Logik für Informatiker

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Logik für Informatiker"

Transkript

1 Logik für Informatiker 2. Aussagenlogik Teil Viorica Sofronie-Stokkermans Universität Koblenz-Landau 1

2 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle Auswertung von Formeln / Wahrheitstabellen A = F g.d.w. A(F) = 1. Gültigkeit und Erfüllbarkeit F allgemeingültig/tautologie: A(F) = 1 für alle Wertebelegungen A F erfüllbar es gibt Wertebelegung A mit A(F) = 1 F unerfüllbar/kontradiktion A(F) = 0 für alle Wertebelegungen A Folgerung, Äquivalenz F = G, F G 2

3 Bis jetzt Kalküle: Erster Kalkül: Wahrheitstafelmethode Wichtige Äquivalenzen Ein zweiter Kalkül: Logische Umformung Unerfüllbarkeit/Allgemeingültigkeit/Folgerung F = G gdw. = F G N {F} = G gdw. N = F G F G gdw. = F G G allgemeingültig gdw. G unerfüllbar F = G gdw. F G unerfüllbar N = G gdw. N G unerfüllbar 3

4 Unser Ziel Kalkül(e) zur systematischen Überprüfung von Erfüllbarkeit (für Formeln und/oder Formelmengen) Dazu brauchen wir Normalformen 4

5 Normalformen Definition: Atom: aussagenlogische Variable Literal: Atom, oder Negation eines Atoms Beispiel. Sei Π = {P,Q,R}. Atome: P, Q, R Literale: P, P, Q, Q, R, R 5

6 Normalformen Definition: Atom: aussagenlogische Variable Literal: Atom, oder Negation eines Atoms Definition: Klausel: Eine Disjunktion von Literalen mehrstellige Disjunktionen (P Q R), (P P Q) einstellige Disjunktionen P die nullstellige Disjunktion (leere Klausel) 6

7 Normalformen Definition: Konjunktive Normalform (KNF): Eine Konjunktion von Disjunktionen von Literalen, d.h., eine Konjunktion von Klauseln 7

8 Normalformen Definition: Konjunktive Normalform (KNF): Eine Konjunktion von Disjunktionen von Literalen, d.h., eine Konjunktion von Klauseln mehrstellig, einstellig oder nullstellig 8

9 Normalformen Definition: Konjunktive Normalform (KNF): Eine Konjunktion von Disjunktionen von Literalen, d.h., eine Konjunktion von Klauseln mehrstellig, einstellig oder nullstellig Beispiele: (P Q) (Q R S) P Q P (Q R) P Q P P 9

10 Normalformen Definition: Disjunktive Normalform (DNF): Eine Disjunktion von Konjunktionen von Literalen. mehrstellig, einstellig oder nullstellig Beispiele: (P Q) (Q R S) P Q P (Q R) P Q P P 10

11 Normalformen Eigenschaften: Zu jeder aussagenlogischen Formel gibt es: - eine äquivalente Formel in KNF - eine äquivalente Formel in DNF 11

12 Normalformen Eigenschaften: Zu jeder aussagenlogischen Formel gibt es: - eine äquivalente Formel in KNF - eine äquivalente Formel in DNF Diese äquivalenten Formeln in DNF bzw. KNF sind nicht eindeutig 12

13 Normalformen Eigenschaften: Zu jeder aussagenlogischen Formel gibt es: - eine äquivalente Formel in KNF - eine äquivalente Formel in DNF Diese äquivalenten Formeln in DNF bzw. KNF sind nicht eindeutig Solche Formeln können aus einer Wahrheitstafel abgelesen werden Solche Formeln können durch Umformungen hergestellt werden 13

14 Normalformen Eigenschaften: Zu jeder aussagenlogischen Formel gibt es: - eine äquivalente Formel in KNF - eine äquivalente Formel in DNF Diese äquivalenten Formeln in DNF bzw. KNF sind nicht eindeutig Solche Formeln können aus einer Wahrheitstafel abgelesen werden Solche Formeln können durch Umformungen hergestellt werden 14

15 Beispiel F : (P Q) (( P Q) R) P Q R (P Q) P ( P Q) (( P Q) R) F

16 Beispiel: DNF F : (P Q) (( P Q) R) P Q R (P Q) P ( P Q) (( P Q) R) F

17 Beispiel: DNF F : (P Q) (( P Q) R) P Q R (P Q) P ( P Q) (( P Q) R) F DNF: ( P Q R) ( P Q R) (P Q R) (P Q R) 17

18 Beispiel: KNF F : (P Q) (( P Q) R) P Q R (P Q) P ( P Q) (( P Q) R) F F DNF für F: ( P Q R) ( P Q R) (P Q R) (P Q R) KNF für F: (P Q R) (P Q R) ( P Q R) ( P Q R) 18

19 Normalformen DNF für F: A:{P 1,...,Pn} {0,1} A(F)=1 (P A(P 1) 1 P A(P n) n ) wobei: P 0 = P P 1 = P 19

20 Normalformen DNF für F: A:{P 1,...,Pn} {0,1} A(F)=1 (P A(P 1) 1 P A(P n) n ) wobei: P 0 = P P 1 = P Theorem Für alle Interpretationen A : {P 1,...,P n } {0,1}: A (F) = 1 gdw. A ( (P A(P 1) 1 P A(P n) n )) = 1. A:{P 1,...,Pn} {0,1} A(F)=1 20

21 Normalformen DNF für F: A:{P 1,...,Pn} {0,1} A(F)=1 (P A(P 1) 1 P A(P n) n ) wobei: P 0 = P P 1 = P KNF für F: F, wobei F die DNF von F ist. 21

22 Normalformen DNF für F: A:{P 1,...,Pn} {0,1} A(F)=1 (P A(P 1) 1 P A(P n) n ) wobei: P 0 = P P 1 = P KNF für F: F, wobei F die DNF von F ist. KNF für F: A:{P 1,...,Pn} {0,1} A(F)=0 (P 1 A(P 1) 1 P 1 A(P n) n ) 22

23 Normalformen Eigenschaften: Zu jeder aussagenlogischen Formel gibt es: - eine äquivalente Formel in KNF - eine äquivalente Formel in DNF Diese äquivalenten Formeln in DNF bzw. KNF sind nicht eindeutig Solche Formeln können aus einer Wahrheitstafel abgelesen werden Solche Formeln können durch Umformungen hergestellt werden 23

24 Umformung in KNF Vier Schritte: 24

25 Umformung in KNF Vier Schritte: 1. Elimination von Verwende A B (A B) (B A) 25

26 Umformung in KNF Vier Schritte: 1. Elimination von Verwende A B (A B) (B A) 2. Elimination von Verwende A B ( A B) 26

27 Umformung in KNF Vier Schritte: 1. Elimination von Verwende A B (A B) (B A) 2. Elimination von Verwende A B ( A B) 3. Nach innen schieben von Verwende de Morgans Regeln und A A Negationsnormalform (NNF) Eine logische Formel ist in Negationsnormalform (NNF), falls die Negationsoperatoren in ihr nur direkt über atomaren Aussagen vorkommen. 27

28 Umformung in KNF Vier Schritte: 1. Elimination von Verwende A B (A B) (B A) 2. Elimination von Verwende A B ( A B) 3. Nach innen schieben von Verwende de Morgans Regeln und A A (NNF) 4. Nach innen schieben von Verwende Distributivität von über 28

29 Umformung in KNF: Beispiel Gegeben: P (Q R) 29

30 Umformung in KNF: Beispiel Gegeben: P (Q R) 1. Elimination von (P (Q R)) ((Q R) P) 30

31 Umformung in KNF: Beispiel Gegeben: P (Q R) 1. Elimination von (P (Q R)) ((Q R) P) 2. Elimination von ( P Q R) ( (Q R) P) 31

32 Umformung in KNF: Beispiel Gegeben: P (Q R) 1. Elimination von (P (Q R)) ((Q R) P) 2. Elimination von ( P Q R) ( (Q R) P) 3. Nach innen schieben von (NNF) ( P Q R) (( Q R)) P) 32

33 Umformung in KNF: Beispiel Gegeben: P (Q R) 1. Elimination von (P (Q R)) ((Q R) P) 2. Elimination von ( P Q R) ( (Q R) P) 3. Nach innen schieben von (NNF) ( P Q R) (( Q R)) P) 4. Nach innen schieben von ( P Q R) ( Q P) ( R P)) 33

34 Umformung in DNF Vier Schritte: 1. Elimination von Verwende A B (A B) (B A) 2. Elimination von Verwende A B ( A B) 3. Nach innen schieben von Verwende de Morgans Regeln und A A (NNF) 4. Nach innen schieben von Verwende Distributivität von über 34

35 Umformung in DNF: Beispiel Gegeben: P (Q R) 1. Negationsnormalform (NNF) (s. Seite 32): 2. Nach innen schieben von ( P Q R) (( Q R) P) ( P (( Q R) P)) (Q (( Q R) P)) (R (( Q R) P)) ( P Q R) ( P P) (Q Q R) (Q P) (R Q R) (R P) ( P Q R) ( P P) }{{} ((R R) }{{} Q) (R P) ( P Q R) (Q P) (R P) ((Q Q) }{{} R) (Q P) 35

36 Beispiel zur exponentiellen Länge der KNF Gegeben: A n = (P 11 P 12 ) (P n1 P n2 ) 36

37 Beispiel zur exponentiellen Länge der KNF Gegeben: A n = (P 11 P 12 ) (P n1 P n2 ) Zu A n äquivalente KNF (P 1,f(1) P n,f(n) ) f:{1,...,n} {1,2} 37

38 Beispiel zur exponentiellen Länge der KNF Gegeben: A n = (P 11 P 12 ) (P n1 P n2 ) n = 1 : A 1 = P 11 P 12 Länge: 2 = 2 1 n = 2 : A 2 = (P 11 P 12 ) (P 21 P 22 ) ((P 11 P 12 ) P 21 ) ((P 11 P 12 ) P 22 ) (P 11 P 21 ) (P 12 P 21 ) (P 11 P 22 ) (P 12 P 22 ) Länge: 2 2 =

39 Beispiel zur exponentiellen Länge der KNF Gegeben: A n = (P 11 P 12 ) (P n1 P n2 ) n = 1 : A 1 = P 11 P 12 Länge: 2 = 2 1 n = 2 : A 2 = (P 11 P 12 ) (P 21 P 22 ) ((P 11 P 12 ) P 21 ) ((P 11 P 12 ) P 22 ) (P 11 P 21 ) (P 12 P 21 ) (P 11 P 22 ) (P 12 P 22 ) Länge: 2 2 = 2 2 n = 3 : A 3 = (P 11 P 12 ) (P 21 P 22 ) (P 31 P 32) }{{} A ((P 2 11 P 21 ) (P 12 P 21 ) (P 11 P 22 ) (P 12 P 22 )) (P 31 P 32 ) }{{} KNF(A 2 ) 39

40 Beispiel zur exponentiellen Länge der KNF Gegeben: A n = (P 11 P 12 ) (P n1 P n2 ) n = 1 : A 1 = P 11 P 12 Länge: 2 = 2 1 n = 2 : A 2 = (P 11 P 12 ) (P 21 P 22 ) ((P 11 P 12 ) P 21 ) ((P 11 P 12 ) P 22 ) (P 11 P 21 ) (P 12 P 21 ) (P 11 P 22 ) (P 12 P 22 ) Länge: 2 2 = 2 2 n = 3 : A 3 = (P 11 P 12 ) (P 21 P 22 ) (P 31 P 32) }{{} A ((P 2 11 P 21 ) (P 12 P 21 ) (P 11 P 22 ) (P 12 P 22 )) (P 31 P 32 ) }{{} KNF(A 2 ) (((P 11 P 21 ) (P 12 P 21 ) (P 11 P 22 ) (P 12 P 22 )) P 31 ) (((P 11 P 21 ) (P 12 P 21 ) (P 11 P 22 ) (P 12 P 22 )) P 32 ) 40

41 Beispiel zur exponentiellen Länge der KNF Gegeben: A n = (P 11 P 12 ) (P n1 P n2 ) n = 1 : A 1 = P 11 P 12 Länge: 2 1 n = 2 : A 2 = (P 11 P 12 ) (P 21 P 22 ) ((P 11 P 12 ) P 21 ) ((P 11 P 12 ) P 22 ) (P 11 P 21 ) (P 12 P 21 ) (P 11 P 22 ) (P 12 P 22 ) Länge: 2 2 n = 3 : A 3 = (P 11 P 12 ) (P 21 P 22 ) (P 31 P 32) }{{} A ((P 2 11 P 21 ) (P 12 P 21 ) (P 11 P 22 ) (P 12 P 22 )) (P 31 P 32 ) }{{} KNF(A 2 ) (((P 11 P 21 ) (P 12 P 21 ) (P 11 P 22 ) (P 12 P 22 )) P 31 ) (((P 11 P 21 ) (P 12 P 21 ) (P 11 P 22 ) (P 12 P 22 )) P 32 ) (((P 11 P 21 P 31 ) (P 12 P 21 P 31 ) (P 11 P 22 P 31 ) (P 12 P 22 P 31 ) (((P 11 P 21 P 32 ) (P 12 P 21 P 32 ) (P 11 P 22 P 32 ) (P 12 P 22 P 32 ) Länge:

42 Beispiel zur exponentiellen Länge der KNF Gegeben: A n = (P 11 P 12 ) (P n1 P n2 ) Zu A n äquivalente KNF (P 1,f(1) P n,f(n) ) f:{1,...,n} {1,2} Größe der KNF: Klausel in KNF von A n : 2 n Beweis: Induktion Sei f(n) die Anzahl der Klausel in KNF für A n. f(1) = 2 f(n +1) = 2f(n) 42

43 Beispiel zur exponentiellen Länge der KNF Gegeben: A n = (P 11 P 12 ) (P n1 P n2 ) Klausel in KNF von A n : 2 n Beweis durch Induktion Induktionsbasis: n = 1 : A 1 in KNF, 2 1 Klausel. 43

44 Beispiel zur exponentiellen Länge der KNF Gegeben: A n = (P 11 P 12 ) (P n1 P n2 ) Klausel in KNF von A n : 2 n Beweis durch Induktion Induktionsvoraussetzung: KNF von A n hat 2 n Klausel KNF(A n ) = C 1 C 2 n, C i = (L i 1 Li n i ) Klausel Induktionsschritt: Zu zeigen: KNF von A n+1 hat 2 n+1 Klausel A n+1 = (P 11 P 12 ) (P n1 P n2 ) (P (n+1),1 P (n+1),2 ) ((P 11 P 12 ) (P n1 P n2 )) (P (n+1),1 P (n+1),2 ) }{{} An (C 1 C 2 n) }{{} KNF(An) (P (n+1),1 P (n+1),2 ) ((C 1 C 2 n) P (n+1),1 ) ((C 1 C 2 n) P (n+1),2 ) (C 1 P (n+1),1 ) (C 2 n P (n+1),1 ) (C 1 P (n+1),2 ) (C 2 n P (n+1),2 ) 44

45 Beispiel zur exponentiellen Länge der KNF Gegeben: A n = (P 11 P 12 ) (P n1 P n2 ) Klausel in KNF von A n : 2 n Beweis durch Induktion Induktionsvoraussetzung: KNF von A n hat 2 n Klausel KNF(A n ) = C 1 C 2 n, C i = (L i 1 Li n i ) Klausel Induktionsschritt: Zu zeigen: KNF von A n+1 hat 2 n+1 Klausel A n+1 = (P 11 P 12 ) (P n1 P n2 ) (P (n+1),1 P (n+1),2 ) ((P 11 P 12 ) (P n1 P n2 )) (P (n+1),1 P (n+1),2 ) }{{} An (C 1 C 2 n) }{{} KNF(An) (P (n+1),1 P (n+1),2 ) ((C 1 C 2 n) P (n+1),1 ) ((C 1 C 2 n) P (n+1),2 ) (C 1 P (n+1),1 ) (C 2 n P (n+1),1 ) (C 1 P (n+1),2 ) (C 2 n P (n+1),2 ) }{{}}{{} 2 n 2 n 45

46 KNF: Mengenschreibweise Notation: Klausel als Menge von Literalen Formel in KNF als Menge von Klauseln 46

47 KNF: Mengenschreibweise Notation: Klausel als Menge von Literalen Formel in KNF als Menge von Klauseln Beispiel: (P Q R) (P Q R) ( P Q R) ( P Q R) { {P,Q,R}, {P,Q, R}, { P,Q,R}, { P, Q,R} } 47

48 KNF: Mengenschreibweise Bedeutung der leeren Menge Leere Klausel = leere Menge von Literalen = leere Disjunktion = 48

49 KNF: Mengenschreibweise Bedeutung der leeren Menge Leere Klausel = leere Menge von Literalen = leere Disjunktion = Leere Menge von Klausels = leere Konjunktion = 49

50 Vereinfachung der KNF: Subsumption Theorem (Subsumption Regel) Enthält eine KNF-Formel (= Klauselmenge) Klauseln K,K mit K K dann entsteht eine äquivalente Formel, wenn K weggelassen wird. 50

51 Vereinfachung der KNF: Subsumption Theorem (Subsumption Regel) Enthält eine KNF-Formel (= Klauselmenge) Klauseln K,K mit K K dann entsteht eine äquivalente Formel, wenn K weggelassen wird. Beweis: K = {L 1,...,L p } {L 1,...,L p,l p+1,...,l m } = K F enthält K K K K = (L 1 L p ) ((L 1 L p ) L p+1...l m ) (L 1 L p ) = K (Absorption) 51

52 Das SAT-Problem (Erfüllbarkeitsproblem) Definition: SAT-Problem Gegeben: Eine aussagenlogische Formel F Frage: Ist F erfüllbar? 52

53 Das SAT-Problem (Erfüllbarkeitsproblem) Definition: SAT-Problem Gegeben: Eine aussagenlogische Formel F Frage: Ist F erfüllbar? NB: F allgemeingültig gdw. F nicht erfüllbar 53

54 Das SAT-Problem (Erfüllbarkeitsproblem) Erfüllbarkeitsproblem für DNF Formeln Sei F = n i=1 ( m j=1 L ij) in DNF F unerfüllbar gdw. ( m j=1 L ij) unerfüllbar für alle i = 1,...,n gdw. ( m j=1 L ij) enthält zwei komplementare Literale für alle i 54

55 Zusammenfassung Normalformen Atome, Literale, Klauseln Konjunktive und Disjunktive Normalform Ablesen von DNF und KNF aus Wahrheitstafeln Umformen in KNF/DNF Mengenschreibweise Subsumption SAT-Problem (Erfüllbarkeitsproblem) Definition Erfüllbarkeitsproblem für DNF Formeln 55

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 8.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 10 4.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Hauptklausur: Montag, 23.07.2012, 16:00-18:00,

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 4. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der Aussagenlogik:

Mehr

Ersetzbarkeitstheorem

Ersetzbarkeitstheorem Ersetzbarkeitstheorem Die Abgeschlossenheit läßt sich auch folgendermaßen formulieren: Ersetzbarkeitstheorem Seien F und G Formeln mit F G. SeienH und H Formeln, so daß H aus H hervorgeht, indem ein Vorkommen

Mehr

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Frank Heitmann heitmann@informatik.uni-hamburg.de 9. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/36 Ersetzbarkeitstheorem

Mehr

TU5 Aussagenlogik II

TU5 Aussagenlogik II TU5 Aussagenlogik II Daniela Andrade daniela.andrade@tum.de 21.11.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;)

Mehr

Logik Vorlesung 3: Äquivalenz und Normalformen

Logik Vorlesung 3: Äquivalenz und Normalformen Logik Vorlesung 3: Äquivalenz und Normalformen Andreas Maletti 7. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Allgemeingültige Aussagen

Allgemeingültige Aussagen Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt

Mehr

Beispiel Aussagenlogik nach Schöning: Logik...

Beispiel Aussagenlogik nach Schöning: Logik... Beispiel Aussagenlogik nach Schöning: Logik... Worin besteht das Geheimnis Ihres langen Lebens? wurde ein 100-jähriger gefragt. Ich halte mich streng an die Diätregeln: Wenn ich kein Bier zu einer Mahlzeit

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 6. Aussagenlogik Resolution Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Resolutionkalkül Wesentliche

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4 Syntax der Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Eine atomare Formel hat die Form A i (wobei i = 1, 2, 3,...). Definition (Formel)

Mehr

Übung 4: Aussagenlogik II

Übung 4: Aussagenlogik II Übung 4: Aussagenlogik II Diskrete Strukturen im Wintersemester 2013/2014 Markus Kaiser 8. Januar 2014 1/10 Äquivalenzregeln Identität F true F Dominanz F true true Idempotenz F F F Doppelte Negation F

Mehr

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Ralf Moeller Hamburg Univ. of Technology Boole'sche Algebra Äquivalenzen als "Transformationsgesetze" Ersetzbarkeitstheorem Zentrale

Mehr

3. Logik 3.1 Aussagenlogik

3. Logik 3.1 Aussagenlogik 3. Logik 3.1 Aussagenlogik WS 06/07 mod 301 Kalkül zum logischen Schließen. Grundlagen: Aristoteles 384-322 v. Chr. Aussagen: Sätze, die prinzipiell als ahr oder falsch angesehen erden können. z. B.: Es

Mehr

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf

Mehr

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser Informatik A Prof. Dr. Norbert Fuhr fuhr@uni-duisburg.de auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser 1 Teil I Logik 2 Geschichte R. Descartes (17. Jhdt): klassische

Mehr

1 Aussagenlogischer Kalkül

1 Aussagenlogischer Kalkül 1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Teil 3: Logik 1 Aussagenlogik Einleitung Eigenschaften Äquivalenz Folgerung Normalformen 2 Prädikatenlogik Wenn eine Karte

Mehr

Logic in a Nutshell. Christian Liguda

Logic in a Nutshell. Christian Liguda Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung

Mehr

3. Grundlegende Begriffe von Logiken - Aussagenlogik

3. Grundlegende Begriffe von Logiken - Aussagenlogik 3. Grundlegende Begriffe von Logiken - Aussagenlogik Wichtige Konzepte und Begriffe in Logiken: Syntax (Signatur, Term, Formel,... ): Festlegung, welche syntaktischen Gebilde als Formeln (Aussagen, Sätze,

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Kapitel 1.3 Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Mathematische Logik (WS 2011/12) Kapitel 1.3: Normalformen 1/ 29 Übersicht

Mehr

Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen

Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Einführung in die Logik - 4 Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Widerlegungsverfahren zum Aufwärmen: Bestimmung von Tautologien mittels Quick Falsification

Mehr

Einführung in die Logik. Sommersemester Juli 2010 Institut für Theoretische Informatik

Einführung in die Logik. Sommersemester Juli 2010 Institut für Theoretische Informatik Einführung in die Logik Jiří Adámek Sommersemester 2010 14. Juli 2010 Institut für Theoretische Informatik Inhaltsverzeichnis 1 Einleitung: Logische Systeme 4 I Aussagenlogik 6 2 Aussagenlogik 7 2.i Syntax

Mehr

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume & Dr. Sander Bruggink Barbara König Logik 1 (Motivation) Wir benötigen Algorithmen für Erfüllbarkeitstests,

Mehr

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

Vorlesung Logiksysteme

Vorlesung Logiksysteme Vorlesung Logiksysteme Teil 1 - Aussagenlogik Martin Mundhenk Univ. Jena, Institut für Informatik 15. Mai 2014 Formalien zur Vorlesung/Übung Termine: dienstags 16:15 17:45 Uhr freitags 10:15 11:45 Uhr

Mehr

Algorithmen für OBDD s. 1. Reduziere 2. Boole sche Operationen

Algorithmen für OBDD s. 1. Reduziere 2. Boole sche Operationen Algorithmen für OBDD s 1. Reduziere 2. Boole sche Operationen 1 1. Reduziere siehe auch M.Huth und M.Ryan: Logic in Computer Science - Modelling and Reasoning about Systems, Cambridge Univ.Press, 2000

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik FH Wedel Pro. Dr. Sebastian Ianoski GTI21 Folie 1 Grundlagen der Theoretischen Inormatik Sebastian Ianoski FH Wedel Kap. 2: Logik, Teil 2.1: Aussagenlogik FH Wedel Pro. Dr. Sebastian Ianoski GTI21 Folie

Mehr

Erfüllbarkeit und Allgemeingültigkeit

Erfüllbarkeit und Allgemeingültigkeit Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ

Mehr

Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik

Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik Grundzeichen Aussagenlogik Aussagenvariablen P, Q, R,... Junktoren nicht und oder Runde Klammern (, ) Formeln Aussagenlogik Formeln sind spezielle Zeichenreihen aus Grundzeichen, und zwar 1 Jede Aussagenvariable

Mehr

Normalformen boolescher Funktionen

Normalformen boolescher Funktionen Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion

Mehr

Kapitel 1. Aussagenlogik

Kapitel 1. Aussagenlogik Kapitel 1 Aussagenlogik Einführung Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 1/17 Übersicht Teil I: Syntax und Semantik der Aussagenlogik (1.0) Junktoren und Wahrheitsfunktionen (1.1) Syntax

Mehr

Algorithmischer Aufbau der Aussagenlogik

Algorithmischer Aufbau der Aussagenlogik Algorithmischer Aufbau der Aussagenlogik In diesem Abschnitt betrachten wir Verfahren die bei gegebener endlichen Menge Σ und A-Form A entscheiden ob Σ = A gilt. Die bisher betrachteten Verfahren prüfen

Mehr

Zusammenfassung des Stoffes zur Vorlesung Formale Systeme

Zusammenfassung des Stoffes zur Vorlesung Formale Systeme Zusammenfassung des Stoffes zur Vorlesung Formale Systeme Max Kramer 13. Februar 2009 Diese Zusammenfassung entstand als persönliche Vorbereitung auf die Klausur zur Vorlesung Formale Systeme von Prof.

Mehr

Tableaukalkül für Aussagenlogik

Tableaukalkül für Aussagenlogik Tableaukalkül für Aussagenlogik Tableau: Test einer Formel auf Widersprüchlichkeit Fallunterscheidung baumförmig organisiert Keine Normalisierung, d.h. alle Formeln sind erlaubt Struktur der Formel wird

Mehr

Was bisher geschah: klassische Aussagenlogik

Was bisher geschah: klassische Aussagenlogik Was bisher geschah: klassische Aussagenlogik Syntax Symbole und Struktur Junktoren: t, f (nullstellig), (einstellig),,,, (zweistellig) aussagenlogische Formeln AL(P) induktive Definition: IA atomare Formeln

Mehr

Mathematik-Vorkurs für Informatiker Aussagenlogik 1

Mathematik-Vorkurs für Informatiker Aussagenlogik 1 Christian Eisentraut & Julia Krämer www.vorkurs-mathematik-informatik.de Mathematik-Vorkurs für Informatiker Aussagenlogik 1 Aufgabe 1. (Wiederholung wichtiger Begriffe) Notieren Sie die Definitionen der

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Kapitel 1.3 Normalformen aussagenlogischer Formeln Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Boolesche Formeln, Literale und Klauseln Eine Boolesche Formel ist eine aussagenlogische

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 8 31.05.2016 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Normalformen: CNF/DNF Subsumption SAT-Problem

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 7. Aussagenlogik Analytische Tableaus Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Tableaukalkül

Mehr

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen Prädikatenlogik 1. Stufe (kurz: PL1) Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen notwendig: Existenz- und Allaussagen Beispiel: 54 Syntax der Prädikatenlogik erster Stufe (in der

Mehr

Logik Teil 1: Aussagenlogik. Vorlesung im Wintersemester 2010

Logik Teil 1: Aussagenlogik. Vorlesung im Wintersemester 2010 Logik Teil 1: Aussagenlogik Vorlesung im Wintersemester 21 Aussagenlogik Aussagenlogik behandelt die logische Verknüpfung von Aussagen mittels Junktoren wie und, oder, nicht, gdw. Jeder Aussage ist ein

Mehr

Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung

Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung Universität Koblenz-Landau FB 4 Informatik Prof. Dr. Viorica Sofronie-Stokkermans 23.07.2012 Dipl.-Inform. Markus Bender Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung

Mehr

Aussagenlogik. Syntax und Semantik Boolesche Algebra Erfüllbarkeit SAT-Solver Kompaktheit Beweiskalküle

Aussagenlogik. Syntax und Semantik Boolesche Algebra Erfüllbarkeit SAT-Solver Kompaktheit Beweiskalküle Aussagenlogik Syntax und Semantik Boolesche Algebra Erfüllbarkeit SAT-Solver Kompaktheit Beweiskalküle Logik für Informatiker, M. Lange, IFI/LMU: Aussagenlogik Syntax und Semantik 26 Einführendes Beispiel

Mehr

Was ist Logik? Was ist Logik? Logische Konnektoren. Aussagenlogik. Logik stellt Sprachen zur Darstellung von Wissen zur Verfügung

Was ist Logik? Was ist Logik? Logische Konnektoren. Aussagenlogik. Logik stellt Sprachen zur Darstellung von Wissen zur Verfügung Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen

Mehr

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Kapitel 1.0 Aussagenlogik: Einführung Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Ziele der Aussagenlogik In der Aussagenlogik analysiert man die Wahrheitswerte zusammengesetzter

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Fakultät für Informatik Universität Magdeburg Jürgen Dassow. Vorbemerkungen

Fakultät für Informatik Universität Magdeburg Jürgen Dassow. Vorbemerkungen Vorbemerkungen if (x > y) z = x; else z = y; Wenn es blaue Tiger regnet, dann fressen alle Kirschbäume schwarze Tomaten. q(1) = 1, q(i) = q(i 1) + 2i 1 für i 2 Welchen Wert hat q(6)? 24 ist durch 2 teilbar.

Mehr

Logik Teil 1: Aussagenlogik

Logik Teil 1: Aussagenlogik Aussagenlogik Aussagenlogik behandelt die logische Verknüpfung von Aussagen mittels Junktoren wie und, oder, nicht, gdw. Logik Teil : Aussagenlogik Jeder Aussage ist ein Wahrheitswert (wahr/falsch) zugeordnet

Mehr

5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation

5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation Theorie der Informatik 9. März 2015 5. Aussagenlogik III Theorie der Informatik 5. Aussagenlogik III 5.1 Inferenz Malte Helmert Gabriele Röger 5.2 Resolutionskalkül Universität Basel 9. März 2015 5.3 Zusammenfassung

Mehr

Mathematik-Vorkurs für Informatiker Aussagenlogik 1

Mathematik-Vorkurs für Informatiker Aussagenlogik 1 Christian Eisentraut & Julia Krämer www.vorkurs-mathematik-informatik.de Mathematik-Vorkurs für Informatiker Aussagenlogik 1 Aufgabe 1. (Wiederholung wichtiger Begriffe) Kategorie 1 Notieren Sie die Definitionen

Mehr

Schlussregeln aus anderen Kalkülen

Schlussregeln aus anderen Kalkülen Was bisher geschah Klassische Aussagenlogik: Syntax Semantik semantische Äquivalenz und Folgern syntaktisches Ableiten (Resolution) Modellierung in Aussagenlogik: Wissensrepräsentation, Schaltungslogik,

Mehr

3.0 VU Formale Modellierung

3.0 VU Formale Modellierung 3.0 VU Formale Modellierung Gernot Salzer 11.10.2011 1 Organisatorisches Verschiebung der Vorlesung: Vorlesung am Dienstag, 18.10.2011, 13:00 16:00, entfällt. Ersatz: Mittwoch, 19.10.2011, 15:00 18:00,

Mehr

Hilbert-Kalkül (Einführung)

Hilbert-Kalkül (Einführung) Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle

Mehr

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50)

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50) Aussagenlogik Formale Methoden der Informatik WiSe 2/2 teil 7, folie (von 5) Teil VII: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning,

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung GdP2 Slide 1 Grundlagen der Programmierung Vorlesung 2 Sebastian Ianoski FH Wedel GdP2 Slide 2 Beispiel ür eine Programmveriikation Gegeben sei olgender Algorithmus: i (x>0) ((y+x) 0) then z := x y else

Mehr

Logik (Teschl/Teschl 1.1 und 1.3)

Logik (Teschl/Teschl 1.1 und 1.3) Logik (Teschl/Teschl 1.1 und 1.3) Eine Aussage ist ein Satz, von dem man eindeutig entscheiden kann, ob er wahr (true, = 1) oder falsch (false, = 0) ist. Beispiele a: 1 + 1 = 2 b: Darmstadt liegt in Bayern.

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 9. November 2016 Weitere Begriffe Eine Zuweisung von Wahrheitswerten W bzw. F

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 1 9.06.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Rückblick: Vor- und Nachteile von Aussagenlogik + Aussagenlogik

Mehr

wenn es regnet ist die Straße nass.

wenn es regnet ist die Straße nass. Aussagenlogik 2 In der Aussagenlogik werden, wie der Name schon sagt, Aussagen über logische Operatoren verknüpft. Der Satz diestraßeistnass ist eine Aussage, genauso wie es regnet. Diese beiden Aussagen

Mehr

Aussagenlogik. Aussagen und Aussagenverknüpfungen

Aussagenlogik. Aussagen und Aussagenverknüpfungen Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 13. Prädikatenlogik Der Satz von Herbrand Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Semantische Bäume Eine klassische

Mehr

Wissensbasierte Systeme 7. Prädikatenlogik

Wissensbasierte Systeme 7. Prädikatenlogik Wissensbasierte Systeme 7. Prädikatenlogik Syntax und Semantik, Normalformen, Herbrandexpansion Michael Beetz Plan-based Robot Control 1 Inhalt 7.1 Motivation 7.2 Syntax und Semantik 7.3 Normalformen 7.4

Mehr

Logik. Markus Lohrey. Sommersemester Universität Siegen. Markus Lohrey (Universität Siegen) Logik Sommersem / 299

Logik. Markus Lohrey. Sommersemester Universität Siegen. Markus Lohrey (Universität Siegen) Logik Sommersem / 299 Logik Markus Lohrey Universität Siegen Sommersemester 2014 Markus Lohrey (Universität Siegen) Logik Sommersem. 2014 1 / 299 Organisatorisches zur Vorlesung Informationen finden Sie unter z. B. http://www.eti.uni-siegen.de/ti/lehre/ss14/logik/

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3

Mehr

Logische und funktionale Programmierung

Logische und funktionale Programmierung Logische und funktionale Programmierung Vorlesung 2: Prädikatenkalkül erster Stufe Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. Oktober 2016 1/38 DIE INTERPRETATION

Mehr

Aussagenlogische Kalküle

Aussagenlogische Kalküle Aussagenlogische Kalküle Ziel: mit Hilfe von schematischen Regeln sollen alle aus einer Formel logisch folgerbaren Formeln durch (prinzipiell syntaktische) Umformungen abgeleitet werden können. Derartige

Mehr

Hat KAI also die Uhr gestohlen oder nicht? (Mit Begründung, natürlich!) 1

Hat KAI also die Uhr gestohlen oder nicht? (Mit Begründung, natürlich!) 1 INTA - Lösungshinweise zum Übungsblatt 3, Version 1.0α. Aufgabe 13 (Meta-Logik, die Zweite). Nachdem sie erfolgreich den Zauberer identifiziert haben (hatten sie doch, oder?), werden sie kurzzeitig als

Mehr

Logik. Markus Lohrey. Wintersemester 2012/2013. Universität Leipzig. Markus Lohrey (Universität Leipzig) Logik Wintersem.

Logik. Markus Lohrey. Wintersemester 2012/2013. Universität Leipzig. Markus Lohrey (Universität Leipzig) Logik Wintersem. Logik Markus Lohrey Universität Leipzig Wintersemester 2012/2013 Markus Lohrey (Universität Leipzig) Logik Wintersem. 2012/2013 1 / 214 Organisatorisches zur Vorlesung Informationen finden Sie unter z.

Mehr

Logik Vorlesung 6: Resolution

Logik Vorlesung 6: Resolution Logik Vorlesung 6: Resolution Andreas Maletti 28. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere Eigenschaften

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik FH Wedel Prof. Dr. Sebastian Iwanowski GTI22 Folie 1 Grundlagen der Theoretischen Informatik Sebastian Iwanowski FH Wedel Kap. 2: Logik, Teil 2.2: Prädikatenlogik FH Wedel Prof. Dr. Sebastian Iwanowski

Mehr

Die Folgerungsbeziehung

Die Folgerungsbeziehung Kapitel 2: Aussagenlogik Abschnitt 2.1: Syntax und Semantik Die Folgerungsbeziehung Definition 2.15 Eine Formel ψ AL folgt aus einer Formelmenge Φ AL (wir schreiben: Φ = ψ), wenn für jede Interpretation

Mehr

7 Logische Agenten. Die Wumpus-Welt. Sensoren: Die Quadrate um den Wumpus herum stinken (Stench)

7 Logische Agenten. Die Wumpus-Welt. Sensoren: Die Quadrate um den Wumpus herum stinken (Stench) 7 Logische Agenten 12.01.2007 Logische Agenten Logische Agenten / 1 Die Wumpus-Welt Sensoren: Die Quadrate um den Wumpus herum stinken (Stench) In Quadraten um eine Falltür (Pit) herum ist ein Luftzug

Mehr

Logik Vorlesung 10: Herbrand-Theorie

Logik Vorlesung 10: Herbrand-Theorie Logik Vorlesung 10: Herbrand-Theorie Andreas Maletti 9. Januar 2015 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere Eigenschaften

Mehr

Kapitel L:II. II. Aussagenlogik

Kapitel L:II. II. Aussagenlogik Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen

Mehr

Logik für Informatiker. 1. Grundlegende Beweisstrategien. Viorica Sofronie-Stokkermans Universität Koblenz-Landau

Logik für Informatiker. 1. Grundlegende Beweisstrategien. Viorica Sofronie-Stokkermans Universität Koblenz-Landau Logik für Informatiker 1. Grundlegende Beweisstrategien Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Mathematisches Beweisen Mathematische ussagen - haben oft

Mehr

Mathematik für Informatiker I

Mathematik für Informatiker I Mathematik für Informatiker I Mitschrift zur Vorlesung vom 19.10.2004 In diesem Kurs geht es um Mathematik und um Informatik. Es gibt sehr verschiedene Definitionen, aber für mich ist Mathematik die Wissenschaft

Mehr

Reduktionen. Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie. Exkurs: Reduktionen allgemein. Reduktionen: Erläuterungen

Reduktionen. Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie. Exkurs: Reduktionen allgemein. Reduktionen: Erläuterungen en Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie P, und C Definition () Seien L 1, L 2 {0, 1} zwei Sprachen. Wir sagen, dass L 1 auf L 2 in polynomialer Zeit reduziert wird, wenn eine

Mehr

Informatik A (Autor: Max Willert)

Informatik A (Autor: Max Willert) 2. Aufgabenblatt Wintersemester 2012/2013 - Musterlösung Informatik A (Autor: Max Willert) 1. Logik im Alltag (a) Restaurant A wirbt mit dem Slogan Gutes Essen ist nicht billig!, das danebenliegende Restaurant

Mehr

Was bisher geschah: klassische Aussagenlogik

Was bisher geschah: klassische Aussagenlogik Was bisher geschah: klassische Aussagenlogik klassische Aussagenlogik: Syntax, Semantik Äquivalenz zwischen Formeln ϕ ψ gdw. Mod(ϕ) = Mod(ψ) wichtige Äquivalenzen, z.b. Doppelnegation-Eliminierung, DeMorgan-Gesetze,

Mehr

Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem:

Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem: Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem: 4 4 4 4 4 1 1 1 1 2 2 3 3 5 5 5 5 5 5 6 6 6 7 7 8 8 9 9 9 9 9 8 6 Verwenden Sie dazu eine atomare Formel A[n, x, y] für jedes Tripel (n,

Mehr

Mathematische Logik. Grundlagen, Aussagenlogik, Semantische Äquivalenz. Felix Hensel. February 21, 2012

Mathematische Logik. Grundlagen, Aussagenlogik, Semantische Äquivalenz. Felix Hensel. February 21, 2012 Mathematische Logik Grundlagen, Aussagenlogik, Semantische Äquivalenz Felix Hensel February 21, 2012 Dies ist im Wesentlichen eine Zusammenfassung der Abschnitte 1.1-1.3 aus Wolfgang Rautenberg s Buch

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (III) 17.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Bisher. minimale DNF. logischen Formeln Booleschen Funktionen Schaltungen

Bisher. minimale DNF. logischen Formeln Booleschen Funktionen Schaltungen Bisher Klassische Aussagenlogik (Syntax, Semantik) semantische Äquivalenz von Formeln äquivalentes Umformen von Formeln (syntaktisch) Normalformen: NNF, DNF, CNF, kanonische DNF und CNF Ablesen kanonischer

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 1. Einführung Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Formale Logik Ziel Formalisierung und Automatisierung rationalen

Mehr

Beweisen mit Semantischen Tableaux

Beweisen mit Semantischen Tableaux Beweisen mit Semantischen Tableaux Semantische Tableaux geben ein Beweisverfahren, mit dem ähnlich wie mit Resolution eine Formel dadurch bewiesen wird, dass ihre Negation als widersprüchlich abgeleitet

Mehr

1 Aussagenlogische Formeln

1 Aussagenlogische Formeln 1 Aussagenlogische Formeln Aufgabe 1.1 Transformieren Sie die Formel in disjunktive Normalform (DNF). ((:A! :B) ^ D)! ((A _ C) $ (:B ^ D)) Lösung 1.1 Schrittweise Transformation: Schritt 1: ((:A! :B) ^

Mehr

Teil 7. Grundlagen Logik

Teil 7. Grundlagen Logik Teil 7 Grundlagen Logik Was ist Logik? etymologische Herkunft: griechisch bedeutet Wort, Rede, Lehre (s.a. Faust I ) Logik als Argumentation: Alle Menschen sind sterblich. Sokrates ist ein Mensch. Also

Mehr

Resolutionsalgorithmus

Resolutionsalgorithmus 112 Resolutionskalkül Mit dem Begriff Kalkül bezeichnet man eine Menge von syntaktischen Umformungsregeln, mit denen man semantische Eigenschaften der Eingabeformel herleiten kann. Für den Resolutionskalkül:

Mehr

Aussagenlogik. Aussagenlogik. Syntax Semantik Formeln, Modelle, Tautologien und Anwendungen Folgerungen, Wissen Bernd Baumgarten

Aussagenlogik. Aussagenlogik. Syntax Semantik Formeln, Modelle, Tautologien und Anwendungen Folgerungen, Wissen Bernd Baumgarten Aussagenlogik 86 Syntax Semantik Formeln, Modelle, Tautologien und Anwendungen Folgerungen, Wissen Folgerungen (1) 87 ϕ folgt aus (ist Folgerung aus) Formelmenge M bzw. M = ϕ : Jedes für ϕ ausreichende

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 21. Oktober 2013 1/33 1 Boolesche

Mehr

De Morgan sche Regeln

De Morgan sche Regeln De Morgan sche Regeln Durch Auswerten der Wahrheitswertetabelle stellen wir fest, dass allgemeingültig ist; ebenso (p q) p q (p q) p q. Diese beiden Tautologien werden als die De Morgan schen Regeln bezeichnet,

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise)

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) WS 2014/15 Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14

Mehr

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur Signatur Formeln Am Beispiel der Aussagenlogik erklären wir schrittweise wichtige Elemente eines logischen Systems. Zunächst benötigt ein logisches System ein Vokabular, d.h. eine Menge von Namen, die

Mehr

3. Prädikatenlogik. Im Sinne der Aussagenlogik sind das verschiedene Sätze, repräsentiert etwa durch A, B, C. Natürlich gilt nicht: A B = C

3. Prädikatenlogik. Im Sinne der Aussagenlogik sind das verschiedene Sätze, repräsentiert etwa durch A, B, C. Natürlich gilt nicht: A B = C 3. Prädikatenlogik 3.1 Motivation In der Aussagenlogik interessiert Struktur der Sätze nur, insofern sie durch "und", "oder", "wenn... dann", "nicht", "genau dann... wenn" entsteht. Für viele logische

Mehr