Übungsblatt Nr. 7. Lösungsvorschlag

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Übungsblatt Nr. 7. Lösungsvorschlag"

Transkript

1 Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Nico Döttling Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 7 svorschlag

2 Aufgabe (K) (4 Punkte) Der ebenso geniale wie größenwahnsinnige Wissenschaftler und Superbösewicht Doktor Meta hat einen konkreten Plan gefasst: Er möchte alle Teilnehmer durch die TGI-Klausur fallen lassen! Dazu will er sicherstellen, dass die Klausur nur vage, unklare oder e Aufgaben enthält. Zu diesem Zweck will er mit einer Hochleistungsantenne in seinem Tiefseelabor die Übertragung der Klausur zum Drucker stören. Diese Technologie hat er in der Vergangenheit bereits erfolgreich an den Übungsblättern erprobt. Zum Glück konnte sein größter Widersacher, der internationale Spitzenagent Sven van Hagen, in das Tiefseelabor eindringen. Es gelang ihm, durch einen Sabotageakt die Antenne so zu beeinflussen, dass sie nur noch wenige Bits kippen kann. Gegeben seien die Generatormatrix G G := und Prüfmatrix H zu einem Hamming-Code: H := i.) Gegeben seien die folgenden Wörter. Decodieren sie diese Wörter korrekt. (P) a) c = ( ) T b) c 2 = ( ) T ii.) Der obige Hamming-Code erkennt auch 2-Bit-Fehler, allerdings wird die Korrektur ausgeführt. Wie kann man den obigen Hamming-Code verändern, damit er 3-Bit-Fehler erkennt und 2-Bit-Fehler nicht korrigiert? Begründen Sie Ihr Vorgehen! (2P) iii.) Zeigen Sie: die Hammingdistanz ist eine Metrik. (P) svorschlag i.) Da die Prüfmatrix nicht in systematischer Form vorliegt (sie ist an der horizontalen Mittelachse gespiegelt), muss das Syndrom entweder gespiegelt werden oder die Prüfmatrix in systematische Form H gebracht werden. Die Dekodierung läuft folgendermaßen ab: ii

3 H c = = Damit ist der Fehler im Codewort c an Position und das korrekt dekodierte Codewort lautet c = ( ) T. Das Ursprungswort lautet also w = ( ). Ebenso für c 2 : H c 2 = = Damit ist der Fehler im Codewort c 2 an Position 3 und das korrekt dekodierte Codewort lautet c = ( ) T. Das Ursprungswort lautet also w = ( ). ii.) Der Hamming-Code wird um ein weiteres Paritätsbit ergänzt. Damit wächst die Minimaldistanz des Codes auf 4, sodass auch 3-Bit-Fehler entdeckt werden können. 2-Bit-Fehler werden damit nicht mehr fehlerhaft korrigiert, da bei einem Codewort mit 2 Bit-Fehlern 2 korrekte Codewörter mit identischem Abstand als Urbild dienen können. Dies ist beim normalen Hamming-Code nicht der Fall, da selbst für einen 2-Bit-Fehler nur ein Codewort (das Falsche) in Frage kommt. 2-Bit-Fehler können also weiterhin nicht korrigiert werden, nur eine fehlerhafte Korrektur findet nicht mehr statt. iii.) Die Hamming-Distanz d ist wie folgt definiert. Für (x, y) {, } n : d(x, y) := Σ xi y i, i {,..., n} Um nachzuweisen, dass es sich um eine Metrik handelt, müssen wir 3 Eigenschaften überprüfen: a) Definitheit: d(x, y) und d(x, y) = x = y. Für die Hamming-Distanz gilt offensichtlich, dass d(x, y), da eine Summe von positiven Werten gebildet wird. Ebenso ist aus der Definition klar, dass d(x, y) =, wenn x = y. b) Symmetrie: d(x, y) = d(y, x). Trivial. iii

4 c) Dreiecksungleichung: d(x, y) d(x, z) + d(y, z). Wegen x i y i folgt, dass entweder x i z i oder y i z i. Somit wird d(x, y) durch (x i, y i ) um erhöht, während d(x, z) + d(y, z) um mindestens erhöht wird. Weiterhin gilt für x i = y i, dass die rechte Seite der Gleichung größer ist (Definitheit). Damit gilt insgesamt die Dreiecksungleichung. Aufgabe 2 (K) (4 Punkte) Gegeben sei eine Quelle X mit der Verteilung: x P (X = x) i.) Geben Sie eine binäre Huffman-Codierung für X an. (P) ii.) Berechnen Sie die erwartete Codewortlänge Ihres Huffman-Codes. (P) iii.) Dekodieren Sie das Wort w = 2 für den folgenden ternären Huffman-Code. Berechnen Sie außerdem H(X) und die erwartete Codewortlänge. (2P) svorschlag Zeichen u h c n t s e w m i Code i.) Wir fassen immer die beiden Knoten mit den geringsten Wahrscheinlichkeiten zusammen. Daraus ergibt sich folgende Kodierung. iv

5 Damit ergibt sich der folgende Huffman-Code: x Code ii.) Die erwartete Codewortlänge beträgt: L = = 2.34[Bit] iii.) Wir dekodieren w zu im westen nichts neues und berechnen daraus die relativen Häufigkeiten der Zeichen: Zeichen u h c n t s e w m i Wahrscheinlichkeit Die erwartete Codewortlänge beträgt L = Aufgrund der unklaren Aufgabenstellung zur Entropie werden die beiden folgenden en akzeptiert. Die Entropie der Quelle X aus Teilaufgabe i) mit H(X) = 2.26 sowie die Entropie der Quelle Y des Strings im westen nichts neues mit H(Y ) = v

6 Aufgabe 3 (*) i.) Vervollständigen Sie die Tabelle und geben Sie zu jedem Automatentyp den Chomsky- Typ an, der genau von diesem Automatentyp erkannt wird. Automatentyp Kellerautomat Chomsky-Klasse Turingmaschine endlicher Akzeptor linear beschränkte Turingmaschine ii.) Gegeben sei die Sprache L = {a n b n c m m, n N } {a n b m c n m, n N }. Zeigen Sie mithilfe des Pumpinglemmas, dass L nicht regulär ist. iii.) Gegeben sei die Grammatik G = (V, A, S, P) mit V = {S, W, X, Y, Z}, A = {a, b} und den Produktionen P = {S aw bx W ay bx X ay bx Y az by Z a b az bz } Konstruieren Sie einen deterministischen endlichen Akzeptor, der genau die Sprache L(G), die von der Grammatik G erzeugt wird, erkennt. Aufgabe 4 (*) i.) Sei Σ = {, }. Die Sprache L sei definiert durch L = { M L(M) und L(M) Σ } Dabei bezeichnet M die Gödelnummer einer Turingmaschine M und es bezeichnet L(M) die von M akzeptierte Sprache. Zeigen Sie: Die Sprache L ist nicht entscheidbar. vi

7 ii.) Zeigen Sie: Es gibt zwei Turingmaschinen M und M 2, sodass M nur M 2 akzeptiert und M 2 nur M akzeptiert, also dass L(M ) = { M 2 } und L(M 2 ) = { M }. Aufgabe 5 (*) Geben Sie für jede der folgenden Aussagen an, ob die Aussage oder ist. Zu jeder CH-2-Sprache gibt es eine CH--Grammatik Es ist entscheidbar, ob zwei endliche Automaten äquivalent sind (d.h. die gleiche Sprache akzeptieren). Wenn P = N P dann ist N P = co N P Die erwartete Codelänge einer Huffman-Kodierung ist immer größer als oder gleich der Entropie der Quelle. Um zu zeigen, dass ein Problem Π N P vollständig ist, genügt es, ein N P-hartes Problem auf Π zu reduzieren. {, P = N P Die Funktion f(x) =, sonst ist berechenbar. Wenn P N P gilt, dann liegt das Entscheidungsproblem zu L = {n N Die Turingmaschine mit Gödelnummer n terminier immer} in N P co-n P Der Schnitt einer Sprache von Chomsky-Typ- mit einer Sprache von Chomsky-Typ-2 ist wieder eine Sprache von Chomsky-Typ-. vii

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 27 29..24 FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Definition

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 4 26..25 INSTITUT FÜR THEORETISCHE INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht

Mehr

Grundlagen der Technischen Informatik. 2. Übung

Grundlagen der Technischen Informatik. 2. Übung Grundlagen der Technischen Informatik 2. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Organisatorisches Übungsblätter zuhause vorbereiten! In der Übung an der Tafel vorrechnen! Bei

Mehr

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informationstheorie und Codierung Prof. Dr. Lilia Lajmi Juni 25 Ostfalia Hochschule für angewandte Wissenschaften Hochschule Braunschweig/Wolfenbüttel Postanschrift: Salzdahlumer Str.

Mehr

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}

Mehr

Single Parity check Codes (1)

Single Parity check Codes (1) Single Parity check Codes (1) Der Single Parity check Code (SPC) fügt zu dem Informationsblock u = (u 1, u 2,..., u k ) ein Prüfbit (englisch: Parity) p hinzu: Die Grafik zeigt drei Beispiele solcher Codes

Mehr

9 Codes. Hochschule für Angewandte Wissenschaften Hamburg FACHBEREICH ELEKTROTECHNIK UND INFORMATIK DIGITALTECHNIK 9-1

9 Codes. Hochschule für Angewandte Wissenschaften Hamburg FACHBEREICH ELEKTROTECHNIK UND INFORMATIK DIGITALTECHNIK 9-1 9 Codes 9.1 Charakterisierung und Klassifizierung Definition: Das Ergebnis einer eindeutigen Zuordnung zweier Zeichen- bzw. Zahlenmengen wird Code genannt. Die Zuordnung erfolgt über eine arithmetische

Mehr

Wortproblem für kontextfreie Grammatiken

Wortproblem für kontextfreie Grammatiken Wortproblem für kontextfreie Grammatiken G kontextfreie Grammatik. w Σ w L(G)? Wortproblem ist primitiv rekursiv entscheidbar. (schlechte obere Schranke!) Kellerautomat der L(G) akzeptiert Ist dieser effizient?

Mehr

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2 AUFGABEN KANALCODIERUNG Aufgabe Wir betrachten den Hamming-Code mit m = 5 Prüfbits. a) Wie gross ist die Blocklänge n dieses Codes? b) Wie viele gültige Codewörter umfasst dieser Code? c) Leiten Sie die

Mehr

6 Fehlerkorrigierende Codes

6 Fehlerkorrigierende Codes R. Reischuk, ITCS 35 6 Fehlerkorrigierende Codes Wir betrachten im folgenden nur Blockcodes, da sich bei diesen das Decodieren und auch die Analyse der Fehlertoleranz-Eigenschaften einfacher gestaltet.

Mehr

Zusammenfassung zu Codierungstheorie

Zusammenfassung zu Codierungstheorie Zusammenfassung zu Codierungstheorie Proseminar Mathematische Modelle in den Naturwissenschaften WS 09/10 Thomas Holzer 0755600 Sandra Sampl 0755049 Kathrin Oberradter 0755123 1 Inhaltsverzeichnis 1. Einführung

Mehr

I. II. I. II. III. IV. I. II. III. I. II. III. IV. I. II. III. IV. V. I. II. III. IV. V. VI. I. II. I. II. III. I. II. I. II. I. II. I. II. III. I. II. III. IV. V. VI. VII. VIII.

Mehr

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Lineare Codes Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Codes Ein Code ist eine eindeutige Zuordnung von Zeichen

Mehr

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele Organisation Was kommt zum Test? Buch Informatik Grundlagen bis inkl Kapitel 74 Wissensfragen und Rechenbeispiele 3 Vorträge zur Übung Informationstheorie, Huffman-Codierung und trennzeichenfreie Codierung

Mehr

Übung 13: Quellencodierung

Übung 13: Quellencodierung ZHAW, NTM, FS2008, Rumc, /5 Übung 3: Quellencodierung Aufgabe : Huffmann-Algorithmus. Betrachten Sie die folgende ternäre, gedächtnislose Quelle mit dem Symbolalphabet A = {A,B,C} und den Symbol-Wahrscheinlichkeiten

Mehr

Grundlagen Digitaler Systeme (GDS)

Grundlagen Digitaler Systeme (GDS) Grundlagen Digitaler Systeme (GDS) Prof. Dr. Sven-Hendrik Voß Sommersemester 2015 Technische Informatik (Bachelor), Semester 1 Termin 10, Donnerstag, 18.06.2015 Seite 2 Binär-Codes Grundlagen digitaler

Mehr

Codes und Codegitter. Katharina Distler. 27. April 2015

Codes und Codegitter. Katharina Distler. 27. April 2015 Codes und Codegitter Katharina Distler 7. April 015 Inhaltsverzeichnis 1 Codes 4 Codegitter 14 Einleitung Die folgende Seminararbeit behandelt das Konzept von Codes und Codegittern. Da sie bei der Informationsübertragung

Mehr

0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet).

0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet). Aufgabe 0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet). 1. i) Wie ist die Darstellung von 50 im Zweier =Komplement? ii) Wie ist die Darstellung von 62 im Einer =Komplement?

Mehr

Vorlesung Theoretische Informatik

Vorlesung Theoretische Informatik Vorlesung Theoretische Informatik Automaten und Formale Sprachen Hochschule Reutlingen Fakultät für Informatik Masterstudiengang Wirtschaftsinformatik überarbeitet von F. Laux (Stand: 09.06.2010) Sommersemester

Mehr

Sprachen/Grammatiken eine Wiederholung

Sprachen/Grammatiken eine Wiederholung Sprachen/Grammatiken eine Wiederholung Was sind reguläre Sprachen? Eigenschaften regulärer Sprachen Sprachen Begriffe Symbol: unzerlegbare Grundzeichen Alphabet: endliche Menge von Symbolen Zeichenreihe:

Mehr

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik Grundlagen der Informatik II Teil I: Formale Modelle der Informatik 1 Einführung GdInfoII 1-2 Ziele/Fragestellungen der Theoretischen Informatik 1. Einführung abstrakter Modelle für informationsverarbeitende

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen

Mehr

3 Codierung ... 3.3 Code-Sicherung. 3.3.1 Stellendistanz und Hamming-Distanz. 60 3 Codierung

3 Codierung ... 3.3 Code-Sicherung. 3.3.1 Stellendistanz und Hamming-Distanz. 60 3 Codierung 60 3 Codierung 3 Codierung... 3.3 Code-Sicherung Oft wählt man absichtlich eine redundante Codierung, so dass sich die Code-Wörter zweier Zeichen (Nutzwörter) durch möglichst viele binäre Stellen von allen

Mehr

Zusammenfassung Grundzüge der Informatik 4

Zusammenfassung Grundzüge der Informatik 4 Zusammenfassung Grundzüge der Informatik 4 Sommersemester 04 Thorsten Wink 21. September 2004 Version 1.2 Dieses Dokument wurde in L A TEX 2εgeschrieben. Stand: 21. September 2004 Inhaltsverzeichnis 1

Mehr

Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung

Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung Frank Heitmann heitmann@informatik.uni-hamburg.de 13. Mai 2014 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/17 Überblick Wir hatten

Mehr

Thema: Hamming-Codes. Titelblatt anonymisiert

Thema: Hamming-Codes. Titelblatt anonymisiert Thema: Hamming-Codes Titelblatt anonymisiert Hamming-Codes.Einführung in die Kodierungstheorie... 3. Grundlegendes über Codewörter... 3. Matrizen... 4.3 Die maßgebliche Stelle... 5.Grundlegende Ideen...5

Mehr

2.11 Kontextfreie Grammatiken und Parsebäume

2.11 Kontextfreie Grammatiken und Parsebäume 2.11 Kontextfreie Grammatiken und Parsebäume Beispiel: Beispiel (Teil 3): Beweis für L(G) L: Alle Strings aus L der Länge 0 und 2 sind auch in L(G). Als Induktionsannahme gehen wir davon aus, dass alle

Mehr

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005. Das Problem.. Quellcodierung und Datenkompression. Wir wollen eine Nachricht über einen digitalen Kanal, der nur 0 oder übertragen kann, schicken.

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische Informatik I Einheit 2.4 Grammatiken 1. Arbeitsweise 2. Klassifizierung 3. Beziehung zu Automaten Beschreibungsformen für Sprachen Mathematische Mengennotation Prädikate beschreiben Eigenschaften

Mehr

Codierung, Codes (variabler Länge)

Codierung, Codes (variabler Länge) Codierung, Codes (variabler Länge) A = {a, b, c,...} eine endliche Menge von Nachrichten (Quellalphabet) B = {0, 1} das Kanalalphabet Eine (binäre) Codierung ist eine injektive Abbildung Φ : A B +, falls

Mehr

Mathematik II für Studierende der Informatik Kapitel. Kodierungstheorie

Mathematik II für Studierende der Informatik Kapitel. Kodierungstheorie Mathematik II für Studierende der Informatik Kapitel Kodierungstheorie Markus Junker Sommersemester 2011 (korrigierte Version vom Sommersemester 2012) Einführung, Beispiele, Definitionen Ausgangspunkt

Mehr

Formelsammlung. Wahrscheinlichkeit und Information

Formelsammlung. Wahrscheinlichkeit und Information Formelsammlung Wahrscheinlichkeit und Information Ein Ereignis x trete mit der Wahrscheinlichkeit p(x) auf, dann ist das Auftreten dieses Ereignisses verbunden mit der Information I( x): mit log 2 (z)

Mehr

Informationstheorie und Codierung. Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de

Informationstheorie und Codierung. Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de Informationstheorie und Codierung Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de Inhaltsverzeichnis 3. Kanalcodierung 3.1 Nachrichtentheorie für gestörte Kanäle 3.1.1 Transinformation 3.1.2 Kanalkapazität

Mehr

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Codierung Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Ein bisschen Informationstheorie Betrachten wir das folgende Problem: Wie lautet eine sinnvolle Definition für das quantitative

Mehr

Platz Fahrer Startnr.BoxBox Runden Sek.'s Pkte PunkteGesamtzeit Rd.zeit Rd.zeit Rd.zeit StartZiel Korr. Korr. gesamt(*) Schnitt Minimum(**) Maximum

Platz Fahrer Startnr.BoxBox Runden Sek.'s Pkte PunkteGesamtzeit Rd.zeit Rd.zeit Rd.zeit StartZiel Korr. Korr. gesamt(*) Schnitt Minimum(**) Maximum Klasse 1-85er (5 Teilnehmer) (max. 03:00:00 gewertet) 1 Kistenmacher,Lukas 11 1 1 14 1400 01:53:27,128 00:02:43,477 00:59:38,364 2 Schneiderling,Luca 55 1 1 13 1300 01:53:51,611 00:02:57,972 00:59:48,399

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

3 Der Hamming-Code. Hamming-Codes

3 Der Hamming-Code. Hamming-Codes 3 Der Hamming-Code Hamming-Codes Ein binärer Code C heißt ein Hamming-Code Ha s, wenn seine Kontrollmatrix H als Spalten alle Elemente in Z 2 s je einmal hat. Die Parameter eines n-k-hamming-codes sind:

Mehr

15 Optimales Kodieren

15 Optimales Kodieren 15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen

Mehr

Harm Pralle. Codierungstheorie WS 2005/06. Institut Computational Mathematics Technische Universität Braunschweig

Harm Pralle. Codierungstheorie WS 2005/06. Institut Computational Mathematics Technische Universität Braunschweig Harm Pralle Codierungstheorie WS 2005/06 Institut Computational Mathematics Technische Universität Braunschweig II Literatur: A. Beutelspacher und U. Rosenbaum. Projektive Geometrie. Vieweg, Wiesbaden

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2013

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2013 Automaten und Formale Sprachen alias Theoretische Informatik Sommersemester 2013 Dr. Sander Bruggink Übungsleitung: Jan Stückrath Sander Bruggink Automaten und Formale Sprachen 1 Deterministische Kellerautomaten

Mehr

Einführung in die Codierungstheorie. Rudolf Schürer

Einführung in die Codierungstheorie. Rudolf Schürer Einführung in die Codierungstheorie Rudolf Schürer 8. Februar 2008 Vorwort Dieses Skript entstand im Zuge der gleichnamigen Vorlesung, die ich im Wintersemester 2007/08 am Fachbereich Mathematik der Universität

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Hauptdiplomklausur Informatik Juni 2008: Computer Networks

Hauptdiplomklausur Informatik Juni 2008: Computer Networks Universität Mannheim Fakultät für Mathematik und Informatik Lehrstuhl für Praktische Informatik IV Prof. Dr.-Ing. W. Effelsberg Hauptdiplomklausur Informatik Juni 2008: Computer Networks Name: Matrikel-Nr.:

Mehr

Einführung in die Informatik Grammars & Parsers

Einführung in die Informatik Grammars & Parsers Einführung in die Informatik Grammars & Parsers Grammatiken, Parsen von Texten Wolfram Burgard Cyrill Stachniss 12.1 Einleitung Wir haben in den vorangehenden Kapiteln meistens vollständige Java- Programme

Mehr

Informationssicherheit - Lösung Blatt 2

Informationssicherheit - Lösung Blatt 2 Informationssicherheit - Lösung Blatt 2 Adam Glodek adam.glodek@gmail.com 13.04.2010 1 1 Aufgabe 1: One Time Pad 1.1 Aufgabenstellung Gegeben ist der folgende Klartext 12Uhr (ASCII). Verschlüsseln Sie

Mehr

Information & Kommunikation - Zusammenfassung

Information & Kommunikation - Zusammenfassung Information & Kommunikation - Zusammenfassung Patrick Pletscher 29 September 2004 Grundlagen der Informationstheorie Entropie als Mass für Unsicherheit Definition der Entropie Die Entropie einer diskreten

Mehr

Der Huffman Algorithmus

Der Huffman Algorithmus Der Huffman Algorithmus Für das Folgende setzen wir voraus, dass die Quellensymbole q ν einem Alphabet {q μ } = {A, B, C,...} mit dem Symbolumfang M entstammen und statistisch voneinander unabhängig seien.

Mehr

Empfänger. Sender. Fehlererkennung und ggf. Fehlerkorrektur durch redundante Informationen. Längssicherung durch Paritätsbildung (Blockweise)

Empfänger. Sender. Fehlererkennung und ggf. Fehlerkorrektur durch redundante Informationen. Längssicherung durch Paritätsbildung (Blockweise) Datensicherung Bei der digitalen Signalübertragung kann es durch verschiedene Einflüsse, wie induktive und kapazitive Einkopplung oder wechselnde Potentialdifferenzen zwischen Sender und Empfänger zu einer

Mehr

Mathematik für Information und Kommunikation

Mathematik für Information und Kommunikation Mathematik für Information und Kommunikation Am Beispiel des Huffman- Algorithmus Thomas Borys und (Christian Urff) Huffman im Alltag MPEG Telefax JPEG MP3 ZIP avid Huffman avid Huffman [95-999] www.soe.ucsc.edu/people/faculty/huffman.html

Mehr

Codierung zur Fehlerkorrektur und Fehlererkennung

Codierung zur Fehlerkorrektur und Fehlererkennung Codierung zur Fehlerkorrektur und Fehlererkennung von Dr.-techn. Joachim Swoboda Mit 39 Bildern und 24 Tafeln R. OLDENBOURG VERLAG MÜNCHEN WIEN 1973 Inhalt Vorwort 9 1. Einführung 11 1.1 Redundante Codierung

Mehr

4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04

4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04 4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04 JOACHIM VON ZUR GATHEN, OLAF MÜLLER, MICHAEL NÜSKEN Abgabe bis Freitag, 14. November 2003, 11 11 in den jeweils richtigen grünen oder roten Kasten

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 3. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Fehler-korrigierende Codes

Fehler-korrigierende Codes Fehler-korrigierende Codes Prof. Dr. Thomas Risse Institut für Informatik & Automation, IIA Fakultät E&I, Hochschule Bremen, HSB 8. April 2013 Nummerierung der Kapitel und Abschnitte in [15] sind beibehalten,

Mehr

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen / Kontextfreie Sprachen und Kellerautomaten

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen / Kontextfreie Sprachen und Kellerautomaten Inhalt 1 Einführung 2 Automatentheorie und Formale Sprachen Grammatiken Reguläre Sprachen und endliche Automaten Kontextfreie Sprachen und Kellerautomaten Kontextsensitive und Typ 0-Sprachen 3 Berechenbarkeitstheorie

Mehr

Fehlerkorrigierende Codes

Fehlerkorrigierende Codes Fehlerkorrigierende Codes SS 2013 Gerhard Dorfer 2 Inhaltsverzeichnis 1 Fehlerkorrigierende Codes 4 1.1 Einführende Beispiele................................. 4 1.2 Mathematische Grundlagen..............................

Mehr

Zusammenfassung zu Codierungstheorie

Zusammenfassung zu Codierungstheorie Zusammenfassung zu Codierungstheorie Sara Adams 5. Juli 2005 Diese Zusammenfassung basiert auf der Vorlesung Codierungstheorie gehalten im Sommersemester 2005 von Prof. Dr. Hans-Dietrich Gronau an der

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

ARBEITSBLATT ZU FORMALEN SPRACHEN

ARBEITSBLATT ZU FORMALEN SPRACHEN ARBEITSBLATT ZU FORMALEN SPRACHEN Aufgabe 1: Gegeben ist die folgende Formale Sprache L(G) mit G = (T, N, P, S). Die Produktionen lauten ZUWEISUNG ::= name zuweisungsoperator AUSDRUCK semikolon AUSDRUCK

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Entscheidungsprobleme. Berechenbarkeit und Komplexität Entscheidbarkeit und Unentscheidbarkeit. Die Entscheidbarkeit von Problemen

Entscheidungsprobleme. Berechenbarkeit und Komplexität Entscheidbarkeit und Unentscheidbarkeit. Die Entscheidbarkeit von Problemen Berechenbarkeit und Komlexität Entscheidbarkeit und Unentscheidbarkeit Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at Research Institute for Symbolic Comutation (RISC) Johannes Keler University,

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 3. Endliche Automaten (V) 21.05.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Determinierte endliche Automaten (DEAs) Indeterminierte

Mehr

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen 19

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen 19 Inhalt 1 inführung 2 Automatentheorie und ormale prachen Grammatiken Reguläre prachen und endliche Automaten Kontextfreie prachen und Kellerautomaten Kontextsensitive und yp 0-prachen 3 Berechenbarkeitstheorie

Mehr

1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen. I.2. I.2. Grundlagen von von Programmiersprachen.

1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen. I.2. I.2. Grundlagen von von Programmiersprachen. 1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen I.2. I.2. Grundlagen von von Programmiersprachen. - 1 - 1. Der Begriff Informatik "Informatik" = Kunstwort aus Information und Mathematik

Mehr

TEIL III: FORMALE SPRACHEN

TEIL III: FORMALE SPRACHEN EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2011 TEIL III: FORMALE SPRACHEN 16. TERMERSETZUNGSSYSTEME UND CHOMSKY-GRAMMATIKEN Theoretische Informatik (SoSe 2011)

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 20.12.07 Bastian Molkenthin E-Mail: infotut@sunshine2k.de Web: http://infotut.sunshine2k.de Rückblick Semi-Thue-Systeme Ein Semi-Thue-System besteht

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 01/01 Mathematik. Juni 01 09:00 Uhr Unterlagen für die Lehrkraft 1. Aufgabe: Differentialrechnung

Mehr

JKU Young Scientists Matheseminar

JKU Young Scientists Matheseminar JKU Young Scientists Matheseminar Matheseminar WS 2013/14 Codierung und Information Das grundlegende Problem der Kommunikation besteht darin, an einer Stelle entweder genau oder angenähert eine Nachricht

Mehr

Lehrstuhl Informatik VI Grundzüge der Informatik * WS 2008/2009 Prof. Dr. Joachim Biskup

Lehrstuhl Informatik VI Grundzüge der Informatik * WS 2008/2009 Prof. Dr. Joachim Biskup Universität Dortmund Lehrstuhl Informatik VI Grundzüge der Informatik * WS 28/29 Prof. Dr. Joachim Biskup Leitung der Übungen: Arno Pasternak Lösungs-Ideen Übungsblatt 6 A: Grammatiken, Syntaxdiagramme

Mehr

Kapitel 4 Leitungscodierung

Kapitel 4 Leitungscodierung Kapitel 4 Leitungscodierung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Übersicht Quelle Senke Kompression Huffman-, Arithmetische-, Lempel-Ziv

Mehr

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?

Mehr

Zur Vereinfachung betrachten wir nun nur noch Funktionen f, die einen Funktionswert f nµberechnen. Sie werden alle in einer Tabelle dargestellt:

Zur Vereinfachung betrachten wir nun nur noch Funktionen f, die einen Funktionswert f nµberechnen. Sie werden alle in einer Tabelle dargestellt: Informatik 13: Gierhardt Theoretische Informatik III Berechenbarkeit Nicht-berechenbare Funktionen Nach der Church-Turing-These kann alles, was berechenbar ist, mit einer Turing-Maschine oder einer While-Maschine

Mehr

NAME_TO_CODES("PETER") = [80,69,84,69,82]

NAME_TO_CODES(PETER) = [80,69,84,69,82] 146 5 Codierungstheorie Was haben genetischer Code, Pincode, Barcode, EAN-Code, ASCII-Code und die Hieroglyphen gemeinsam? Sie alle dienen dazu, Informationen kurz und möglichst eindeutig weiterzugeben.

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014 Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Ulrich Furbach Institut für Informatik Sommersemester 2014 Furbach Grundlagen d. Theoretischen Informatik:

Mehr

Grundbegriffe der Informatik Tutorium 7

Grundbegriffe der Informatik Tutorium 7 Grundbegriffe der Informatik Tutorium 7 Tutorium Nr. 16 Philipp Oppermann 16. Dezember 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge Lehrstuhl für Softwaretechnik und Programmiersprachen Professor Dr. Michael Leuschel Grundlagen der Theoretischen Informatik - Sommersemester 2012 Übungsblatt 1: Lösungsvorschläge Disclaimer: Bei Folgendem

Mehr

Sachauseinandersetzung und Begründung der Auswahl

Sachauseinandersetzung und Begründung der Auswahl Unterrichtsentwurf zum Thema Vergleich von Morse- und ASCII-Code Lernziele Die SchülerInnen wenden die Begriffe der mittleren Codewortlänge, Präfixfreiheit und binären Kodierung in der Beschreibung des

Mehr

Signalübertragung und -verarbeitung

Signalübertragung und -verarbeitung ILehrstuhl für Informationsübertragung Schriftliche Prüfung im Fach Signalübertragung und -verarbeitung 6. Oktober 008 5Aufgaben 90 Punkte Hinweise: Beachten Sie die Hinweise zu den einzelnen Teilaufgaben.

Mehr

Grammatiken. Einführung

Grammatiken. Einführung Einführung Beispiel: Die arithmetischen Ausdrücke über der Variablen a und den Operationen + und können wie folgt definiert werden: a, a + a und a a sind arithmetische Ausdrücke Wenn A und B arithmetische

Mehr

Fakultät Wirtschaftswissenschaft

Fakultät Wirtschaftswissenschaft Fakultät Wirtschaftswissenschaft Matrikelnr. Name Vorname KLAUSUR: Entwurf und Implementierung von Informationssystemen (32561) TERMIN: 11.09.2013, 14.00 16.00 Uhr PRÜFER: Univ.-Prof. Dr. Stefan Strecker

Mehr

3 Quellencodierung. 3.1 Einleitung

3 Quellencodierung. 3.1 Einleitung Source coding is what Alice uses to save money on her telephone bills. It is usually used for data compression, in other words, to make messages shorter. John Gordon 3 Quellencodierung 3. Einleitung Im

Mehr

Vorlesung Dokumentation und Datenbanken Klausur

Vorlesung Dokumentation und Datenbanken Klausur Dr. Stefan Brass 5. Februar 2002 Institut für Informatik Universität Giessen Vorlesung Dokumentation und Datenbanken Klausur Name: Geburtsdatum: Geburtsort: (Diese Daten werden zur Ausstellung des Leistungsnachweises

Mehr

Kryptographie und Codierung für den Mathematikunterricht

Kryptographie und Codierung für den Mathematikunterricht Kryptographie und Codierung für den Mathematikunterricht Pädagogische Hochschule Karlsruhe University of Education École Supérieure de Pédagogie Institut für Mathematik und Informatik Th. Borys Was verstehst

Mehr

Angewandte Informationstechnik

Angewandte Informationstechnik Angewandte Informationstechnik im Bachelorstudiengang Angewandte Medienwissenschaft (AMW) Fehlererkennung und -korrektur Dr.-Ing. Alexander Ihlow Fakultät für Elektrotechnik und Informationstechnik FG

Mehr

Kanonische Huffman Codes (Canonical Huffman Codes)

Kanonische Huffman Codes (Canonical Huffman Codes) Projektarbeit (Canonical Huffman Codes) SS 2008 Studentin: Michaela Kieneke Dozent: Dr. Heiko Körner 0001010110110110010001110110001111100001101000110111100101111110001111000 1010101110101001011100100101011111110000011001011010100101000101010001010

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Kapitel 1: Codierungstheorie. 1.2 Quellcodierung 1.3 Fehlererkennende Codes 1.4 Fehlerkorrigierende Codes

Kapitel 1: Codierungstheorie. 1.2 Quellcodierung 1.3 Fehlererkennende Codes 1.4 Fehlerkorrigierende Codes Inhalt: 1.1 Einführung 1.2 Quellcodierung 1.3 Fehlererkennende Codes 1.4 Fehlerkorrigierende Codes 1.1 Einführung In In der der Codierungstheorie unterscheidet man man Quellcodierung und und Kanalcodierung.

Mehr

Datensicherung Richard Eier

Datensicherung Richard Eier Datensicherung Richard Eier Stand vom 25.01.01. Kapitel 5 Bewertung der Sicherungsverfahren 5.3 Entscheidungsbaum für die Fehlerbehandlung 18.01.02 14:46 Inhaltsverzeichnis 5 Bewertung der Sicherungsverfahren

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Aufgabentypen die in der Klausur vorkommen

Aufgabentypen die in der Klausur vorkommen Aufgabentypen die in der Klausur vorkommen können 1. Nennen Sie fünf wichtige Anwendungsgebiete der Computerlinguistik. 2. Für welches der drei Anwendungsgebiete Maschinelle Übersetzung, Rechtschreibkorrektur

Mehr

Kap. 2: Fail-Stop Unterschriften

Kap. 2: Fail-Stop Unterschriften Stefan Lucks 2: Fail-Stop Unterschriften 17 Digital Unterschreiben und Bezahlen Kap. 2: Fail-Stop Unterschriften Digitale Unterschriften (Synomym: Digitale Signaturen ): Fälschen mutmaßlich hart (RSA-Wurzeln,

Mehr

Übungsblatt 3: Algorithmen in Java & Grammatiken

Übungsblatt 3: Algorithmen in Java & Grammatiken Humboldt-Universität zu Berlin Grundlagen der Programmierung (Vorlesung von Prof. Bothe) Institut für Informatik WS 15/16 Übungsblatt 3: Algorithmen in Java & Grammatiken Abgabe: bis 9:00 Uhr am 30.11.2015

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr