Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/536

Größe: px
Ab Seite anzeigen:

Download "Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/536"

Transkript

1 VO Februar /536

2 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung 2/536

3 Übersicht über die Vorlesung Teil 5: Testen von Hypothesen Teil 6: Regressionsanalyse Teil 7: Simulation von Experimenten 3/536

4 Teil 6 Regressionsanalyse 458/536

5 Übersicht Teil /536

6 Abschnitt 20: /536

7 Regressionsanalyse untersucht die Abhängigkeit der Beobachtungen von diversen Variablen. Einflussvariable (unabhängige Variable) x = (x 1,..., x r ). Ergebnisvariable (abhängige Variable) Y. Regressionsmodell: Y = f(β, x) + ε mit Regressionskoeffizienten β und Fehlerterm ε. Ziel ist die Schätzung von β anhand von Beobachtungen Y 1,..., Y n. Eine Einflussvariable: einfache Regression; Mehrere Einflussvariable: mehrfache (multiple) Regression. 461/536

8 Abschnitt 21: /536

9 Unterabschnitt: /536

10 Das einfachste Regressionsmodell ist eine Gerade: Y = α + βx + ε, E[ε] = 0, var[ε] = σ 2 Es seien nun Y 1,..., Y n die Ergebnisse für die Werte x 1,..., x n der Einflussvariablen x. Die Schätzung von α und β kann nach dem Prinzip der kleinsten Fehlerquadrate erfolgen. Die folgende Zielfunktion wird minimiert: SS = n (Y i α βx i ) 2 i=1 Gradient von SS: SS n α = 2 (Y i α βx i ), i=1 SS β n = 2 x i (Y i α βx i ) i=1 464/536

11 Nullsetzen des Gradienten gibt die Normalgleichungen: n Y i = nα + β i=1 n i=1 n n x i Y i = α x i + β x i n i=1 i=1 i=1 Die geschätzten Regressionskoeffizienten lauten: x 2 i ˆβ = n i=1 x iy i x n i=1 Y i n i=1 x2 i n x2 ˆα = Y ˆβ x Es gilt E[ˆα] = α und E[ ˆβ] = β. 465/536

12 Die Varianz des Fehlerterms wird erwartungstreu geschätzt durch: ˆσ 2 = 1 n ri 2 n 2 mit r i = Y i Ŷi, i=1 Ŷ i = ˆα + ˆβx i Kovarianzmatrix der geschätzten Regressionkoeffizienten: x 2 i Cov[ˆα, ˆβ] n ( xi x 2 = σ 2 i n x2 ) n ( x 2 i n x2 ) xi n ( 1 x 2 i n x2 ) x 2 i n x 2 466/536

13 Unterabschnitt: /536

14 Satz Ist β = 0, hängt das Ergebnis überhaupt nicht von den Einflussvariablen ab. Ein Test der Nullhypothese H 0 : β = 0 gegen H 1 : β 0 beruht auf dem folgenden Satz. Ist ε normalverteilt, so sind ˆα α ˆσˆα, ˆβ β ˆσ ˆβ t-verteilt mit n 2 Freiheitsgraden, wobei ˆσ 2ˆα = ˆσ 2 x 2 i n ( x 2 i n x2 ), ˆσ 2 ˆσ2ˆβ = x 2 i n x 2 468/536

15 Die Nullhypothese H 0 : β = 0 wird abgelehnt, wenn die Testgröße T = ˆβ ˆσ ˆβ relativ klein oder relativ groß ist, also wenn ˆβ ˆσ ˆβ > t n 2 1 α/2 wo t n 2 p das Quantil der t-verteilung mit n 2 Freiheitsgraden zum Niveau p ist. Ein analoger Test kann für die Nullhypothese H 0 : α = 0 durchgeführt werden. 469/536

16 Die symmetrischen Konfidenzintervalle mit 95% Sicherheit lauten: ˆα ± ˆσˆα t n 2 1 α/2, ˆβ ± ˆσ ˆβ t n 2 1 α/2 Für n > 30 können die Quantile der t-verteilung durch Quantile der Standardnormalverteilung ersetzt werden. Es soll nun das Ergebnis Y 0 = Y (x 0 ) für einen bestimmten Wert x 0 der Einflussvariablen x prognostiziert werden. Der Erwartungswert von Y 0 ist E[Y 0 ] = ˆα + ˆβx 0 Die Varianz von E[Y 0 ] ergibt sich mittels Fehlerfortpflanzung: [ 1 var[e[y 0 ]] = σ 2 n + ( x x 0) 2 ] x 2 i n x 2 470/536

17 Da Y 0 um seinen Erwartungswert mit Varianz σ 2 streut, ergibt sich: var[y 0 ] = σ 2 [ n + 1 n + ( x x 0) 2 ] x 2 i n x 2 Das symmetrische Prognoseintervall für Y 0 mit Sicherheit α ist daher gleich: ˆα + ˆβx 0 ± t n 2 1 α/2ˆσ n ( x x 0) 2 n x 2 i n x 2 471/536

18 Die Angemessenheit des Modells kann durch Untersuchung der studentisierten Residuen (Restfehler) überprüft werden. Das Residuum r k hat die Varianz [ var[r k ] = σ n (x k x) 2 ] x 2 i n x 2 Das studentisierte Residuum ist dann r k = r k ˆσ 1 1 n (x k x) 2 x 2 i n x 2 Es hat Erwartung 0 und Varianz /536

19 y r x x Regressionsgerade und studentisierte Residuen 473/536

20 y x r x Regressionsgerade und studentisierte Residuen 474/536

21 Unterabschnitt: /536

22 Als LS-Schätzer ist die Regressionsgerade nicht robust, d.h. empfindlich gegen Ausreißer Data Outlier LS w/o outlier LS with outlier y y x mit Ausreißern x 476/536

23 LMS (Least Median of Squares): Anstatt der Summe der Fehlerquadrate wird der Median der Fehlerquadrate minimiert. Exact fit property : Die LMS-Gerade geht durch zwei Datenpunkte. Berechnung kombinatorisch. LTS (Least Trimmed Squares): Es wird die Summe einer festen Anzahl h n von Fehlerquadraten minimiert. Berechnung iterativ (FAST-LTS). Beide Methoden gehen auf P. Rousseeuw zurück. 477/536

24 y x y Data Outlier LS w/o outlier LS with outlier LMS LTS (75%) mit Ausreißern x 478/536

25 Unterabschnitt: /536

26 Ist der Zusammenhang zwischen x und Y nicht annähernd linear, kann man versuchen, ein Polynom anzupassen. Das Modell lautet dann: Y = β 0 +β 1 x+β 2 x 2 + +β r x r +ε, E[ε] = 0, var[ε] = σ 2 Es seien wieder Y 1,..., Y n die Ergebnisse für die Werte x 1,..., x n der Einflussvariablen x. In Matrix-Vektor-Schreibweise: mit Y = Xβ + ε 1 x 1 x 2 1 x r 1 1 x 2 x 2 2 x r 2 X = x n x 2 n x r n 480/536

27 Die folgende Zielfunktion wird minimiert: Gradient von SS: SS = (Y Xβ) T (Y Xβ) SS β = 2XT (Y Xβ) Nullsetzen des Gradienten gibt die Normalgleichungen: X T Y = X T Xβ Die Lösung lautet: ˆβ = ( X T X ) 1 X T Y 481/536

28 Die Varianz des Fehlerterms wird erwartungstreu geschätzt durch: ˆσ 2 1 n = ri 2 n r 1 mit r = Y Ŷ, i=1 Ŷ = X ˆβ Kovarianzmatrix der geschätzten Regressionkoeffizienten: Cov[ ˆβ] = σ 2 ( X T X ) 1 Kovarianzmatrix der Residuen r: Cov[ ˆβ] = σ 2 [ I X ( X T X ) 1 X T] 482/536

29 y r x x Regressionsparabel und studentisierte Residuen 483/536

30 Abschnitt 22: /536

31 Unterabschnitt: /536

32 Hängt das Ergebnis Y von mehreren Einflussvariablen ab, lautet das einfachste lineare Regressionmodell: Y = β 0 +β 1 x 1 +β 2 x 1 + +β r x r +ε, E[ε] = 0, var[ε] = σ 2 Es seien wieder Y 1,..., Y n die Ergebnisse für n Werte x 1,..., x n der Einflussvariablen x = (x 1,..., x r ). In Matrix-Vektor-Schreibweise: Y = Xβ + ε mit 1 x 1,1 x 1,2 x 1,r 1 x 2,1 x 2,2 x 2,r X = x n,1 x n,2 x n,r 486/536

33 Unterabschnitt: /536

34 Die folgende Zielfunktion wird minimiert: Gradient von SS: SS = (Y Xβ) T (Y Xβ) SS β = 2XT (Y Xβ) Nullsetzen des Gradienten gibt die Normalgleichungen: X T Y = X T Xβ Die Lösung lautet: ˆβ = ( X T X ) 1 X T Y 488/536

35 Die Varianz des Fehlerterms wird erwartungstreu geschätzt durch: ˆσ 2 1 n = ri 2 n r 1 mit r = Y Ŷ, i=1 Ŷ = X ˆβ Kovarianzmatrix der geschätzten Regressionkoeffizienten: Cov[ ˆβ] = σ 2 ( X T X ) 1 Kovarianzmatrix der Residuen r: Cov[ ˆβ] = σ 2 [ I X ( X T X ) 1 X T] 489/536

36 Satz Ist β k = 0, hängt das Ergebnis überhaupt nicht von den Einflussvariablen x k ab. Ein Test der Nullhypothese H 0 : β k = 0 gegen H 1 : β k 0 beruht auf dem folgenden Satz. Ist ε normalverteilt, so ist ˆβ k β k ˆσ ˆβk t-verteilt mit n r 1 Freiheitsgraden, wobei ˆσ 2ˆβk Diagonalelement der geschätzten Kovarianzmatrix das k-te ˆσ 2 ( X T X ) 1 ist. 490/536

37 Die Nullhypothese H 0 : β k = 0 wird abgelehnt, wenn die Testgröße T = ˆβ k ˆσ ˆβk relativ klein oder relativ groß ist, also wenn ˆβ k ˆσ ˆβk > t n r 1 1 α/2 wo t n 2 p das Quantil der t-verteilung mit n 2 Freiheitsgraden zum Niveau p ist. Das symmetrische Konfidenzintervall für β k mit 95% Sicherheit lautet: ˆβ k ± ˆσ ˆβk t n r 1 1 α/2 491/536

38 Es soll nun das Ergebnis Y 0 = Y (x 0 ) für einen bestimmten Wert x 0 = (x 01,..., x 0r ) der Einflussvariablen prognostiziert werden. Wir erweitern x 0 um den Wert 1: x + = (1, x 01,..., x 0r ). Der Erwartungswert von Y 0 ist dann E[Y 0 ] = x + ˆβ Die Varianz von E[Y 0 ] ergibt sich mittels Fehlerfortpflanzung: var[e[y 0 ]] = σ 2 x + ( X T X ) 1 x + T 492/536

39 Da Y 0 um seinen Erwartungswert mit Varianz σ 2 streut, ergibt sich: var[e[y 0 ]] = σ 2 [ 1 + x + ( X T X ) 1 x + T ] Das symmetrische Prognoseintervall für Y 0 mit Sicherheit α ist daher gleich: x + ˆβ ± t n k 1 1 α/2 ˆσ 1 + x + (X T X) 1 x T + 493/536

40 Unterabschnitt: /536

41 Im allgemeinen Fall können die Fehlerterme eine beliebige Kovarianzmatrix haben: Y = Xβ + ε, Ist V bekannt, lautet die Zielfunktion: Cov[ε] = V SS = (Y Xβ) T G(Y Xβ), Gradient von SS: SS β = 2XT G(Y Xβ) G = V 1 Nullsetzen des Gradienten gibt die Normalgleichungen: X T GY = X T GXβ Die Lösung lautet: ˆβ = ( X T GX ) 1 X T GY 495/536

42 Kovarianzmatrix der geschätzten Regressionkoeffizienten: Cov[ ˆβ] = σ 2 ( X T GX ) 1 Kovarianzmatrix der Residuen r: Cov[ ˆβ] = σ 2 [ I X ( X T GX ) 1 X T] Tests und können entsprechend modifizert werden. 496/536

43 Unterabschnitt: /536

44 In der Praxis ist die Abhängigkeit der Ergebnisse von den Regressionskoeffizienten oft nichtlinear: Y = h(β) + ε, Ist V bekannt, lautet die Zielfunktion: Cov[ε] = V SS = [Y h(β)] T G[Y h(β)], G = V 1 SS kann mit dem Gauß-Newton-Verfahren minimiert werden. Dazu wird h an einer Stelle β 0 linearisiert: h(β) h(β 0 ) + H(β β 0 ) = c + Hβ, H = h β β0 498/536

45 Die Schätzung von β lautet: ˆβ = ( H T GH ) 1 H T G(Y c) h wird neuerlich an der Stelle β 1 = ˆβ linearisiert. Das Verfahren wird iteriert, bis die Schätzung sich nicht mehr wesentlich ändert. Viele andere Methoden zur Minimierung von SS verfügbar. 499/536

Statistik. R. Frühwirth Teil 1: Deskriptive Statistik. Statistik. Einleitung Grundbegriffe Merkmal- und Skalentypen Aussagen und

Statistik. R. Frühwirth Teil 1: Deskriptive Statistik. Statistik. Einleitung Grundbegriffe Merkmal- und Skalentypen Aussagen und Übersicht über die Vorlesung Teil 1: Deskriptive fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable und Verteilungen Februar 2010 Teil

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

3. Das einfache lineare Regressionsmodell

3. Das einfache lineare Regressionsmodell 3. Das einfache lineare Regressionsmodell Ökonometrie: (I) Anwendung statistischer Methoden in der empirischen Forschung in den Wirtschaftswissenschaften Konfrontation ökonomischer Theorien mit Fakten

Mehr

Ergänzungsmaterial zur Vorlesung. Statistik 2. Modelldiagnostik, Ausreißer, einflussreiche Beobachtungen

Ergänzungsmaterial zur Vorlesung. Statistik 2. Modelldiagnostik, Ausreißer, einflussreiche Beobachtungen Institut für Stochastik WS 2007/2008 Universität Karlsruhe JProf. Dr. H. Holzmann Dipl.-Math. oec. D. Engel Ergänzungsmaterial zur Vorlesung Statistik 2 Modelldiagnostik, Ausreißer, einflussreiche Beobachtungen

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

4. Das multiple lineare Regressionsmodell

4. Das multiple lineare Regressionsmodell 4. Das multiple lineare Regressionsmodell Bisher: 1 endogene Variable y wurde zurückgeführt auf 1 exogene Variable x (einfaches lineares Regressionsmodell) Jetzt: Endogenes y wird regressiert auf mehrere

Mehr

Tests einzelner linearer Hypothesen I

Tests einzelner linearer Hypothesen I 4 Multiple lineare Regression Tests einzelner linearer Hypothesen 4.5 Tests einzelner linearer Hypothesen I Neben Tests für einzelne Regressionsparameter sind auch Tests (und Konfidenzintervalle) für Linearkombinationen

Mehr

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO 4. Dezember 2001 Generalisierung der aus Stichprobendaten berechneten Regressionsgeraden Voraussetzungen für die Generalisierung

Mehr

Demokurs. Modul Vertiefung der Wirtschaftsmathematik Vertiefung der Statistik

Demokurs. Modul Vertiefung der Wirtschaftsmathematik Vertiefung der Statistik Demokurs Modul 3741 Vertiefung der Wirtschaftsmathematik und Statistik Kurs 41 Vertiefung der Statistik 15. Juli 010 Seite: 14 KAPITEL 4. ZUSAMMENHANGSANALYSE gegeben, wobei die Stichproben(ko)varianzen

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

Eine Einführung in R: Das Lineare Modell

Eine Einführung in R: Das Lineare Modell Eine Einführung in R: Das Lineare Modell Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 6. Januar 2009 Bernd Klaus, Verena Zuber

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

Lineare Regression mit einem Regressor: Einführung

Lineare Regression mit einem Regressor: Einführung Lineare Regression mit einem Regressor: Einführung Quantifizierung des linearen Zusammenhangs von zwei Variablen Beispiel Zusammenhang Klassengröße und Testergebnis o Wie verändern sich Testergebnisse,

Mehr

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade Version 2015 Formelsammlung für das Modul Statistik 2 Bachelor Sven Garbade Prof. Dr. phil. Dipl.-Psych. Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 1 Experiment zur Vererbungstiefe Softwaretechnik: die Vererbungstiefe ist kein guter Schätzer für den Wartungsaufwand

Mehr

Diagnostik von Regressionsmodellen (1)

Diagnostik von Regressionsmodellen (1) Diagnostik von Regressionsmodellen (1) Bei Regressionsanalysen sollte immer geprüft werden, ob das Modell angemessen ist und ob die Voraussetzungen eines Regressionsmodells erfüllt sind. Das Modell einer

Mehr

Statistische Eigenschaften der OLS-Schätzer, Residuen,

Statistische Eigenschaften der OLS-Schätzer, Residuen, Statistische Eigenschaften der OLS-Schätzer, Residuen, Bestimmtheitsmaß Stichwörter: Interpretation des OLS-Schätzers Momente des OLS-Schätzers Gauss-Markov Theorem Residuen Schätzung von σ 2 Bestimmtheitsmaß

Mehr

Vorbereitung auf 3. Übungsblatt (Präsenzübungen) - Lösungen

Vorbereitung auf 3. Übungsblatt (Präsenzübungen) - Lösungen Prof Dr Rainer Dahlhaus Statistik 1 Wintersemester 2016/2017 Vorbereitung auf Übungsblatt (Präsenzübungen) - Lösungen Aufgabe P9 (Prognosen und Konfidenzellipsoide in der linearen Regression) Wir rekapitulieren

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 31. Mai 2011 4. Methode der kleinsten Quadrate Geschichte: Von Legendre, Gauß und Laplace zu Beginn des 19. Jahrhunderts eingeführt. Die Methode der

Mehr

Mathematik III - Statistik für MT(Master)

Mathematik III - Statistik für MT(Master) 3. Regressionsanalyse Fachbereich Grundlagenwissenschaften Prof. Dr. Viola Weiß Wintersemester 0/03 Mathematik III - Statistik für MTMaster 3. Empirische Regressionsgerade Optimalitätskriterium: Die Summe

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Diese Übung beschäftigt sich mit der Skalierung von Variablen in Regressionsanalysen und mit asymptotischen Eigenschaften von OLS. Verwenden

Mehr

Regression und Korrelation

Regression und Korrelation Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen

Mehr

Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik. Regression. Einfache lineare Regression

Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik. Regression. Einfache lineare Regression Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik Regression Dozent: Fabian Scheipl Material: H. Küchenhoff LMU München 39 Einfache lineare Regression Bestimmung der Regressionsgerade

Mehr

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Prof. Dr. Rainer Schwabe 08.07.2014 Otto-von-Guericke-Universität Magdeburg Institut für Mathematische Stochastik Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Name:, Vorname: Matr.-Nr.

Mehr

Statistik II für Betriebswirte Vorlesung 12

Statistik II für Betriebswirte Vorlesung 12 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 12 11. Januar 2013 7.3. Multiple parameterlineare Regression Im Folgenden soll die

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

1 Gemischte Lineare Modelle

1 Gemischte Lineare Modelle 1 Gemischte Lineare Modelle Wir betrachten zunächst einige allgemeine Aussagen für Gemischte Lineare Modelle, ohne zu tief in die mathematisch-statistische Theorie vorzustoßen. Danach betrachten wir zunächst

Mehr

SBWL Tourismusanalyse und Freizeitmarketing

SBWL Tourismusanalyse und Freizeitmarketing Inhalt 3. Multiples Regressionsmodell 3.1. Das klassische lineare Regressionsmodell 3.2 Regressions- und lineares Modell 3.3. Die Standardannahmen im klassischen linearen Regressionsmodell 3.4 Kleinste

Mehr

Statistik. R. Frühwirth Teil 1: Deskriptive Statistik. Statistik. Einleitung Grundbegriffe Merkmal- und Skalentypen Aussagen und

Statistik. R. Frühwirth Teil 1: Deskriptive Statistik. Statistik. Einleitung Grundbegriffe Merkmal- und Skalentypen Aussagen und Übersicht über die Vorlesung Teil : Deskriptive fru@hephy.oeaw.ac.at VO 42.090 http://tinyurl.com/tu42090 Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable und Verteilungen Februar 200 Teil 4:

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 9. Dezember 2010 1 Konfidenzintervalle Idee Schätzung eines Konfidenzintervalls mit der 3-sigma-Regel Grundlagen

Mehr

Grundlagen der Ökonometrie (für Wirtschaftsmathematikstudenten und mathematisch orientierte Volkswirtschaftsstudenten) Prof. Dr.

Grundlagen der Ökonometrie (für Wirtschaftsmathematikstudenten und mathematisch orientierte Volkswirtschaftsstudenten) Prof. Dr. Grundlagen der Ökonometrie (für Wirtschaftsmathematikstudenten und mathematisch orientierte Volkswirtschaftsstudenten) Prof Dr Enno Mammen 0 Exkurs: Orthogonaltransformationen, Projektionen im R n In diesem

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

1. Lösungen zu Kapitel 7

1. Lösungen zu Kapitel 7 1. Lösungen zu Kapitel 7 Übungsaufgabe 7.1 Um zu testen ob die Störterme ε i eine konstante Varianz haben, sprich die Homogenitätsannahme erfüllt ist, sind der Breusch-Pagan-Test und der White- Test zwei

Mehr

30. März Ruhr-Universität Bochum. Methodenlehre II, SS Prof. Dr. Holger Dette

30. März Ruhr-Universität Bochum. Methodenlehre II, SS Prof. Dr. Holger Dette Ruhr-Universität Bochum 30. März 2011 1 / 46 Methodenlehre II NA 3/73 Telefon: 0234 322 8284 Email: holger.dette@rub.de Internet: www.ruhr-uni-bochum.de/mathematik3/index.html Vorlesung: Montag, 8.30 10.00

Mehr

Lineare Modelle in R: Klassische lineare Regression

Lineare Modelle in R: Klassische lineare Regression Lineare Modelle in R: Klassische lineare Regression Achim Zeileis 2009-02-20 1 Das Modell Das klassische lineare Regressionsmodell versucht den Zusammenhang zwischen einer abhängigen Variablen (oder Responsevariablen)

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:

Mehr

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests Kapitel 10 Mittelwert-Tests 10.1 Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests 10.1 Einstichproben- Mittelwert-Tests 10.1.1 Einstichproben- Gauß-Test Dichtefunktion der Standard-Normalverteilung

Mehr

Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung

Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Induktive Statistik Prof. Dr. W.-D.

Mehr

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004 Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004 Aufgabe 1 U t bedeute weißes Rauschen und B den Backshift

Mehr

Aufgaben zu Kapitel 41

Aufgaben zu Kapitel 41 Aufgaben zu Kapitel 41 1 Aufgaben zu Kapitel 41 Verständnisfragen Aufgabe 41.1 Zeigen Sie, dass die Normalgleichungen stets lösbar sind und bestimmen Sie die allgemeine Lösung. Aufgabe 41.2 Wieso gilt

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik. 7. Februar 2008

Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik. 7. Februar 2008 L. Fahrmeir, G. Walter Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 7. Februar 8 Hinweise:. Überprüfen

Mehr

Statistik Vorlesung 7 (Lineare Regression)

Statistik Vorlesung 7 (Lineare Regression) Statistik Vorlesung 7 (Lineare Regression) K.Gerald van den Boogaart http://www.stat.boogaart.de/ Statistik p.1/77 Gerade als Vereinfachung Wachstum bei Kindern height 76 78 80 82 18 20 22 24 26 28 age

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/453

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/453 fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/453 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression Drittvariablenkontrolle in der linearen Regression: Trivariate Regression 14. Januar 2002 In der Tabellenanalyse wird bei der Drittvariablenkontrolle für jede Ausprägung der Kontrollvariablen eine Partialtabelle

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

Datenanalyse mit Excel und Gretl

Datenanalyse mit Excel und Gretl Dozent: Christoph Hindermann christoph.hindermann@uni-erfurt.de Datenanalyse mit Excel und Gretl Teil Titel 2: Gretl 1 Teil 2: Gretl Datenanalyse mit Excel und Gretl Teil Titel 2: Gretl 2 Modellannahmen

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

Schriftliche Prüfung (90 Minuten)

Schriftliche Prüfung (90 Minuten) Dr. M. Kalisch Probeprüfung Statistik 1 Sommer 2014 Schriftliche Prüfung (90 Minuten) Bemerkungen: Alle schriftlichen Hilfsmittel und ein Taschenrechner sind erlaubt. Mobiltelefone sind auszuschalten!

Mehr

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen.

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen. Aufgabe 1 (25 Punkte Zur Schätzung des Werbe-Effekts in einem Getränke-Unternehmen wird das folgende lineare Modell aufgestellt: Dabei ist y t = β 1 + x t2 β 2 + e t. y t : x t2 : Umsatz aus Getränkeverkauf

Mehr

Ökonometrie. Hans Schneeweiß. 3., durchgesehene Auflage. Physica-Verlag Würzburg-Wien 1978 ISBN

Ökonometrie. Hans Schneeweiß. 3., durchgesehene Auflage. Physica-Verlag Würzburg-Wien 1978 ISBN 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Hans Schneeweiß Ökonometrie 3., durchgesehene Auflage Physica-Verlag

Mehr

1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt:

1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt: Beispiele zum Üben und Wiederholen zu Wirtschaftsstatistik 2 (Kurs 3) 1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt: Haushaltseinkommen 12 24 30 40 80 60

Mehr

Diskrete Wahrscheinlichkeitstheorie

Diskrete Wahrscheinlichkeitstheorie SS 2013 Diskrete Wahrscheinlichkeitstheorie Javier Esparza Fakultät für Informatik TU München http://www7.in.tum.de/um/courses/dwt/ss13 Sommersemester 2013 Teil V Induktive Statistik Induktive Statistik

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Multiple Regressionsanalyse - Kurzabriss

Multiple Regressionsanalyse - Kurzabriss Multiple Regressionsanalyse - Kurzabriss Ziele: Schätzung eines Kriteriums aus einer Linearkombination von Prädiktoren Meist zu Screening-Untersuchungen, um den Einfluß von vermuteten Ursachenvariablen

Mehr

6.1 Definition der multivariaten Normalverteilung

6.1 Definition der multivariaten Normalverteilung Kapitel 6 Die multivariate Normalverteilung Wir hatten die multivariate Normalverteilung bereits in Abschnitt 2.3 kurz eingeführt. Wir werden sie jetzt etwas gründlicher behandeln, da die Schätzung ihrer

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 13. Januar 2011 1 Nichtparametrische Tests Ränge Der U-Test Bindungen Ränge Zwei Gruppen von Zufallsvariablen mit

Mehr

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen

Mehr

Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13

Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13 Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression Dipl.-Ing. Robin Ristl Wintersemester 2012/13 1 Grundidee: Eine abhängige Variable soll als Linearkombination mehrerer unabhängiger

Mehr

Vergleich von Gruppen I

Vergleich von Gruppen I Vergleich von Gruppen I t-test und einfache Varianzanalyse (One Way ANOVA) Werner Brannath VO Biostatistik im WS 2006/2007 Inhalt Der unverbundene t-test mit homogener Varianz Beispiel Modell Teststatistik

Mehr

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen 4 Multiple lineare Regression Tests auf Heteroskedastie 4.11 Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen Ein weiterer Test auf Heteroskedastie in den Störgrößen ist der Breusch-Pagan-Test.

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten Von Prof. Dr. Rainer Schlittgen 4., überarbeitete und erweiterte Auflage Fachbereich Materialwissenschaft! der Techn. Hochschule Darmstadt

Mehr

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 27

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 27 Statistik II II. Univariates lineares Regressionsmodell Martin Huber 1 / 27 Übersicht Definitionen (Wooldridge 2.1) Schätzmethode - Kleinste Quadrate Schätzer / Ordinary Least Squares (Wooldridge 2.2)

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Ausgangsdaten Bundesliga 2008/2009 Gegeben: Daten zu den 18 Vereinen der ersten Bundesliga

Mehr

Bachelorprüfung WS 2012/13

Bachelorprüfung WS 2012/13 Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Fach: Praxis der empirischen Wirtschaftsforschung Prüfer: Prof. Regina T. Riphahn, Ph.D. Bachelorprüfung WS 2012/13

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

6. Schätzverfahren für Parameter

6. Schätzverfahren für Parameter 6. Schätzverfahren für Parameter Ausgangssituation: Ein interessierender Zufallsvorgang werde durch die ZV X repräsentiert X habe eine unbekannte Verteilungsfunktion F X (x) Wir interessieren uns für einen

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler

Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler Von Professor Dr. Gert Heinrich 3., durchgesehene Auflage R.Oldenbourg Verlag München Wien T Inhaltsverzeichnis

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst. Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen

Mehr

lineare Regression Wittmann Einleitung Problemstellung Beispiel Lineare Regression Ansatz kleinste Quadrate Güte Schluss Pascal Wittmann 1/22

lineare Regression Wittmann Einleitung Problemstellung Beispiel Lineare Regression Ansatz kleinste Quadrate Güte Schluss Pascal Wittmann 1/22 Pascal 1/22 Inhaltsverzeichnis 2/22 Inhaltsverzeichnis 2/22 Inhaltsverzeichnis 2/22 Es sind Paare von Messwerten (x i,y i ) mit i {1,...,n} und n 2 gegeben. Diese stellen geometrisch eine Punktwolke im

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 15.01.2009 Numerische Methoden und Algorithmen in der Physik Christian Autermann 1/ 47 Methode der kleinsten Quadrate

Mehr

Einführung in die Empirische Wirtschaftsforschung

Einführung in die Empirische Wirtschaftsforschung Einführung in die Empirische Wirtschaftsforschung Basierend auf dem Textbuch von Ramanathan: Introductory Econometrics Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced

Mehr

Bachelorprüfung SS MUSTERLÖSUNG

Bachelorprüfung SS MUSTERLÖSUNG Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Fach: Praxis der empirischen Wirtschaftsforschung Prüfer: Prof. Regina T. Riphahn, Ph.D. Bachelorprüfung SS 2015

Mehr

2.3 Nichtlineare Regressionsfunktion

2.3 Nichtlineare Regressionsfunktion Nichtlineare Regressionsfunktion Bisher: lineares Regressionsmodell o Steigung d. Regressionsgerade ist konstant o Effekt einer Änderung von X auf Y hängt nicht vom Niveau von X oder von anderen Regressoren

Mehr

Kapitel 1 Einführung. Angewandte Ökonometrie WS 2012/13. Nikolaus Hautsch Humboldt-Universität zu Berlin

Kapitel 1 Einführung. Angewandte Ökonometrie WS 2012/13. Nikolaus Hautsch Humboldt-Universität zu Berlin Kapitel 1 Einführung Angewandte Ökonometrie WS 2012/13 Nikolaus Hautsch Humboldt-Universität zu Berlin 1. Allgemeine Informationen 2 17 1. Allgemeine Informationen Vorlesung: Mo 12-14, SPA1, 23 Vorlesung

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Bachelorprüfung WS 2012/13 - MUSTERLÖSUNG

Bachelorprüfung WS 2012/13 - MUSTERLÖSUNG Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Bachelorprüfung WS 2012/13 - MUSTERLÖSUNG Fach: Praxis der empirischen Wirtschaftsforschung Prüfer: Prof. Regina

Mehr

6. Statistische Schätzung von ARIMA Modellen

6. Statistische Schätzung von ARIMA Modellen 6. Statistische Schätzung von ARIMA Modellen Vorschau: ARIMA Modelle Modellidentifikation verschiedene Schätzverfahren Modelldiagnostik Fallstudien Zeitreihenanalyse 1 6.1 ARIMA Modelle Bisher: ARMA(p,q)-Modelle:

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Ökonometrische Methoden III: Die lineare Regression

Ökonometrische Methoden III: Die lineare Regression Ökonometrische Methoden III: Die lineare Regression Vorlesung an der Ruprecht-Karls-Universität Heidelberg WS 006/007 Prof. Dr. Lars P. Feld Ruprecht-Karls-Universität Heidelberg, Universität St. Gallen

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

Statistische Intervalle

Statistische Intervalle Statistische Intervalle Andreas Handl Inhaltsverzeichnis 1 Statistische Intervalle 2 2 Intervalle bei Normalverteilung 12 2.1 Konfidenzintervalle........................ 13 2.1.1 Konfidenzintervall für

Mehr

ANalysis Of VAriance (ANOVA) 2/2

ANalysis Of VAriance (ANOVA) 2/2 ANalysis Of VAriance (ANOVA) 2/2 Markus Kalisch 22.10.2014 1 Wdh: ANOVA - Idee ANOVA 1: Zwei Medikamente zur Blutdrucksenkung und Placebo (Faktor X). Gibt es einen sign. Unterschied in der Wirkung (kontinuierlich

Mehr