Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009

Größe: px
Ab Seite anzeigen:

Download "Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009"

Transkript

1 Eigenwerte Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Sommersemester Juni Juli 2009

2 Grundlagen Definition Ist für A C n,n, Ax = λx für ein x 0, dann ist x C n ein Eigenvektor und λ C ist ein Eigenwert von A. Die Menge λ(a) = {λ λ ist Eigenwert von A} heißt Spektrum von A. Es gilt λ λ(a) x 0, so dass (A λi )x = 0 A λi ist singulär p(λ) := det(a λi ) = 0. p(λ), p P n wird charakteristisches Polynom von A genannt. Die Vielfachheit der Nullstelle λ heißt algebraische Vielfachheit des Eigenwertes λ.

3 Fundamentalsatz der Algebra Nach dem Fundamentalsatz der Algebra ist λ(a) = {λ 1,..., λ n } eine diskrete Menge von n komplexen Zahlen λ j C. Definition Für X C n,n nicht singulär heißt die Abbildung B = X 1 AX Ähnlichkeitstransformation und wir sagen, dass A ähnlich zu B ist. Aus Bv = λv X 1 AXv = λv A(Xv) = λ(xv) folgt, dass A und B dieselben Eigenwerte haben und dass v genau dann Eigenvektor von B ist, wenn Xv Eigenvektor von A ist.

4 Ein gefährlicher Algorithmus naheliegende Idee: Nullstellen des charakteristischen Polynoms berechnen schlecht konditioniertes Problem: p(λ) = p(λ, ε) = so ist b j a j. n a j λ j, j=0 n ( j=0 a j + εa j ε j ε ) λ j, ε j ε, = p(λ) + εq(λ), q(λ) = n b j λ j, j=0

5 Beispiel Für das einfache Beispiel ist A = diag(10, 11,..., 16) R 7,7 p(λ) = λ λ λ λ Für λ = 10 ist damit q(λ ) p (λ ) = 720. Der Verstärkungsfaktor kann also im ungünstigsten Fall ε j = sign(a j )ε von der Größenordnung 10 5 sein. Fazit: niemals Koeffizienten des charakteristischen Polynoms zur Berechnung der Eigenwerte einer Matrix verwenden

6 Pagerank Das Internet besteht aus Seiten. Der wesentliche Wortschatz ist etwa 10 5 Worte. Wie findet man zu einer Suchanfrage die wichtigste Seite?

7 Wie bestimmt man die Wichtigkeit einer Seite? Idee: Jede Seite P j bekommt einen Wichtigkeitswert (Pagerank) I (P j ) und vererbt ihren Pagerank an diejenigen Seiten weiter auf die sie verlinkt. Es sei n i die Anzahl der von P i ausgehenende Links und B i die Menge der Seiten die auf P i verweisen so setzt man I (P i ) = I (P j ) n j P j B i Definiert man die Hyperlinkmatrix { 1/nj falls P H = (h i,j ) mit h i,j = j B i 0 sonst und einen Vektor I = (I (P 1 ),..., I (P n )) so ist I eine Lösung der Eigenwertgleichung HI = I mit Eigenwert 1.

8 Stochastische Interpretation Die Hyperlinkmatrix H ist eine sogenannte stochastische Matrix, d. h. alle Einträge sind positiv und die Spaltensumme ist 1, es sei denn die Seite die zur Spalte gehört hat keine Links. Interpretation als Random Walk : Ein Spaziergänger geht von Knoten zu Knoten und folgt in einem Knoten zufällig (mit gleicher Wahrscheinlichkeit) einem der ausgehenden Wege.

9 Satz von Gershgorin Satz Es gilt λ ( A ) n D j, D j = {z C : z a jj r j }, r j = j=1 n l=1,l j a jl, Beweis: Sei v ein Eigenvektor zum Eigenwert λ, wähle i so dass v i v j für alle 1 < j < n. (v i 0) Die i-te Zeile der Gleichung Av = λv liefert n a ij v j = λv i a ij v j = (λ a ii )v i j i j=1 λ a ii = j i v j a ij a ij v i j i

10 Invariante Unterräume Es gelte Dann gilt: AX = XB für X C n,k, B C k,k. R(X ) = {Xy y C k } (das Bild von X ) ist rechts A-invarianter Unterraum, d. h. R(AX ) R(X ) und es gilt λ(b) λ(a). Ebenso folgt aus Y H A = BY H für Y C n,k, B C k,k. R(Y ) ein links A-invarianter Unterraum λ(b) λ(a).

11 Definition A C n,n heißt reduzibel, wenn es eine Permutationsmatrix P gibt, so dass [ ] P T A11 A AP = B = 12, 0 A 22 mit quadratischen Matrizen A 11 C k,k und A 22 C n k,n k gilt. Anderenfalls heißt A irreduzibel. Wegen [ Ik ist R( 0 [ ] [ ] Ik Ik B = A [ ] [ ] 0 In k B = A22 0 In k, ] [ ) ein rechts und R( 0 I n k Unterraum [ ] und es gilt λ(a) = λ(a [ 11 ) λ(a 22 ). Ik 0 (R(P ) ist rechts und R(P 0 I n k Unterraum.) ] ) ein links B-invarianter ] ) links A-invarianter

12 Normale Matrizen Definition Eine Matrix A C n,n ist normal falls AA H = A H A. Beispiel: Hermitesche Matrizen (A = A H ), schief-hermitesche Matrizen (A = A H ) und unitäre Matrizen sind normal. Satz Eine Matrix A C n,n ist normal genau dann, wenn sie unitär diagonalisierbar ist, d. h. es gibt eine unitäre Matrix U C n,n, so dass U H AU = D = diag(λ 1,..., λ n ).

13 Störungssatz Satz Sei λ λ(a) ein einfacher Eigenwert von A und seien x und y zugehörige rechte und linke Eigenvektoren: Ax = λx, y H A = λy H. Dann hat die Matrix A + ɛe für ɛ hinreichend klein einen einfachen Eigenwert λ(ɛ), so dass λ(ɛ) = λ + ɛ y H Ex y H x + O(ɛ2 ). (ohne Beweis) Numerik II

14 Bemerkungen Für E = 1, x = y = 1 gilt λ (0) 1 y H x, 1 y H x Konditionszahl von λ d.h. einfache Eigenwerte werden in erster Näherung durch die Konditionzahl gestört. Falls λ ein Eigenwert mit Defekt: Störungen ɛ 1/m zu erwarten (m die Dimension des größten Jordan-Blocks ist) Für einen Jordan-Block gilt x = e 1, y = e m, also y H x = 0

15 Rayleigh-Quotient und Wertebereich Definition Zu gegebener Matrix A und x 0 heißt ϱ A (x) = x H Ax x H x Rayleigh-Quotient von x. Die Menge F(A) = {ϱ A (x), x C n, x 0} aller Rayleigh-Quotienten von A heißt Wertebereich von A. Achtung: auch für A R n,n wird der Wertebereich von allen Rayleigh-Quotienten von Vektoren in C n gebildet

16 Eigenschaften des Wertebereichs Es gilt (a) ϱ(γx) = ϱ(x) für alle γ 0, γ C. (b) λ(a) F(A), d. h. alle Eigenwerte liegen im Wertebereich. (c) Für normale Matrizen (d. h. A H A = AA H ) gilt F(A) = conv(λ(a)). Ist A nicht normal, dann kann der Wertebereich deutlich größer sein, als die Konvexkombination der Eigenwerte. Hausdorff (1919) konnte jedoch zeigen, dass der Wertebereich immer eine kompakte und konvexe Menge ist.

17 Schranken für den Wertebereich Ist A C n,n Hermitesch, dann gilt (a) λ min ϱ(x) λ max x 0 (b) λ max = max x 0 ϱ(x) (c) λ min = min x 0 ϱ(x)

18 Potenzenmethode Sei A C n,n, y 0 C n, y 0 0 beliebig Potenzenmethode: y k+1 = Ay k k = 0, 1, 2,... oder y k = A k y 0 Im Folgenden: Sortierung der Eigenwerte von A nach ihrem Betrag: λ 1 λ 2 λ 3 λ n.

19 Konvergenzsatz Es sei A C n,n diagonalisierbar mit X 1 AX = Λ = diag(λ 1,..., λ n ), X = [ x 1 x n ], xi = 1 und es gelte η := λ 2 λ 1 < 1. Ist für a := X 1 y 0, a = [ ] T α 1 α n die erste Komponente α 1 0, dann gilt für y k+1 = Ay k (a) y k = λ k 1[ α1 x 1 + O(η k ) ] (y k /λ k 1 konvergiert gegen einen Eigenvektor von A). (b) Für die Rayleigh-Quotienten gilt ρ A (y k ) = λ 1 + O(η k ). (c) Falls A normal ist gilt ρ A (y k ) = λ 1 + O(η 2k ).

20 Potenzenmethode y 0 0 gegebener Startvektor, y 0 = y 0 / y 0 for k = 0, 1,... do z k+1 = Ay k ρ k = yk Hz k+1 y k+1 = 1 z k+1 z k+1 end for Vermeide Over- und Underflow durch Normierung

21 Inverse Potenzenmethode Nachteile der Potenzenmethode: Konvergenz langsam, falls η 1 nur das Eigenpaar zum betragsgrößten Eigenwert berechenbar Alternative: inverse Potenzenmethode mit Shift sei µ λ j λ(a) so, dass gilt µ λ j µ λ k, k j. Eigenwerte von (µi A) 1 :

22 Inverse Potenzenmethode Nachteile der Potenzenmethode: Konvergenz langsam, falls η 1 nur das Eigenpaar zum betragsgrößten Eigenwert berechenbar Alternative: inverse Potenzenmethode mit Shift sei µ λ j λ(a) so, dass gilt µ λ j µ λ k, k j. Eigenwerte von (µi A) 1 : 1/(µ λ k ) betragsgrößter Eigenwert:

23 Inverse Potenzenmethode Nachteile der Potenzenmethode: Konvergenz langsam, falls η 1 nur das Eigenpaar zum betragsgrößten Eigenwert berechenbar Alternative: inverse Potenzenmethode mit Shift sei µ λ j λ(a) so, dass gilt µ λ j µ λ k, k j. Eigenwerte von (µi A) 1 : 1/(µ λ k ) betragsgrößter Eigenwert: 1/(µ λ j ) Idee: Potenzenmethode auf (µi A) 1 anwenden

24 Inverse Potenzenmethode mit Shift y 0 C n beliebig, (µi A)y k+1 = y k, Algorithmus µ C gegebener Shift, y 0 0 gegebener Startvektor y 0 = y 0 / y 0 Berechne die LU-Zerlegung von µi A for k = 0, 1,... do Löse (µi A)z k+1 = y k mit der LU-Zerlegung y k+1 = 1 z k+1 z k+1 ρ k+1 = ρ A (y k+1 ) = y H k+1 Ay k+1 end for Konvergenzfaktor: η = max k j µ λ k 1 µ λ j = max µ λ j 1 k j µ λ k 1.

25 Beispiel zur Inversen Potenzenmethode mit Shift wähle µ = (also die Näherung aus zwei Schritten der Potenzenmethode) und den zugehörigen Vektor y 2 als Startvektor: k ρ(y k ) ρ(y k ) λ Konvergenzfaktor: η

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

20 Kapitel 2: Eigenwertprobleme

20 Kapitel 2: Eigenwertprobleme 20 Kapitel 2: Eigenwertprobleme 2.3 POTENZMETHODE Die Potenzmethode oder Vektoriteration ist eine sehr einfache, aber dennoch effektive Methode zur Bestimmung des betragsmäßig größten Eigenwertes. Um die

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016, Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung Lineare Differentialgleichungen Ausblick auf die heutige Vorlesung Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform

Mehr

Lineare Differenzengleichungen

Lineare Differenzengleichungen Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1)

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) Eigenwerte 1 Eigenwerte und Eigenvektoren Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) für einen Vektor x 0. Vektor x heißt ein

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Musterlösungen zur Linearen Algebra II Weihnachtszettel

Musterlösungen zur Linearen Algebra II Weihnachtszettel Musterlösungen zur Linearen Algebra II Weihnachtszettel Aufgabe. Welche der folgenden Matrizen 3 0 0 A = 0 4, B = 3, C = 0 0 0 6 0 0 0 sind über R und welche über C diagonalisierbar? Bestimmen Sie dazu

Mehr

4 Eigenwerte und Eigenvektoren

4 Eigenwerte und Eigenvektoren 4 Eigenwerte und Eigenvektoren Sei V {0} ein K Vektorraum und f : V V K linear. Definition: Ein Eigenwert von f ist ein Element λ K, für die es einen Vektor v 0 in V gibt, so dass f(v) = λ v. Sei nun λ

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

Theoretische Fragen zu ausgewählten Themen in Lineare Algebra

Theoretische Fragen zu ausgewählten Themen in Lineare Algebra Theoretische Fragen zu ausgewählten Themen in Lineare Algebra { Oren Halvani, Jonathan Weinberger } TU Darmstadt 25. Juni 2009 Inhaltsverzeichnis 1 Determinanten................................................

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

46 Eigenwerte und Eigenvektoren symmetrischer Matrizen

46 Eigenwerte und Eigenvektoren symmetrischer Matrizen 46 Eigenwerte und Eigenvektoren symmetrischer Matrizen 46.1 Motivation Symmetrische Matrizen (a ij = a ji für alle i, j) kommen in der Praxis besonders häufig vor. Gibt es für sie spezielle Aussagen über

Mehr

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von 1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von Wachstumsraten Bestimmung von Maximal- und Minimalwerten von

Mehr

Singulärwert-Zerlegung

Singulärwert-Zerlegung Singulärwert-Zerlegung Zu jeder komplexen (reellen) m n-matrix A existieren unitäre (orthogonale) Matrizen U und V mit s 1 0 U AV = S = s 2.. 0.. Singulärwert-Zerlegung 1-1 Singulärwert-Zerlegung Zu jeder

Mehr

Der CG-Algorithmus (Zusammenfassung)

Der CG-Algorithmus (Zusammenfassung) Der CG-Algorithmus (Zusammenfassung) Michael Karow Juli 2008 1 Zweck, Herkunft, Terminologie des CG-Algorithmus Zweck: Numerische Berechnung der Lösung x des linearen Gleichungssystems Ax = b für eine

Mehr

Berechnung von Eigenwerten und Eigenvektoren

Berechnung von Eigenwerten und Eigenvektoren Kapitel 5 Berechnung von Eigenwerten und Eigenvektoren 5.1 Einführung Bemerkung 5.1 Aufgabenstellung. Diese Kapitel behandelt numerische Verfahren zur Lösung des Eigenwertproblems. Gegeben sei A R n n.

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

1 Singulärwertzerlegung und Pseudoinverse

1 Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese

Mehr

Übungen zu Lineare Algebra und Geometrie 1

Übungen zu Lineare Algebra und Geometrie 1 Übungen zu Lineare Algebra und Geometrie 1 Andreas Čap Sommersemester 2015 Wiederholung grundlegender Begriffe (1 Bestimme Kern und Bild der linearen Abbildung f : R 3 R 3, die gegeben ist durch f(x, y,

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

Klausurvorbereitungsblatt Lineare Algebra

Klausurvorbereitungsblatt Lineare Algebra Klausurvorbereitungsblatt Lineare Algebra Sommersemester 25 Aufgabe 2 2 Sei A 3 3 8 2 4 3 R4 5. 5 2 a) Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems Ax b) Ist Ax b mit b lösbar? (Begründen

Mehr

5. Übung zur Linearen Algebra II -

5. Übung zur Linearen Algebra II - 5. Übung zur Linearen Algebra II - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. SS 2. Aufgabe 7 5 A := 2. 3 2 (i) Berechne die Eigenwerte und Eigenvektoren von A. (ii) Ist A diagonalisierbar?

Mehr

45 Eigenwerte und Eigenvektoren

45 Eigenwerte und Eigenvektoren 45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.

Mehr

40 Lokale Extrema und Taylor-Formel

40 Lokale Extrema und Taylor-Formel 198 VI. Differentialrechnung in mehreren Veränderlichen 40 Lokale Extrema und Taylor-Formel Lernziele: Resultate: Satz von Taylor und Kriterien für lokale Extrema Methoden aus der linearen Algebra Kompetenzen:

Mehr

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2,

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2, Aufgabe I Es sei Q die folgende Teilmenge von C 2 2 : { ( ) a b Q a, b C b a Hier bezeichnet der Querstrich die komplexe Konjugation Zeigen Sie: (a) Mit den üblichen Verknüpfungen + und für Matrizen ist

Mehr

4 Lineare Abbildungen Basisdarstellungen

4 Lineare Abbildungen Basisdarstellungen 4 Lineare Abbildungen Basisdarstellungen (4.1) Seien V,W endlich dimensionale K-Vektorräume, und sei T : V W linear. Sei {v 1,...,v } Basis von V und {w 1,...,w M } Basis von W. Sei T (v j ) = M a kj w

Mehr

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse

Mehr

Vorlesung, 26. Mai 2011, Inhalt. Eigenwerte und Eigenvektoren. Gewöhnliche Differentialgleichungen

Vorlesung, 26. Mai 2011, Inhalt. Eigenwerte und Eigenvektoren. Gewöhnliche Differentialgleichungen Vorlesung, 26. Mai 2011, Inhalt Eigenwerte und Eigenvektoren Gewöhnliche Differentialgleichungen 1 Eigenwerte und Eigenvektoren Es sei A eine n n-matrix, x ein vom Nullvektor verschiedener Vektor und λ

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

Arbeit: Page, Brin, Motwani, Winograd (1998). Ziel: Maß für absolute

Arbeit: Page, Brin, Motwani, Winograd (1998). Ziel: Maß für absolute 3.4 PageRank Arbeit: Page, Brin, Motwani, Winograd (1998). Ziel: Maß für absolute Wichtigkeit von Webseiten; nicht Relevanz bezüglich Benutzeranfrage. Anfrageunabhängiges Ranking. Ausgangspunkt: Eingangsgrad.

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren

Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren Kapitel 1 Vektoren und Matrizen In diesem Kapitel stellen wir die Hilfsmittel aus der linearen Algebra vor, die in den folgenden Kapiteln öfters benötigt werden. Dabei wird angenommen, dass Sie die elementaren

Mehr

Klausur Mathematik I

Klausur Mathematik I Technische Universität Dresden 15. August 2008 Institut für Numerische Mathematik Dr. K. Eppler Klausur Mathematik I für Studierende der Fakultät Maschinenwesen (mit Lösungshinweisen) Name: Matrikelnummer.:

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

Rechenaufwand der LR- und LDL T - Zerlegung

Rechenaufwand der LR- und LDL T - Zerlegung 6. Großübung Rechenaufwand der LR- und LDL T - Zerlegung Rückwärtseinsetzen Der Algorithmus kann der Folie 3.0 entnommen werden. Dieser kann in die folgenden Rechenoperationen aufgesplittet werden: Für

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 53 Norm von Endomorphismen und Matrizen Definition 53.1. Es seien V und W endlichdimensionale normierte K-

Mehr

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Universität Karlsruhe (TH) Institut für Algebra und Geometrie Dr. Klaus Spitzmüller Dipl.-Inform. Wolfgang Globke Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Lösungen zum

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Übungen zu Lineare Algebra und Geometrie für LAK

Übungen zu Lineare Algebra und Geometrie für LAK Übungen zu Lineare Algebra und Geometrie für LAK Andreas Cap Wintersemester 2010/11 Wiederholung grundlegender Begriffe (1) Bestimme Kern und Bild der linearen Abbildung f : R 3 R 3, die gegeben ist durch

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

5 Die Allgemeine Lineare Gruppe

5 Die Allgemeine Lineare Gruppe 5 Die Allgemeine Lineare Gruppe Gegeben sei eine nicht leere Menge G und eine Abbildung (Verknüpfung) : G G G, (a, b) a b( a mal b ) Das Bild a b von (a, b) heißt Produkt von a und b. Andere gebräuchliche

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag 9.6 $Id: quadrat.tex,v. 9/6/9 4:6:48 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6. Symmetrische Matrizen Eine n n Matrix heißt symmetrisch wenn

Mehr

Zusammenfassung zum Thema Vektor- und Matrizenrechnung

Zusammenfassung zum Thema Vektor- und Matrizenrechnung Zusammenfassung zum Thema Vektor- und Matrizenrechnung Mathematischer Vorkurs für Physiker und Naturwissenschaftler WS 2014/2015 Grundbegriffe der Linearen Algebra Viele physikalische Größen (Geschwindigkeit,

Mehr

Kapitel 18. Aufgaben. Verständnisfragen

Kapitel 18. Aufgaben. Verständnisfragen Kapitel 8 Aufgaben Verständnisfragen Aufgabe 8 Gegeben ist ein Eigenvektor v zum Eigenwert λ einer Matrix A (a) Ist v auch Eigenvektor von A? Zu welchem Eigenwert? (b) Wenn A zudem invertierbar ist, ist

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

11 Eigenwerte und Eigenvektoren

11 Eigenwerte und Eigenvektoren 11 Eigenwerte und Eigenvektoren Wir wissen bereits, dass man jede lineare Abbildung ϕ : K n K n durch eine n n-matri A beschreiben kann, d.h. es ist ϕ() = A für alle K n. Die Matri A hängt dabei von der

Mehr

Das QZ-Verfahren. vorgelegt von Janina Gnutzmann. Erstgutachter: Prof. Dr. Steffen Börm Zweitgutachter: Dipl.-Math.

Das QZ-Verfahren. vorgelegt von Janina Gnutzmann. Erstgutachter: Prof. Dr. Steffen Börm Zweitgutachter: Dipl.-Math. Das QZ-Verfahren Bachelor-Arbeit im 1-Fach Bachelorstudiengang Mathematik der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Janina Gnutzmann Erstgutachter:

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 5 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 21 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

NUMERISCHE MATHEMATIK II

NUMERISCHE MATHEMATIK II NUMERISCHE MATHEMATIK II Christian Kanzow Julius Maximilians Universität Würzburg Institut für Angewandte Mathematik und Statistik Am Hubland 97074 Würzburg e-mail: kanzow@mathematik.uni-wuerzburg.de URL:

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops 15. DETERMINANTEN 1 Für n Vektoren b 1,..., b n im R n definiert man ihre Determinante det(b 1,..., b n ) Anschaulich gilt det(b 1,..., b n ) = Orientierung der Vektoren b 1,..., b n Volumen des von den

Mehr

Kapitel 11. Bilinearformen über beliebigen Bilinearformen

Kapitel 11. Bilinearformen über beliebigen Bilinearformen Kapitel 11 Bilinearformen über beliebigen Körpern Wir können in diesem Kapitel rasch vorgehen, weil die meisten Konzepte im Zusammenhang mit Sesquilinearformen bereits eingeführt wurden. In diesem Abschnitt

Mehr

ist über C diagonalisierbar.

ist über C diagonalisierbar. Prüfungsaufgaben A 1. (10 Punkte) Kreuzen Sie direkt auf de Aufgabenblatt an, ob die Behauptungen WAHR oder FALSCH sind. Sie üssen Ihre Antworten nicht begründen! Für jede richtige Antwort gibt es 1 Punkt.

Mehr

A x = λ x. Eigenwertaufgabe. Vorlesung Mai Mai Eigenwertaufgaben 1. Motivation 1: Schwingungen. Motivation 1: Schwingungen

A x = λ x. Eigenwertaufgabe. Vorlesung Mai Mai Eigenwertaufgaben 1. Motivation 1: Schwingungen. Motivation 1: Schwingungen Eigenwertaufgabe Vorlesung 6 Mai + 3 Mai Eigenwertaufgaben A x = λ x Mackens (Technische Universität Hamburg-Harburg) Lineare Algebra II SoSe 3 / 79 Mackens (Technische Universität Hamburg-Harburg) Lineare

Mehr

Klausurähnliche Aufgaben

Klausurähnliche Aufgaben Sommersemester 2007/08 Lineare Algebra Klausurähnliche Aufgaben Aufgabe 1 Seien v 1, v 2, v 3, v 4, v 5, v 6 die Vektoren in R 5 mit v 1 = (1, 2, 3, 1, 2), v 2 = (2, 4, 6, 2, 4), v 3 = ( 1, 1, 3, 0, 3),

Mehr

Klausur Lineare Algebra I & II

Klausur Lineare Algebra I & II Prof. Dr. G. Felder, Dr. Thomas Willwacher ETH Zürich, Sommer 2010 D MATH, D PHYS, D CHAB Klausur Lineare Algebra I & II Bitte ausfüllen! Name: Vorname: Studiengang: Bitte nicht ausfüllen! Aufgabe Punkte

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

( ) Lineare Gleichungssysteme

( ) Lineare Gleichungssysteme 102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv

Mehr

Leitfaden 34. , dies ist eine reelle symmetrische Matrix, also diagonalisierbar.

Leitfaden 34. , dies ist eine reelle symmetrische Matrix, also diagonalisierbar. Leitfaden 34 5. Euklidsche und unitäre Räume (und selbstadjungierte, orthogonale, unitäre, normale Endomorphismen). 5.1. Reelle symmetrische Matrizen sind diagonalisierbar. Satz: Reelle symmetrische Matrizen

Mehr

Eigenwertaufgaben. Heinrich Voss. Hamburg University of Technology Department of Mathematics. Eigenwertaufgaben p.

Eigenwertaufgaben. Heinrich Voss. Hamburg University of Technology Department of Mathematics. Eigenwertaufgaben p. Eigenwertaufgaben Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Department of Mathematics Eigenwertaufgaben p. 1/163 Einleitung Kleine Bewegungen eines Systems mit endlich vielen Freiheitsgraden

Mehr

Das symmetrische Eigenwertproblem

Das symmetrische Eigenwertproblem Kapitel 2 Das symmetrische Eigenwertproblem 2 Mit diesem Kapitel wenden wir uns der numerischen linearen Algebra zu. Konkret geht es um die Lösung des algebraischen Eigenwertproblems Ax = λx, wobei symmetrische

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Lineare Algebra II, Lösungshinweise Blatt 9

Lineare Algebra II, Lösungshinweise Blatt 9 Prof Dr Katrin Wendland Priv Doz Dr Katrin Leschke Christoph Tinkl SS 27 Lineare Algebra II, Lösungshinweise Blatt 9 Aufgabe (4 Punkte) Sei 2 3 4 A = 5 6 Berechnen Sie A k für alle k N und verifizieren

Mehr

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden? Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

Diagonalisieren. Nikolai Nowaczyk Lars Wallenborn

Diagonalisieren. Nikolai Nowaczyk  Lars Wallenborn Diagonalisieren Nikolai Nowaczyk http://mathniknode/ Lars Wallenborn http://wwwwallenbornnet/ 16-18 März 01 Inhaltsverzeichnis 1 Matrizen 1 11 Einschub: Invertierbarkeit

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Vektor und Matrixnormen Vorlesung vom

Vektor und Matrixnormen Vorlesung vom Vektor und Matrixnormen Vorlesung vom 18.12.15 Grundlagen: Matrix Vektor und Matrixprodukt. Lineare Räume. Beispiele. Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse

Mehr

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Stefan Lell 2. Juli 2 Aufgabe. Sei t Q und A t = t 4t + 2 2t + 2 t t 2t 2t Mat 3Q a Bestimmen Sie die Eigenwerte von A t in Abhängigkeit

Mehr

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Vektor und Matrixnormen Vorlesung vom

Vektor und Matrixnormen Vorlesung vom Vektor und Matrixnormen Vorlesung vom 20.12.13 Grundlagen: Matrix Vektor und Matrixprodukt. Lineare Räume. Beispiele. Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse

Mehr

Homogene Systeme in höheren Dimensionen

Homogene Systeme in höheren Dimensionen 56 4 Systeme von Differenzialgleichungen gefunden, so sind deren ilder, ' = T, Lösungen in den y-koordinaten. llerdings ist das uffinden einer geeigneten Transformation T gleichbedeutend mit der estimmung

Mehr

Ranking am Beispiel von Google (1998):

Ranking am Beispiel von Google (1998): Ranking am Beispiel von Google (1998): So heute (lange) nicht mehr, aber wenigstens konkret, wie es prinzipiell gehen kann. Und Grundschema bleibt dasselbe. Zwei Komponenten (genaue Kombination unbekannt):

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner WS / Blatt 6 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag Wir verwenden das Unterraumkriterium,

Mehr

MATTHIAS GERDTS NUMERISCHE MATHEMATIK II. Universität Würzburg SoSe 2010

MATTHIAS GERDTS NUMERISCHE MATHEMATIK II. Universität Würzburg SoSe 2010 MATTHIAS GERDTS NUMERISCHE MATHEMATIK II Universität Würzburg SoSe 010 Addresse des Authors: Matthias Gerdts Institut für Mathematik Universität Würzburg Am Hubland 97074 Würzburg E-Mail: gerdts@mathematik.uni-wuerzburg.de

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr