1 Management Support Systeme Literatur zur Vorlesung MSS Gluchowski, Peter; Gabriel, Roland; Chamoni, Peter (1997): Management Support Systeme. Computergestützte Informationssysteme für Führungskräfte

Mehr

25.06.2014 TDWI Konferenz DWH Architektur Agilität durch Data Vault Modeling. Twitter: #TDWI #DataVault @DV_Modeling @BLUEFORTE @TDWI_EU

25.06.2014 TDWI Konferenz DWH Architektur Agilität durch Data Vault Modeling. Twitter: #TDWI #DataVault @DV_Modeling @BLUEFORTE @TDWI_EU BLUEFORTE GmbH Dirk Lerner 25.06.2014 TDWI Konferenz DWH Architektur Agilität durch Data Vault Modeling Twitter: #TDWI #DataVault @DV_Modeling @BLUEFORTE @TDWI_EU 1 Elemente des Data Vault (Basic) HUB

Mehr

Oracle 10g revolutioniert Business Intelligence & Warehouse

Oracle 10g revolutioniert Business Intelligence & Warehouse 10g revolutioniert Business Intelligence & Warehouse Marcus Bender Strategisch Technische Unterstützung (STU) Hamburg 1-1 BI&W Market Trends DWH werden zu VLDW Weniger Systeme, mehr Daten DWH werden konsolidiert

Mehr

BICC, Organisation und Kompetenz Das Raiffeisen Solution SAS Competence Center

BICC, Organisation und Kompetenz Das Raiffeisen Solution SAS Competence Center BICC, Organisation und Kompetenz Das Raiffeisen Solution SAS Competence Center Ing. Polzer Markus öffentlich Inhaltsverzeichnis 1 2 3 4 5 6 7 Kurzvorstellung Raiffeisen Solution Business Intelligence Strategie

Mehr

Agenda. Hype oder Mehrwert. Herausforderungen. Methoden Werkzeuge. Kosten Nutzen. Definition Ziele

Agenda. Hype oder Mehrwert. Herausforderungen. Methoden Werkzeuge. Kosten Nutzen. Definition Ziele Agenda Definition Ziele Methoden Werkzeuge Herausforderungen Kosten Nutzen Hype oder Mehrwert Definition / Ziele Google Suche: define:business Intelligence Mit Business Intelligence können alle informationstechnischen

Mehr

Bachelor of Eng. (Wirtschafts-Ing.-wesen)

Bachelor of Eng. (Wirtschafts-Ing.-wesen) Persönliche Daten Name Philipp Müller Geburtsdatum 21.11.1982 Berufsausbildung Studium Industriekaufmann Bachelor of Eng. (Wirtschafts-Ing.-wesen) Kompetenzen Methodisch Datenmodellierung Fachlich Allgemeines

Mehr

Modellbasierte Business Intelligence- Praxiserfahrungen in einem komplexen Data Warehouse Umfeld. München, 26. Januar 2010

Modellbasierte Business Intelligence- Praxiserfahrungen in einem komplexen Data Warehouse Umfeld. München, 26. Januar 2010 Modellbasierte Business Intelligence- Praxiserfahrungen in einem komplexen Data Warehouse Umfeld München, 26. Januar 2010 I N H A L T 1. Warum Modelle für Business Intelligence (BI)? 2. Inhalte von Datenmodellen

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

mit der neuen Microsoft BI-Plattform

mit der neuen Microsoft BI-Plattform Der Weg von manuellen Berichten zum modernen BI-System PSG Projekt Service GmbH The SQL Server Company, Hamburg Jan Streblow, Lead Consultant Public Sector Sascha Lorenz, Lead Consultant SQL Server Technology

Mehr

The integration of business intelligence and knowledge management

The integration of business intelligence and knowledge management The integration of business intelligence and knowledge management Seminar: Business Intelligence Ketevan Karbelashvili Master IE, 3. Semester Universität Konstanz Inhalt Knowledge Management Business intelligence

Mehr

Wie integriert sich BI in den unternehmensweiten Softwareentwicklungsprozess? Nürnberg, 10.11.2009

Wie integriert sich BI in den unternehmensweiten Softwareentwicklungsprozess? Nürnberg, 10.11.2009 Wie integriert sich BI in den unternehmensweiten Softwareentwicklungsprozess? Nürnberg, 10.11.2009 I N H A L T 1. Warum Modelle für Business Intelligence (BI)? 2. Anforderungen von BI an Software- Entwicklungsprozesse

Mehr

1 Einleitung. Betriebswirtschaftlich administrative Systeme

1 Einleitung. Betriebswirtschaftlich administrative Systeme 1 1 Einleitung Data Warehousing hat sich in den letzten Jahren zu einem der zentralen Themen der Informationstechnologie entwickelt. Es wird als strategisches Werkzeug zur Bereitstellung von Informationen

Mehr

good. better. outperform.

good. better. outperform. good. better. outperform. Quo Vadis Oracle BI Relational oder besser multidimensional? DOAG 2013 Business Intelligence, 17.04.2013 Dirk Fleischmann Director Business Intelligence & DWH Business Intelligence

Mehr

Vom Single Point of Truth zur Single Version of the Facts. Data Warehousing zu Beginn des BigData-Zeitalters. inspire IT - Frankfurt 11. 12.05.

Vom Single Point of Truth zur Single Version of the Facts. Data Warehousing zu Beginn des BigData-Zeitalters. inspire IT - Frankfurt 11. 12.05. Vom Single Point of Truth zur Single Version of the Facts Data Warehousing zu Beginn des BigData-Zeitalters inspire IT - Frankfurt 11. 12.05.2015 Fahmi Ouled-Ali Kabel Deutschland Marian Strüby OPITZ CONSULTING

Mehr

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Dani Schnider Principal Consultant Business Intelligence BI Trilogie, Zürich/Basel 25./26. November 2009 Basel Baden Bern Lausanne Zürich

Mehr

VisualCockpit. agile business analytics

VisualCockpit. agile business analytics VisualCockpit agile business analytics Agile Business Analytics mit VisualCockpit Für Unternehmen wird es immer wichtiger die gesamte Wertschöpfungskette aus Daten, sowohl für das operative Geschäft als

Mehr

Inhaltsverzeichnis. 1 Einleitung Motivation und Umfeld Zielsetzung der Arbeit Methodisches Vorgehen und Aufbau der Arbeit 3

Inhaltsverzeichnis. 1 Einleitung Motivation und Umfeld Zielsetzung der Arbeit Methodisches Vorgehen und Aufbau der Arbeit 3 Inhaltsverzeichnis 1 Einleitung 1 1.1 Motivation und Umfeld 1 1.2 Zielsetzung der Arbeit 2 1.3 Methodisches Vorgehen und Aufbau der Arbeit 3 2 Grundlagen des Feuerwehrwesens 5 2.1 Kategorisierung der Feuerwehren

Mehr

Business Intelligence Entscheidungsinformationen für eine erfolgreiche Unternehmensentwicklung im Mittelstand

Business Intelligence Entscheidungsinformationen für eine erfolgreiche Unternehmensentwicklung im Mittelstand Business Intelligence Entscheidungsinformationen für eine erfolgreiche Unternehmensentwicklung im Mittelstand 2. Fachtagung Dynamisierung des Mittelstandes durch IT, 09.09.2008 Was ist Business Intelligence

Mehr

Controller Band 4: Berichtswesen und Informationsmanagement

Controller Band 4: Berichtswesen und Informationsmanagement Controller Band 4 Controller Band 4: Berichtswesen und Informationsmanagement von Rüdiger R. Eichholz 3., völlig neu bearbeitete Auflage Controller Band 4: Berichtswesen und Informationsmanagement Eichholz

Mehr

Oracle BI Apps - fertige Dashboards sind nur die Spitze des Eisberges

Oracle BI Apps - fertige Dashboards sind nur die Spitze des Eisberges Oracle BI Apps - fertige Dashboards sind nur die Spitze des Eisberges Annett Thurm-Meyer Oracle Deutschland B.V. & Co. KG Hamburg Schlüsselworte: Business Intelligence, vorgefertigte Applikationen, Integration

Mehr

Management Information System SuperX status quo and perspectives

Management Information System SuperX status quo and perspectives Management Information System SuperX status quo and perspectives 1 Agenda 1. Business Intelligence: Basics 2. SuperX: Data Warehouse for Universities 3. Joolap: OLAP for Universities 4. Cooperative reporting

Mehr

Business Intelligence

Business Intelligence Business Intelligence Anwendung 1 MInf1 HAW Hamburg Betreuender Professor: Prof. Dr. Zukunft by Jason Hung Vuong [12] Gliederung 1. Hamburg Energie Kooperation 2. Motivation 3. Business Intelligence 4.

Mehr

Komponenten und Architekturen von Analytischen Informationssystemen (AIS)

Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation 27. Juni 2013 Hinweis Diese Folien ersetzen keinesfalls den Übungsstoff des zugehörigen e-learning-kurses.

Mehr

2.8. Business Intelligence

2.8. Business Intelligence 2.8. Zulieferer BeschaffungProduktion Kunde E-Procurement Customer Relationship (CRM) Supply Chain (SCM) Enterprise Resource Planning (ERP) Executive Information (EIS) Executive Support (ESS) Chef-Informations-

Mehr

O-BIEE Einführung mit Beispielen aus der Praxis

O-BIEE Einführung mit Beispielen aus der Praxis O-BIEE Einführung mit Beispielen aus der Praxis Stefan Hess Business Intelligence Trivadis GmbH, Stuttgart 2. Dezember 2008 Basel Baden Bern Lausanne Zürich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg

Mehr

BI around the world - Globale Reporting Lösungen bei Continental Automotive

BI around the world - Globale Reporting Lösungen bei Continental Automotive BI around the world - Globale Reporting Lösungen bei Continental Automotive Stefan Hess Trivadis GmbH Stuttgart Herbert Muckenfuss Continental Nürnberg Schlüsselworte: Oracle BI EE, Business Intelligence,

Mehr

Business Intelligence - Wie passt das zum Mainframe?

Business Intelligence - Wie passt das zum Mainframe? Business Intelligence - Wie passt das zum Mainframe? IBM IM Forum, 15.04.2013 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Ressourcen bei BARC für Ihr Projekt Durchführung von internationalen Umfragen,

Mehr

Unternehmensdaten auswerten und planen - Vorstellung von Infor PM 10

Unternehmensdaten auswerten und planen - Vorstellung von Infor PM 10 Unternehmensdaten auswerten und planen - Vorstellung von PM 10 Global Solutions Dominik Lacić, Dr. Rolf Gegenmantel 12. Februar 2009 Copyright 2008. All rights reserved. www.infor.com. Agenda 1. Einführung

Mehr

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH Lars Priebe Senior Systemberater ORACLE Deutschland GmbH Data Mining als Anwendung des Data Warehouse Konzepte und Beispiele Agenda Data Warehouse Konzept und Data Mining Data Mining Prozesse Anwendungs-Beispiele

Mehr

Komponenten und Architekturen von Analytischen Informationssystemen (AIS)

Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation Zusammenfassung OPAL 6. Übung Juni 2015 Agenda Hinweise zur Klausur Zusammenfassung OPAL Übungen / Kontrollfragen

Mehr

Oracle BI EE mit großen Datenmengen

Oracle BI EE mit großen Datenmengen Oracle BI EE mit großen Datenmengen Christian Casek Riverland Solutions GmbH München Schlüsselworte: Oracle BI EE, Oracle BI Applications, Informatica, RPD, große Datenmengen, Performance, Performanceoptimierung,

Mehr

1 Einführung. Unbekannte Begriffe: Business Intelligence, Knowledge Management, Unternehmensportale, Information Warehouse.

1 Einführung. Unbekannte Begriffe: Business Intelligence, Knowledge Management, Unternehmensportale, Information Warehouse. 1 Einführung mysap Business Intelligence stellt mit Hilfe von Knowledge Management die Verbindung zwischen denen, die etwas wissen und denen, die etwas wissen müssen her. mysap Business Intelligence integriert

Mehr

eevolution Business Intelligence

eevolution Business Intelligence eevolution Business Intelligence Haben Sie sich schon häufig gefragt, warum Ihr Berichtswesen so kompliziert sein muss? Warum Sie nicht einfach mit wenigen Handgriffen Ihr Berichtswesen einrichten und

Mehr

Da steckt mehr für Sie drin!

Da steckt mehr für Sie drin! Da steckt mehr für Sie drin! Mit Business Intelligence erfolgreich durchstarten. Gisbert Reichel Herford, 05.12.2008 Agenda Grundlagen Business Intelligence» Was ist Business Intelligence» Bedeutung von

Mehr

Berater-Profil 3491. Cognos-Berater. Ausbildung Diplom Kaufmann. EDV-Erfahrung seit 1990. Verfügbar ab auf Anfrage.

Berater-Profil 3491. Cognos-Berater. Ausbildung Diplom Kaufmann. EDV-Erfahrung seit 1990. Verfügbar ab auf Anfrage. Berater-Profil 3491 Cognos-Berater Schwerpunkte: - Cognos Softwaresuite, OLAP, Reporting, Analyse, ScorecardingBusiness Intelligence, Corporate Performance Management, Management Informations Systeme,

Mehr

Einführung BI und Logistik werden zu Logistics Intelligence

Einführung BI und Logistik werden zu Logistics Intelligence Beratung Software Lösungen Logistics Intelligence Mit Logistik-Kennzahlen zum Erfolg DOAG Logistik & SCM 2009 12. Mai 2009 Gisela Potthoff Michael Baranowski Inhalt Einführung BI und Logistik werden zu

Mehr

Modernes Hochschulmanagement

Modernes Hochschulmanagement Führungsinformationssysteme am Beispiel der ETH Zürich Dr. Andreas Dudler Direktor der Informatikdienste der ETH Zürich 15. November 2006 / Seite 1 Inhalt Kurze Vorstellung der ETH Zürich Academic Analytics

Mehr

Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr

Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr Copyright 2007 Infor. Alle Rechte vorbehalten. Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr Hubertus Thoma Presales Consultant PM Schalten Sie bitte während

Mehr

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics DATA WAREHOUSE Oracle BI&W Referenz Architektur Big Data und High Performance Analytics Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen

Mehr

Raber+Märcker Business Intelligence Lösungen und Leistungen

Raber+Märcker Business Intelligence Lösungen und Leistungen Business Intelligence Raber+Märcker Business Intelligence Lösungen und Leistungen www.raber-maercker.de 2 LEISTUNGEN Business Intelligence Beratungsleistung Die Raber+Märcker Business Intelligence Beratungsleistung

Mehr

Richtige und schnelle Entscheidungen trotz sich änderner Anforderungen mit Microsoft Dynamics AX und Microsoft SQL Server Reporting Services

Richtige und schnelle Entscheidungen trotz sich änderner Anforderungen mit Microsoft Dynamics AX und Microsoft SQL Server Reporting Services Launch Microsoft Dynamics AX 4.0 Richtige und schnelle Entscheidungen trotz sich änderner Anforderungen mit Microsoft Dynamics AX und Microsoft SQL Server Reporting Services Sonia Al-Kass Partner Technical

Mehr

Data Warehouse und Business Intelligence: Mehrwert eines analytischen Informationssystems für Entscheider an Hochschulen

Data Warehouse und Business Intelligence: Mehrwert eines analytischen Informationssystems für Entscheider an Hochschulen Data Warehouse und Business Intelligence: Mehrwert eines analytischen Informationssystems für Entscheider an Hochschulen Sonja Schulze Zentrales Berichtswesen (ZBW) Stiliana Lüttecke Zentrum für Informationsmanagement

Mehr

Einführung in Business Intelligence

Einführung in Business Intelligence Einführung in Business Intelligence Grundlagen und Anwendungsmöglichkeiten Prof. Dr. Wolfram Höpken wolfram.hoepken@eloum.net eloum @ Hochschule Ravensburg-Weingarten Informationsveranstaltung ebusiness-lotse

Mehr

IBM Smart Analytics System und IBM Cognos BI: Vom Single Point of Truth zum mobilen Cockpit - ein Praxisbericht beim Unternehmen Theo Förch

IBM Smart Analytics System und IBM Cognos BI: Vom Single Point of Truth zum mobilen Cockpit - ein Praxisbericht beim Unternehmen Theo Förch IBM Smart Analytics System und IBM Cognos BI: Vom Single Point of Truth zum mobilen Cockpit - ein Praxisbericht beim Unternehmen Theo Förch Markus Ruf, Geschäftsführer mip GmbH Jens Kretzschmar, Senior

Mehr