Übung 4: Die generische Klasse AvlBaum in Java 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Übung 4: Die generische Klasse AvlBaum in Java 1"

Transkript

1 Übung 4: Die generische Klasse AvlBaum in Java 1 Ein binärer Suchbaum hat die AVL -Eigenschaft, wenn sich in jedem Knoten sich die Höhen der beiden Teilbäume höchstens um 1 unterscheiden. Diese Last ( Balance ) muß in einem Knoten gespeichert sein. Es genügt aber als Maß für die Unsymmetrie eine Höhendifferenz festzuhalten, die nur die Werte 1 (linkslastig), 0 (gleichlastig) und +1 (rechtslastig) annehmen kann. Die AVL -Eigenschaft ist verletzt, wenn diese Höhendifferenz +2 bzw. 2 ist. Der Knoten, der diesen Wert erhalten hat, ist der Knoten alpha, dessen Unausgeglichenheit auf einen der folgenden 4 Fälle zurückzuführen ist: 1. Einfügen in den linken Teilbaum, der vom linken Nachkommen des Knoten alpha bestimmt ist. 2. Einfügen in den rechten Teilbaum, der vom linken Nachkommen des Knoten alpha bestimmt ist. 3. Einfügen in den linken Teilbaum, der vom rechten Nachkommen des Knoten alpha bestimmt ist. 4. Einfügen in den rechten Teilbaum, der vom rechten Nachkommen des Knoten alpha bestimmt ist Fall 1 und Fall 4 bzw. Fall 2 und Fall 3 sind Spiegelbilder, zeigen also das gleiche Verhalten. Fall 1 kann durch einfache Rotation behandelt werden und ist leicht zu bestimmen, daß das Einfügen außerhalb (links links bzw. rechts rechts im Fall 4) stattfindet. Fall 2 kann durch doppelte Rotation behandelt werden und ist ebenfalls leicht zu bestimmen, da das Einfügen innerhalb (links rechts bzw. rechts links) erfolgt. Die einfache Rotation Die folgende Darstellung beschreibt den Fall 1 vor und nach der Rotation: Z Y X Y Z X Die folgende Darstellung bes chreibt Fall 4 vor und nach der Rotation : X Y X Y Z Z Doppelrotation Die einfache Rotation führt in den Fällen 2 und 3 nicht zum Erfolg. 1 Vgl. PR

2 Fall 2 muß durch eine Doppelrotation (links rechts) behandelt werden. k3 k3 D B C A A D B C Auch Fall 3 muß durch Doppelrotation behandelt werden k3 A k3 D B C A D B C Implementierung Zum Einfügen eines Knoten mit dem Datenwert x in einen AVL-Baum, wird x rekursiv in den betoffenen Teilbaum eingesetzt. Falls die Höhe dieses Teilbaums sich nicht verändert, ist das Einfügen beendet. Liegt Unausgeglichenheit vor, dann ist einfache oder doppelte Rotation (abhängig von x und den Daten des betroffenen Teilbaums) nötig. Avl-Baumknoten Er enthält für jeden Knoten eine Angabe zu r Höhe(ndifferenz) seiner Teilbäume. // Baumknoten fuer AVL-Baeume class AvlKnoten // Instanzvariable protected AvlKnoten links; // Linkes Kind protected AvlKnoten rechts; // Rechtes Kind protected int hoehe; // Hoehe public Comparable daten; // Das Datenelement // Konstruktoren public AvlKnoten(Comparable datenelement) this(datenelement, null, null ); public AvlKnoten( Comparable datenelement, AvlKnoten lb, AvlKnoten rb ) daten = datenelement; 2

3 links = lb; rechts = rb; hoehe = 0; Der Avl-Baum Bei jedem Schritt ist festzustellen, ob die Höhe des Teilnaums, in dem ein Element eingefügt wurde, zugenommen hat. * Rueckgabe: Hoehe des Knotens, oder -1, falls null. private static int hoehe(avlknoten b) return b == null? -1 : b.hoehe; Die Methode insert führt das Einfügen eines Baumknoten in den Avl-Baum aus: * Interne Methode zum Einfuegen eines Baumknoten in einen Teilbaum. * x ist das einzufuegende Datenelement. * b ist der jeweilige Wurzelknoten. * Rueckgabe der neuen Wurzel des jeweiligen Teilbaums. private AvlKnoten insert(comparable x, AvlKnoten b) if( b == null ) b = new AvlKnoten(x, null, null); if (x.compareto( b.daten) < 0 ) b.links = insert(x, b.links ); if (hoehe( b.links ) - hoehe( b.rechts ) == 2 ) if (x.compareto( b.links.daten ) < 0 ) b = rotationmitlinksnachf(b); b = doppelrotationmitlinksnachf(b); if (x.compareto( b.daten ) > 0 ) b.rechts = insert(x, b.rechts); if( hoehe(b.rechts) - hoehe(b.links) == 2) if( x.compareto(b.rechts.daten) > 0 ) b = rotationmitrechtsnachf(b); b = doppelrotationmitrechtsnachf( b ); ; // Duplikat; tue nichts b.hoehe = max( hoehe( b.links ), hoehe( b.rechts ) ) + 1; 3

4 Einfache Rotation RotationMitLinksNachf dreht den Linken Teilbaum der folgenden Darstellung nach rechts. Z Y X Y Z X * Rotation Binaerbaumknoten mit linkem Nachfolger. * Fuer AVL-Baeume ist dies eine einfache Rotation (Fall 1). * Aktualisiert Angaben zur Hoehe, dann Rueckgabe der neuen Wurzel. private static AvlKnoten rotationmitlinksnachf(avlknoten ) AvlKnoten =.links;.links =.rechts;.rechts = ;.hoehe = max( hoehe(.links ), hoehe(.rechts ) ) + 1;.hoehe = max( hoehe(.links ),.hoehe ) + 1; return ; Doppelrotation doppelrotationmitlinksnachf führt die folgende Umstellung der Baumknoten aus: k3 k3 D B C A A D B C * Doppelrotation Fall 2: erstes linkes Kind mit seinem rechten Kind; * dann Knoten k3 mit neuem linken Kind. * Aktualisieren der Hoehen, * dann Rueckgabe der neuen Wurzel. private static AvlKnoten doppelrotationmitlinksnachf(avlknoten k3) k3.links = rotationmitrechtsnachf( k3.links ); return rotationmitlinksnachf( k3 ); 4

5 Lösungen // Baumknoten fuer AVL-Baeume class AvlKnoten // Instanzvariable protected AvlKnoten links; // Linkes Kind protected AvlKnoten rechts; // Rechtes Kind protected int hoehe; // Hoehe public Comparable daten; // Das Datenelement // Konstruktoren public AvlKnoten(Comparable datenelement) this(datenelement, null, null ); public AvlKnoten( Comparable datenelement, AvlKnoten lb, AvlKnoten rb ) daten = datenelement; links = lb; rechts = rb; hoehe = 0; // Binaerer Suchbaum // // Konstruktor: Initialisierung der Wurzel mit null // // *** oeffentlich zugaengliche Methoden ******************** // void insert( x ) --> Fuege x ein // void remove( x ) --> Entferne x // Comparable find( x ) --> Gib das Element zurueck, das zu x passt // Comparable findmin( ) --> Rueckgabe des kleinsten Elements // Comparable findmax( ) --> Rueckgabe des groessten Elements // boolean isempty( ) --> Return true if empty; false // void makeempty( ) --> Entferne alles // void printtree( ) --> Ausgabe der Baum-Elemente in sort. Folge // void ausgbinaerbaum() --> Ausgabe der Binaerbaum-Elemente * Implementierung AVL-Baum * Vergleiche basieren auf der Methode compareto. public class AvlBaum Wurzel des Baums private AvlKnoten wurzel; * Default-Konstruktor public AvlBaum( ) wurzel = null; * Einfuegen; Duplikaten werden ignoriert. * x ist das einzufuegende Datenelement. 5

6 public void insert(comparable x ) wurzel = insert( x, wurzel ); * Entfernen eines Baumknotens. Falls x nicht gefunden wird, * geschieht nichts. * x ist das zu entfernende Datenelement. public void remove(comparable x ) System.out.println( "Entschuldigung, remove wurde nicht implementiert" ); * Bestimme das kleinste Datenelement im Baum.. * Rueckgabe: kleinstes Datenelement oder null, * falls der Baum leer ist. public Comparable findmin( ) return elementat( findmin(wurzel)); * Finde das groesste Datenelement im Baum. * Rueckgabe: groesstes Datenelement oder null, falls der Baum leer ist. public Comparable findmax( ) return elementat(findmax(wurzel)); * Finde ein datenelement im Baum. * x enthaelt das zu suchende Datenelement. * Rueckgabe: das gesuchte Datenelement oder null, * falls es nicht gefunden wurde. public Comparable find(comparable x) return elementat(find(x, wurzel)); * Loeschen des Baums. public void makeempty( ) wurzel = null; * Test, ob der Baum leer ist. * Rueckgabe true, falls leer; anderenfalls false. public boolean isempty( ) return wurzel == null; * Gib den Inhalt des Baums in sortierter Folge vor. public void printtree( ) if( isempty( ) ) 6

7 System.out.println( "Baum ist leer" ); printtree( wurzel ); * Ausgabe der Elemente des binaeren Baums um 90 Grad versetzt public void ausgbinaerbaum() if( isempty() ) System.out.println( "Leerer baum" ); ausgbinaerbaum(wurzel,0); * Interne Methode fuer den Zugriff auf einen Baumknoten. * Parameter b referenziert den Baumknoten. * Rueckgabe des Datenelements im Baumknoten oder null, * falls b null ist. private Comparable elementat(avlknoten b ) return b == null? null : b.daten; * Interne Methode zum Einfuegen eines Baumknoten in einen Teilbaum. * x ist das einzufuegende Datenelement. * b ist der jeweilige Wurzelknoten. * Rueckgabe der neuen Wurzel des jeweiligen Teilbaums. private AvlKnoten insert(comparable x, AvlKnoten b) if( b == null ) b = new AvlKnoten(x, null, null); if (x.compareto( b.daten) < 0 ) b.links = insert(x, b.links ); if (hoehe( b.links ) - hoehe( b.rechts ) == 2 ) if (x.compareto( b.links.daten ) < 0 ) b = rotationmitlinksnachf(b); b = doppelrotationmitlinksnachf(b); if (x.compareto( b.daten ) > 0 ) b.rechts = insert(x, b.rechts); if( hoehe(b.rechts) - hoehe(b.links) == 2) if( x.compareto(b.rechts.daten) > 0 ) b = rotationmitrechtsnachf(b); b = doppelrotationmitrechtsnachf( b ); ; // Duplikat; tue nichts b.hoehe = max( hoehe( b.links ), hoehe( b.rechts ) ) + 1; * Interne Methode zum Bestimmen des kleinsten Datenelements. * b ist die Wurzel. * Rueckgabe: Knoten mit dem kleinsten Datenelement. private AvlKnoten findmin(avlknoten b) 7

8 if (b == null) while(b.links!= null ) b = b.links; * Interne Methode zum Bestimmen des groessten Datenelements. * b ist die Wurzel. * Rueckgabe: Knoten mit dem groessten Datenelement. private AvlKnoten findmax(avlknoten b ) if (b == null) while (b.rechts!= null) b = b.rechts; * Internal Methode zum Bestimmen eines Datenelements. * x ist das zu suchende Datenelement. * b ist die Wurzel. * Rueckgabe: Knoten mit dem passenden Datenelement. private AvlKnoten find(comparable x, AvlKnoten b) while( b!= null ) if (x.compareto( b.daten) < 0 ) b = b.links; if( x.compareto( b.daten ) > 0 ) b = b.rechts; // Passt return null; // Passt nicht * Interne Methode zur Ausgabe eines Teilbaums in sortierte Folge. * b ist die Wurzel. private void printtree(avlknoten b) if( b!= null ) printtree( b.links ); System.out.println( b.daten ); printtree( b.rechts ); * Ausgabe des Binaerbaums um 90 Grad versetzt private void ausgbinaerbaum(avlknoten b, int stufe) if (b!= null) ausgbinaerbaum(b.links, stufe + 1); for (int i = 0; i < stufe; i++) System.out.print(' '); System.out.println(b.daten); 8

9 ausgbinaerbaum(b.rechts, stufe + 1); * Rueckgabe: Hoehe des Knotens, oder -1, falls null. private static int hoehe(avlknoten b) return b == null? -1 : b.hoehe; * Rueckgabe: Maximum aus lhs und rhs. private static int max( int lhs, int rhs ) return lhs > rhs? lhs : rhs; * Rotation Binaerbaumknoten mit linkem Nachfolger. * Fuer AVL-Baeume ist dies eine einfache Rotation (Fall 1). * Aktualisiert Angaben zur Hoehe, dann Rueckgabe der neuen Wurzel. private static AvlKnoten rotationmitlinksnachf(avlknoten ) AvlKnoten =.links;.links =.rechts;.rechts = ;.hoehe = max( hoehe(.links ), hoehe(.rechts ) ) + 1;.hoehe = max( hoehe(.links ),.hoehe ) + 1; return ; * Rotate binary tree node with right child. * For AVL trees, this is a single rotation for case 4. * Update heights, then return new wurzel. private static AvlKnoten rotationmitrechtsnachf(avlknoten ) AvlKnoten =.rechts;.rechts =.links;.links = ;.hoehe = max( hoehe(.links ), hoehe(.rechts ) ) + 1;.hoehe = max( hoehe(.rechts ),.hoehe ) + 1; return ; * Double rotate binary tree node: first left child * with its right child; then node k3 with new left child. * For AVL trees, this is a double rotation for case 2. * Update heights, then return new wurzel. private static AvlKnoten doppelrotationmitlinksnachf(avlknoten k3) k3.links = rotationmitrechtsnachf( k3.links ); return rotationmitlinksnachf( k3 ); * Double rotate binary tree node: first right child * with its left child; then node with new right child. * For AVL trees, this is a double rotation for case 3. * Update heights, then return new wurzel. private static AvlKnoten doppelrotationmitrechtsnachf(avlknoten ) 9

10 .rechts = rotationmitlinksnachf(.rechts); return rotationmitrechtsnachf(); public class AvlBaumTest // Test-Programm public static void main(string [] args) // Test Nr. 1 AvlBaum b = new AvlBaum(); final int ZAHLEN = 4000; final int LUECKE = 37; System.out.println( "Pruefung... (keine weiteren Ausgaben bedeutet Erfolg)"); for( int i = LUECKE; i!= 0; i = (i + LUECKE) % ZAHLEN) b.insert( new Integer( i ) ); for(int i = 1; i < ZAHLEN; i+= 2 ) b.remove( new Integer( i ) ); if (ZAHLEN < 40) b.printtree( ); if ( ((Integer)(b.findMin( ))).intvalue( )!= 2 ((Integer)(b.findMax( ))).intvalue( )!= ZAHLEN - 2 ) System.out.println( "FindMin oder FindMax -Fehler!" ); for( int i = 2; i < ZAHLEN; i+=2 ) if( ((Integer)(b.find( new Integer( i ) ))).intvalue( )!= i ) System.out.println( "Find Fehler Nr.1!" ); for( int i = 1; i < ZAHLEN; i+=2 ) if( b.find( new Integer( i ) )!= null ) System.out.println( "Find Fehler Nr.2!" ); // Test Nr.2 AvlBaum b1 = new AvlBaum(); for (int i = 0; i < 10; i++) // Erzeuge eine Zahl zwischen 0 und 100 Integer r = new Integer((int)(Math.random()*100)); b1.insert(r); System.out.println("Inorder-Durchlauf"); b1.printtree(); System.out.println(); System.out.println("Baumdarstellung um 90 Grad versetzt"); b1.ausgbinaerbaum(); System.out.print("Kleinster Wert: "); System.out.print(((Integer)(b1.findMin())).intValue()); System.out.println(); System.out.print("Groesster Wert: "); System.out.print(((Integer)(b1.findMax())).intValue()); System.out.println(); for (int i = 0; i < 10; i++) // Erzeuge eine Zahl zwischen 0 und 100 Integer r = new Integer((int)(Math.random()*100)); if ( b1.find(r)!= null ) b1.remove( r ); // System.out.println(r.intValue() + " nicht gefunden"); 10

11 b1.ausgbinaerbaum(); // Test Nr. 3 AvlBaum b2 = new AvlBaum(); for (int i = 0; i < 20; i++) // 20 Zusfallsstrings speichern String s = "Zufallszahl " + (int)(math.random() * 100); b2.insert(s); b2.printtree(); // Sortiert wieder ausdrucken // Test Nr.4 AvlBaum b3 = new AvlBaum(); for (int i = 0; i < 20; i++) // Integer r = new Integer(i); b3.insert(r); b3.ausgbinaerbaum(); 11

Übung 6. Rot-Schwarz-Bäume

Übung 6. Rot-Schwarz-Bäume Übung 6. Rot-Schwarz-Bäume Top-Down 2.-3-4-Bäume Zum Ausschluß des ungünstigsten Falls bei binären Suchbäumen ist eine gewisse Flexibilität in den verwendeten Datenstrukturen nötig. Das kann bspw. durch

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum

Mehr

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume.

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume. Universität Osnabrück 1 Bäume 3 - Objektorientierte Programmierung in Java Vorlesung 10: Collections 4 Einführung Bäume sind verallgemeinerte Listenstrukturen Lineare Liste Jedes Element hat höchstens

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume 1 Kapitel 13 Ziele 2 Den Begriff des Baums in der Informatik kennenlernen als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf n verstehen und schreiben können Verschiedene Möglichkeiten

Mehr

Geordnete Binärbäume

Geordnete Binärbäume Geordnete Binärbäume Prof. Dr. Martin Wirsing in Zusammenarbeit mit Gilbert Beyer und Christian Kroiß http://www.pst.ifi.lmu.de/lehre/wise-09-10/infoeinf/ WS 09/10 Einführung in die Informatik: Programmierung

Mehr

Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda

Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda Bäume O1 O2 Text O3 O4 O5 O6 O7 Prof. Dr. Margarita Esponda SS 2012 22. ALP2-Vorlesung, M. Esponda Inhalt 1. Einführung 2. Warum Bäume? 3. Listen und Arrays vs. Bäume 4. Einfach verkettete binäre Suchbäume

Mehr

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v) Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der

Mehr

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein.

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein. Aufgabe 10 Binäre Bäume a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge, 28, 35, 31, 9, 4,, 17, 37, 25 ein. 1. Einfügen von : 3. Einfugen von 35: 2. Einfügen von 28: 28 28 10. Einfügen

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 13 (18.6.2014) Binäre Suchbäume IV (Rot Schwarz Bäume) Algorithmen und Komplexität Rot Schwarz Bäume Ziel: Binäre Suchbäume, welche immer

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

Teil 1: Suchen. Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume Ausgeglichene Bäume. B-Bäume Digitale Suchbäume Heaps

Teil 1: Suchen. Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume Ausgeglichene Bäume. B-Bäume Digitale Suchbäume Heaps Teil 1: Suchen Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume Ausgeglichene Bäume AVL-Bäume Splay-Bäume B-Bäume Digitale Suchbäume Heaps M.O.Franz; Oktober 2007 Algorithmen und

Mehr

2 Java: Bäume. 2.1 Implementierung von Bäumen. 2.2 Implementierung eines binären Suchbaums. 2.3 Traversierung von Bäumen

2 Java: Bäume. 2.1 Implementierung von Bäumen. 2.2 Implementierung eines binären Suchbaums. 2.3 Traversierung von Bäumen 2 2 Java: Bäume 2.1 Implementierung von Bäumen 2.2 Implementierung eines binären Suchbaums 2.3 Traversierung von Bäumen 2.4 Implementierung von Heapsort 19 Teil II Java: Bäume Überblick Implementierung

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus wurden ausgewählte Teile in Abstimmung

Mehr

Fortgeschrittene Programmiertechnik Klausur WS 2014/15 Angewandte Informatik Bachelor

Fortgeschrittene Programmiertechnik Klausur WS 2014/15 Angewandte Informatik Bachelor Fortgeschrittene Programmiertechnik Klausur WS 2014/15 Angewandte Informatik Bachelor Name Matrikelnummer Aufgabe Punkte Aufgabe Punkte Zwischensumme 1 6 2 8 3 16 4 14 5 12 56 6 16 7 18 8 20 9 10 Summe

Mehr

9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen

9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen 9.4 Binäre Suchbäume Erweiterung: Einfügen an der Wurzel Standardimplementierung: Der neue Schlüssel wird am Ende des Suchpfades angefügt (natürlich, weil zuerst festgestellt werden muss, ob der Schlüssel

Mehr

Suchen und Sortieren

Suchen und Sortieren (Folie 69, Seite 36 im Skript) 5 6 1 4 Als assoziatives Array geeignet Schlüssel aus geordneter Menge Linke Kinder kleiner, rechte Kinder größer als Elternknoten Externe und interne Knoten Externe Knoten

Mehr

Fortgeschrittene Programmiertechnik Klausur SS 2015 Angewandte Informatik Bachelor

Fortgeschrittene Programmiertechnik Klausur SS 2015 Angewandte Informatik Bachelor Fortgeschrittene Programmiertechnik Klausur SS 2015 Angewandte Informatik Bachelor Name Matrikelnummer Aufgabe Punkte Aufgabe Punkte Zwischensumme 1 6 2 8 3 12 4 18 5 20 64 6 9 7 17 8 18 9 12 Summe 120

Mehr

Copyright, Page 1 of 8 AVL-Baum

Copyright, Page 1 of 8 AVL-Baum www.mathematik-netz.de Copyright, Page 1 of 8 AVL-Baum 1. Motivation und Einleitung Das Suchen, Einfügen und entfernen eines Schlüssels in einem zufällige erzeugten binären Suchbaum mit N Schlüsseln ist

Mehr

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Suchbäume Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

1. Typen und Literale (6 Punkte) 2. Zuweisungen (6 = Punkte)

1. Typen und Literale (6 Punkte) 2. Zuweisungen (6 = Punkte) Praktische Informatik (Software) Vorlesung Softwareentwicklung 1 Prof. Dr. A. Ferscha Hauptklausur am 01. 02. 2001 Zuname Vorname Matr. Nr. Stud. Kennz. Sitzplatz HS / / / Punkte Note korr. Fügen Sie fehlende

Mehr

Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6

Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Robert Elsässer u.v.a. Paderborn, 29. Mai 2008 Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Aufgabe 1 (6 Punkte): Zunächst sollte klar sein, daß ein vollständiger Binärer

Mehr

Algorithmen und Datenstrukturen Balancierte Suchbäume

Algorithmen und Datenstrukturen Balancierte Suchbäume Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen

Mehr

10. Kapitel (Teil1) BÄUME GRUNDLAGEN. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm

10. Kapitel (Teil1) BÄUME GRUNDLAGEN. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm 10. Kapitel (Teil1) BÄUME GRUNDLAGEN Algrithmen & Datenstrukturen Prf. Dr. Wlfgang Schramm Übersicht 1 1. Einführung 2. Algrithmen 3. EigenschaCen vn Prgrammiersprachen 4. Algrithmenparadigmen 5. Suchen

Mehr

JAVA - Methoden

JAVA - Methoden Übungen Informatik I JAVA - http://www.fbi-lkt.fh-karlsruhe.de/lab/info01/tutorial Übungen Informatik 1 Folie 1 sind eine Zusammenfassung von Deklarationen und Anweisungen haben einen Namen und können

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Informatik II. PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri

Informatik II. PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri Informatik II PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri KAUM JAVA Kaum Java Viel Zeit wird für Java-spezifisches Wissen benützt Wenig wichtig für Prüfung Letztjähriger Assistent

Mehr

Balancierte Suchbäume

Balancierte Suchbäume Foliensatz 10 Michael Brinkmeier echnische Universität Ilmenau Institut für heoretische Informatik Sommersemester 2009 U Ilmenau Seite 1 / 74 Balancierte Suchbäume U Ilmenau Seite 2 / 74 Balancierte Suchbäume

Mehr

Verkettete Datenstrukturen: Bäume

Verkettete Datenstrukturen: Bäume Verkettete Datenstrukturen: Bäume 1 Graphen Gerichteter Graph: Menge von Knoten (= Elementen) + Menge von Kanten. Kante: Verbindung zwischen zwei Knoten k 1 k 2 = Paar von Knoten (k 1, k 2 ). Menge aller

Mehr

1. Erste Schritte 2. Einfache Datentypen 3. Anweisungen und Kontrollstrukturen 4. Verifikation 5. Reihungen (Arrays)

1. Erste Schritte 2. Einfache Datentypen 3. Anweisungen und Kontrollstrukturen 4. Verifikation 5. Reihungen (Arrays) 1. Erste Schritte 2. Einfache Datentypen 3. Anweisungen und Kontrollstrukturen 4. Verifikation 5. Reihungen (Arrays) II.1.3. Anweisungen und Kontrollsttukturen - 1 - 3. Anweisungen und Kontrollstrukturen

Mehr

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen:

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen: 6 Partiell geordnete binäre Bäume: Heap (Haufen) Motivation für manchen Anwendungen nur partielle Ordnung der Elemente statt vollständiger nötig, z.b. - Prioritätsschlange: nur das minimale (oder maximale)

Mehr

Datenstrukturen. einfach verkettete Liste

Datenstrukturen. einfach verkettete Liste einfach verkettete Liste speichert Daten in einer linearen Liste, in der jedes Element auf das nächste Element zeigt Jeder Knoten der Liste enthält beliebige Daten und einen Zeiger auf den nächsten Knoten

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Binäre Suchbäume Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Mengen n Ziel: Aufrechterhalten einer Menge (hier: ganzer Zahlen) unter folgenden Operationen: Mengen n Ziel: Aufrechterhalten einer

Mehr

JAVA - Methoden - Rekursion

JAVA - Methoden - Rekursion Übungen Informatik I JAVA - Methoden - Rekursion http://www.fbi-lkt.fh-karlsruhe.de/lab/info01/tutorial Übungen Informatik 1 1 Methoden Methoden sind eine Zusammenfassung von Deklarationen und Anweisungen

Mehr

Einfache Arrays. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Einfache Arrays. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative student"

Mehr

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 4. Bäume 4.1 Grundlagen 4.1.1 Grundbegriffe und Definitionen Bäume sind eine Struktur zur Speicherung von (meist ganzahligen) Schlüsseln. Die Schlüssel werden so gespeichert, daß sie sich in einem einfachen

Mehr

368 4 Algorithmen und Datenstrukturen

368 4 Algorithmen und Datenstrukturen Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort.

Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Name: Seite 2 Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Aufgabe 1 (8 Punkte) 1. Wie viele negative Zahlen (ohne 0) lassen sich im 4-Bit-Zweierkomplement darstellen?

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Fachschaft Informatik Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Michael Steinhuber König-Karlmann-Gymnasium Altötting 15. Januar 2016 Folie 1/77 Inhaltsverzeichnis I 1 Datenstruktur Schlange

Mehr

Lösungsvorschläge. zu den Aufgaben im Kapitel 4

Lösungsvorschläge. zu den Aufgaben im Kapitel 4 Lösungsvorschläge zu den Aufgaben im Kapitel 4 Aufgabe 4.1: Der KNP-Algorithmus kann verbessert werden, wenn in der Funktion nexttabelle die Zuweisung next[tabindex] = ruecksprung; auf die etwas differenziertere

Mehr

Binärbäume. Prof. Dr. E. Ehses, 2014 1

Binärbäume. Prof. Dr. E. Ehses, 2014 1 Binärbäume Grundbegriffe der Graphentheorie Bäume und Ihre Anwendungen Unterschiedliche Darstellungen von Bäumen und Binärbäumen Binärbäume in Java Rekursive Traversierung von Binärbäumen Ebenenweise Traversierung

Mehr

Balancierte Bäume. Minimale Knotenanzahl von AVL-Bäumen. AVL-Bäume. Definition für "balanciert":

Balancierte Bäume. Minimale Knotenanzahl von AVL-Bäumen. AVL-Bäume. Definition für balanciert: Balancierte Bäume Aufwand, ein Element zu finden, entspricht der Tiefe des gefundenen Knotens im worst case = Tiefe des Baumes liegt zwischen log N und N Definition für "balanciert": es gibt verschiedene

Mehr

Algorithmen und Datenstrukturen 1

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen 1 7. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@informatik.uni-leipzig.de aufbauend auf den Kursen der letzten Jahre von E. Rahm, G. Heyer,

Mehr

Objektorientierte Programmierung

Objektorientierte Programmierung Universität der Bundeswehr Fakultät für Informatik Institut 2 Priv.-Doz. Dr. Lothar Schmitz FT 2006 Übungsblatt 5 Lösungsvorschlag Objektorientierte Programmierung 22. 05. 2006 Lösung 9 (SMS-Eingabe am

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Tafelübung 04 Referenzen, Overloading, Klassen(hierarchien) Clemens Lang T2 18. Mai 2010 14:00 16:00, 00.152 Tafelübung zu AuD 1/13 Organisatorisches Nächster Übungstermin

Mehr

Primitive Datentypen

Primitive Datentypen Primitive Datentypen 2 Arten von Datentypen: primitive Datentypen (heute) Objekte (später) Java ist streng typisiert, d.h. für jede Variable muß angegeben werden was für eine Art von Wert sie aufnimmt.

Mehr

14. Rot-Schwarz-Bäume

14. Rot-Schwarz-Bäume Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).

Mehr

Agenda. 1 Einleitung. 2 Binäre Bäume. 3 Binäre Suchbäume. 4 Rose Trees. 5 Zusammenfassung & Ausblick. Haskell Bäume. Einleitung.

Agenda. 1 Einleitung. 2 Binäre Bäume. 3 Binäre Suchbäume. 4 Rose Trees. 5 Zusammenfassung & Ausblick. Haskell Bäume. Einleitung. Vortrag: Bäume in Haskell Bäume in Haskell Vortrag Christoph Forster Thomas Kresalek Fachhochschule Wedel University of Applied Sciences 27. November 2009 Christoph Forster, Thomas Kresalek 1/53 Vortrag

Mehr

Übungen zu Programmierung I - Blatt 8

Übungen zu Programmierung I - Blatt 8 Dr. G. Zachmann A. Greß Universität Bonn Institut für Informatik II 1. Dezember 2004 Wintersemester 2004/2005 Übungen zu Programmierung I - Blatt 8 Abgabe am Mittwoch, dem 15.12.2004, 15:00 Uhr per E-Mail

Mehr

Java-Implementierung der Priority-Queue und des Huffman-Algorithmus Effiziente Algorithmen SS12 Übung 4 Aufgabe 5 Johannes Hein

Java-Implementierung der Priority-Queue und des Huffman-Algorithmus Effiziente Algorithmen SS12 Übung 4 Aufgabe 5 Johannes Hein Übersicht Beschreibung der Datenstruktur Seite 1 Schnittstelle PriorityQueue Seite 2 Klasse PriorityQueueException Seite 3 Klasse Data Seite 4 Klasse PriorityQueueImpl Seite 5 Klasse Huffman Seite 8 Aufbau

Mehr

Java-Schulung Grundlagen

Java-Schulung Grundlagen Java-Schulung Grundlagen Java 2 Standard Edition JDK 5 / 6 31.05.2008 Marcel Wieczorek 1 Themenübersicht Basiswissen Objektorientierung Datentypen Fehlerbehandlung Sonstiges Einführung Klassen, Strings

Mehr

Inf 12 Aufgaben 14.02.2008

Inf 12 Aufgaben 14.02.2008 Inf 12 Aufgaben 14.02.2008 Übung 1 (6 Punkte) Ermitteln Sie eine mathematische Formel, die die Abhängigkeit der Suchzeit von der Anzahl der Zahlen N angibt und berechnen Sie mit Ihrer Formel die durchschnittliche

Mehr

BTree.dll - Balancierte und verkettete Bäume. Ecofor. BTree.dll. Realisiert mit Microsoft Visual Studio 16.04.2015 1/9

BTree.dll - Balancierte und verkettete Bäume. Ecofor. BTree.dll. Realisiert mit Microsoft Visual Studio 16.04.2015 1/9 BTree.dll Realisiert mit Microsoft Visual Studio 16.04.2015 1/9 INHALT 1. Allgemein... 3 2. Class BTree1 (balanciert)... 3 3. Class BTree2 (balanciert und verkettet)... 4 4. Beschreibung BTree1 und BTree2...

Mehr

8 Baum in perfekter Komposition

8 Baum in perfekter Komposition 8 Baum in perfekter Komposition Die Implementierung des Binärbaums im letzten Kapitel wird mithilfe des Entwurfsmusters Kompositum optimiert. Knoten und Abschluss Bei der einfach verketteten Liste wurde

Mehr

II.3.1 Rekursive Algorithmen - 1 -

II.3.1 Rekursive Algorithmen - 1 - 1. Grundelemente der Programmierung 2. Objekte, Klassen und Methoden 3. Rekursion und dynamische Datenstrukturen 4. Erweiterung von Klassen und fortgeschrittene Konzepte II.3.1 Rekursive Algorithmen -

Mehr

In diesem Kapitel behandeln wir erste Algorithmen mit dynamischen Strukturen, wie Bäume und Graphen. 1. Bäume Grundlagen...

In diesem Kapitel behandeln wir erste Algorithmen mit dynamischen Strukturen, wie Bäume und Graphen. 1. Bäume Grundlagen... Bäume und Graphen In diesem Kapitel behandeln wir erste Algorithmen mit dynamischen Strukturen, wie Bäume und Graphen. Inhalt 1. Bäume... 1.1. Grundlagen... 1.. Repräsentation von Binärbäumen... 9 1..1.

Mehr

Klausur zur Veranstaltung Programmierung (fortgeschrittene Konzepte)

Klausur zur Veranstaltung Programmierung (fortgeschrittene Konzepte) Klausur zur Veranstaltung Programmierung (fortgeschrittene Konzepte) Bearbeitungszeit: 100 Minuten (14:15-15:55) Gesamtpunktzahl: 80 Punkte + 30 Zusatzpunkte Die Punktzahlen sind in etwa so bemessen, dass

Mehr

public class SternchenRechteckGefuellt {

public class SternchenRechteckGefuellt { Java programmieren: Musterlösungen Konsolen-Aufgaben Aufgabe 1: Gefüllte Rechtecke zeichnen Schreiben Sie ein Programm, das ein durch Sternchen gefülltes Rechteck zeichnet. Der Benutzer soll Breite und

Mehr

Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06

Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06 Balancierte Bäume Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06 2 Ziele AVL-Bäume als einen wichtigen Vertreter balancierter

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 34 Einstieg in die Informatik mit Java Klassen mit Instanzmethoden Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 34 1 Definition von Klassen 2 Methoden 3 Methoden

Mehr

Übersicht. Rot-schwarz Bäume. Rot-schwarz Bäume. Beispiel. Eigenschaften. Datenstrukturen & Algorithmen. Rot-schwarz Bäume Eigenschaften Einfügen

Übersicht. Rot-schwarz Bäume. Rot-schwarz Bäume. Beispiel. Eigenschaften. Datenstrukturen & Algorithmen. Rot-schwarz Bäume Eigenschaften Einfügen Datenstrukturen & Algorithmen Übersicht Rot-schwarz Bäume Eigenschaften Einfügen Matthias Zwicker Universität Bern Frühling 2009 2 Rot-schwarz Bäume Binäre Suchbäume sind nur effizient wenn Höhe des Baumes

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die

Mehr

Java Einführung Abstrakte Klassen und Interfaces

Java Einführung Abstrakte Klassen und Interfaces Java Einführung Abstrakte Klassen und Interfaces Interface Interface bieten in Java ist die Möglichkeit, einheitliche Schnittstelle für Klassen zu definieren, die später oder/und durch andere Programmierer

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

HTTP://WWW.WIKIPAINTINGS.ORG/EN/FRIEDENSREICH-HUNDERTWASSER/YOU-ARE-A-GUEST-OF-NATURE-BEHAVE Abstrakte Datentypen.

HTTP://WWW.WIKIPAINTINGS.ORG/EN/FRIEDENSREICH-HUNDERTWASSER/YOU-ARE-A-GUEST-OF-NATURE-BEHAVE Abstrakte Datentypen. HTTP://WWW.WIKIPAINTINGS.ORG/EN/FRIEDENSREICH-HUNDERTWASSER/YOU-ARE-A-GUEST-OF-NATURE-BEHAVE Abstrakte Datentypen OOPM, Ralf Lämmel (C) Ralf Lämmel, OOPM, Universität Koblenz-Landau 562 Motivation abstrakter

Mehr

3 Objektorientierte Konzepte in Java

3 Objektorientierte Konzepte in Java 3 Objektorientierte Konzepte in Java 3.1 Klassendeklarationen Fragen an die Klassendeklaration: Wie heißt die Klasse? Wer darf auf die Klasse und ihre Attribute/Methoden zugreifen? Ist die Klasse eine

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April

Mehr

Informatik II. /* c) Baumstruktur in einen String schreiben und zurueckgeben */ public String tostring() {

Informatik II. /* c) Baumstruktur in einen String schreiben und zurueckgeben */ public String tostring() { Universität Augsburg, Institut für Informatik Sommersemester 2006 Prof. Dr. Werner Kießling 08. Juni. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Aufgabe 1: Cloneable Tree.java Informatik II

Mehr

Kapitel 9 Suchalgorithmen

Kapitel 9 Suchalgorithmen Kapitel 9 Suchalgorithmen Suchverfahren: Verfahren, das in einem Suchraum nach Mustern oder Objekten mit bestimmten Eigenschaften sucht. Vielfältige Anwendungsbereiche für Suchverfahren: u.a. Suchen in

Mehr

Prüfung Informatik D-MATH/D-PHYS :00 11:00

Prüfung Informatik D-MATH/D-PHYS :00 11:00 Prüfung Informatik D-MATH/D-PHYS 25. 1. 2013 09:00 11:00 Dr. Bernd Gartner Kandidat/in: Name:... Vorname:... Stud.-Nr.:... Ich bezeuge mit meiner Unterschrift, dass ich die Prufung unter regularen Bedingungen

Mehr

Theorie zu Übung 8 Implementierung in Java

Theorie zu Übung 8 Implementierung in Java Universität Stuttgart Institut für Automatisierungstechnik und Softwaresysteme Prof. Dr.-Ing. M. Weyrich Theorie zu Übung 8 Implementierung in Java Klasse in Java Die Klasse wird durch das class-konzept

Mehr

Stapel (Stack, Keller)

Stapel (Stack, Keller) Stapel (Stack, Keller) Eine wichtige Datenstruktur ist der Stapel. Das Prinzip, dass das zuletzt eingefügte Element als erstes wieder entfernt werden muss, bezeichnet man als LIFO-Prinzip (last-in, first-out).

Mehr

Musterlösungen zur Klausur Informatik 3

Musterlösungen zur Klausur Informatik 3 Musterlösungen zur Klausur Informatik 3 Justus-Liebig-Universität Gießen Wintersemester 2003/2004 Aufgabe 1 (6 Punkte) Man kreuze bei den folgenden Deklarationen und Definitionen jeweils an, ob sie aus

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

UNIVERSITÄT ULM Fakultät für Ingenieurswissenschaften und Informatik Institut für Datenbanken und Informationssysteme

UNIVERSITÄT ULM Fakultät für Ingenieurswissenschaften und Informatik Institut für Datenbanken und Informationssysteme UNIVERSITÄT ULM Fakultät für Ingenieurswissenschaften und Informatik Institut für Datenbanken und Informationssysteme 8. Übung zur Vorlesung Datenbanksysteme WS 08/09 Musterlösung Aufgabe 8-1: SQLJ //

Mehr

Advanced Programming in C

Advanced Programming in C Advanced Programming in C Pointer und Listen Institut für Numerische Simulation Rheinische Friedrich-Wilhelms-Universität Bonn Oktober 2013 Überblick 1 Variablen vs. Pointer - Statischer und dynamischer

Mehr

13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems

13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems 13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems 13.1 Modellierung des Rucksackproblems 13.2 Lösung mit Greedy-Algorithmus 13.3 Lösung mit Backtracking 13.4 Lösung mit Dynamischer Programmierung

Mehr

Fortgeschrittene Programmiertechnik Klausur WS 2014/15 Angewandte Informatik Bachelor

Fortgeschrittene Programmiertechnik Klausur WS 2014/15 Angewandte Informatik Bachelor Fortgeschrittene Programmiertechnik Klausur WS 2014/15 Angewandte Informatik Bachelor Name Matrikelnummer Aufgabe Punkte Aufgabe Punkte Zwischensumme 1 6 2 8 3 16 4 14 5 12 56 6 16 7 18 8 20 9 10 Summe

Mehr

FH D. Objektorientierte Programmierung in Java FH D FH D. Prof. Dr. Ing. André Stuhlsatz. Blöcke. Beispiel: Variablen in Blöcken

FH D. Objektorientierte Programmierung in Java FH D FH D. Prof. Dr. Ing. André Stuhlsatz. Blöcke. Beispiel: Variablen in Blöcken 4 Objektorientierte Programmierung in Java Prof. Dr. Ing. André Stuhlsatz Blöcke Blöcke erweitern einzelne Anweisungen, etwa bei Kontrollstrukturen später Beispiel: Einzelne Anweisung: anweisung; Erweiterung

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / 2014 Vorlesung 11, Donnerstag, 16.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / 2014 Vorlesung 11, Donnerstag, 16. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / 2014 Vorlesung 11, Donnerstag, 16. Januar 2013 (Balancierte Suchbäume) Junior-Prof. Dr. Olaf Ronneberger

Mehr

Übung zur Vorlesung Algorithmische Geometrie

Übung zur Vorlesung Algorithmische Geometrie Übung zur Vorlesung Algorithmische Geometrie Dipl.-Math. Bastian Rieck Arbeitsgruppe Computergraphik und Visualisierung Interdisziplinäres Zentrum für Wissenschaftliches Rechnen 8. Mai 2012 B. Rieck (CoVis)

Mehr

Kurs 1613 Einführung in die imperative Programmierung

Kurs 1613 Einführung in die imperative Programmierung Aufgabe 1 Gegeben sei die Prozedur BubbleSort: procedure BubbleSort(var iofeld:tfeld); { var hilf:integer; i:tindex; j:tindex; vertauscht:boolean; i:=1; repeat vertauscht := false; for j := 1 to N - i

Mehr

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO DAP2 SS 2009 2./4. Juni 2009 1 2. Übungstest

Mehr

5. Tutorium zu Programmieren

5. Tutorium zu Programmieren 5. Tutorium zu Programmieren Dennis Ewert Gruppe 6 Universität Karlsruhe Institut für Programmstrukturen und Datenorganisation (IPD) Lehrstuhl Programmierparadigmen WS 2008/2009 c 2008 by IPD Snelting

Mehr

MB2-ALG, SS15 Seite 1 Hauptklausur, geschrieben am

MB2-ALG, SS15 Seite 1 Hauptklausur, geschrieben am MB-ALG, SS1 Seite 1 Hauptklausur, geschrieben am.07.01 Vorname Nachname Matrikel-Nr Diese Klausur ist mein letzter Prüfungsversuch (bitte ankreuzen): Ja Nein Ihre Lösung für Aufgabe 1 können Sie direkt

Mehr

Grundlagen Java. Name: Seite 2

Grundlagen Java. Name: Seite 2 Name: Seite 2 Grundlagen Java Aufgabe 1.1 (5 Punkte) Füllen Sie in der unten gegebenen Methode das übergebene Array mit aufsteigenden natürlichen Zahlen. Beginnen Sie bei 1 und tragen so viele Zahlen ein,

Mehr

3 Objektorientierte Konzepte in Java

3 Objektorientierte Konzepte in Java 3 Objektorientierte Konzepte in Java Bisherige Beobachtungen zu Objekten: werden in Klassen zusammengefasst besitzen Eigenschaften und Verhalten verbergen private Informationen werden geboren, leben und

Mehr

Algorithmen und Datenstrukturen SS09

Algorithmen und Datenstrukturen SS09 Foliensatz 8 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 29 TU Ilmenau Seite / 54 Binärbäume TU Ilmenau Seite 2 / 54 Binäre Bäume Bäume und speziell

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

1.2 Attribute und Methoden Aufbau einer Java-Klasse:

1.2 Attribute und Methoden Aufbau einer Java-Klasse: Aufbau einer Java-Klasse: public class Quadrat { int groesse; int xposition; String farbe; boolean istsichtbar; public void sichtbarmachen() { istsichtbar = true; public void horizontalbewegen(int distance){

Mehr

Objektorientierte Programmierung OOP Programmieren mit Java

Objektorientierte Programmierung OOP Programmieren mit Java Übungen: 6 Schleifen Objektorientierte Programmierung OOP Programmieren mit Java 1. do-schleife 2. while-schleife 3. a) c) Verschiedene for-schleifen 6 Schleifen Übungen 4. for-schleife: halber Tannenbaum

Mehr

Java Einführung Collections

Java Einführung Collections Java Einführung Collections Inhalt dieser Einheit Behälterklassen, die in der Java API bereitgestellt werden Wiederholung Array Collections (Vector, List, Set) Map 2 Wiederholung Array a[0] a[1] a[2] a[3]...

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Technische Universität München WS 2003/2004 Institut für Informatik Prof. Dr. Christoph Zenger Testklausur Einführung in die Programmierung Probeklausur Java (Lösungsvorschlag) 1 Die Klasse ArrayList In

Mehr