Das große. Halbleiterlaser. Clicker-Quiz

Größe: px
Ab Seite anzeigen:

Download "Das große. Halbleiterlaser. Clicker-Quiz"

Transkript

1 Das große Halbleiterlaser Clicker-Quiz

2 Aufbau eines Lasers Was wird bei der Separate Confinement Heterostructure separat eingeschlossen? a) Elektronen und Löcher b) Ladungsträger und Photonen c) Dotieratome und Ladungsträger

3 Aufbau eines Lasers Was wird bei der Separate Confinement Heterostructure separat eingeschlossen? a) Elektronen und Löcher b) Ladungsträger und Photonen c) Dotieratome und Ladungsträger

4 Interne Quanteneffizienz Welche der folgenden Prozesse reduzieren die interne Quanteneffizienz eines Halbleiterlasers? b a c d a) Nichtstrahlende Rekombination in der Mantelschicht b) Ladungsträgerleckage c) Nichtstrahlende Rekombination im Quantenfilm d) Strahlende Rekombination im Wellenleiterkern

5 Interne Quanteneffizienz Welche der folgenden Prozesse reduzieren die interne Quanteneffizienz eines Halbleiterlasers? b a c d a) Nichtstrahlende Rekombination in der Mantelschicht b) Ladungsträgerleckage c) Nichtstrahlende Rekombination im Quantenfilm d) Strahlende Rekombination im Wellenleiterkern

6 Badewannenmodell von Coldren Oberhalb der Schwelle sind R nr und R sp konstant. Laserlicht Interne Quanteneffizienz: - Anteil der Ladungsträger, der die Badewanne erreicht und dort bleibt - Interne Effizienz für Konversion Ladungsträger-Photonen durch stimulierte Emission

7 Quanteneffizienz bei Leuchtdioden Achtung: Bei LEDs führt nichtstrahlende Rekombination zu einer Reduktion der Quanteneffizienz!!! Pegel erreicht nicht die Schwelle! LED-Licht

8 Einschluss von Ladungsträgern Wie hoch sollten die Barrieren im Leitungs- und Valenzband mindestens sein, um ein thermisch angeregtes Entkommen der Ladungsträger zu verhindern? E C E V a) Mindestens 4-5 kt b) Mindestens kt c) So groß wie die Bandlücke des Quantenfilms

9 Einschluss von Ladungsträgern Wie hoch sollten die Barrieren im Leitungs- und Valenzband mindestens sein, um ein thermisch angeregtes Entkommen der Ladungsträger zu verhindern? E C E V a) Mindestens 4-5 kt b) Mindestens kt c) So groß wie die Bandlücke des Quantenfilms

10 Dicke des Quantenfilms Warum ist der Quantenfilm im Laser eigentlich nur ein paar Nanometer dick? Wäre ein dicker Quantenfilm (50 nm) nicht viel besser? a) Ja, denn dann habe ich einen größeren Füllfaktor. b) Nein, denn dann brauche ich mehr Ladungsträger für das Erreichen der Inversion. c) Die Punkte a) und b) spielen keine Rolle, denn ein 50 nm dicker Quantenfilm ist gar kein Quantenfilm mehr!

11 Dicke des Quantenfilms Warum ist der Quantenfilm im Laser eigentlich nur ein paar Nanometer dick? Wäre ein dicker Quantenfilm (50 nm) nicht viel besser? a) Ja, denn dann habe ich einen größeren Füllfaktor. b) Nein, denn dann brauche ich mehr Ladungsträger für das Erreichen der Inversion. c) Die Punkte a) und b) spielen keine Rolle, denn ein 50 nm dicker Quantenfilm ist gar kein Quantenfilm mehr!

12 Dicke des Quantenfilms Dünner Quantenfilm Dicker Quantenfilm => Volumenmaterial kt Abstand der Energieniveaus sollte größer als kt sein!

13 Dotierprofil im Halbleiterlaser a b Welches der drei Dotierprofile würden sie im HL-Laser verwenden? c

14 Dotierung eines Halbleiterlasers Der elektrische Widerstand eines Laser sollte möglichst klein sein, was man durch eine hohe Dotierung der Mantelschichten erreichen kann. Andererseits steigen bei hoher Dotierung die Verluste durch Absorption an freien Ladungsträgern. Das folgende Dotierprofile stellt einen guten Kompomiss dar.

15 Die ursprünglich gespaltenen Facetten eines Halbleiterlasers (R 1 =R 2 =0.3) werden asymmetrisch verspiegelt und haben nun Reflektivitäten von R 1 =0.1 und R 1 =0.9. Wie ändert sich die Schwelle des Lasers? a) Sie wird größer. b) Sie bleibt gleich. c) Sie wird kleiner. Spiegelverluste

16 Spiegelverluste Die ursprünglich gespaltenen Facetten eines Halbleiterlasers (R 1 =R 2 =0.3) werden asymmetrisch verspiegelt und haben nun Reflektivitäten von R 1 =0.1 und R 2 =0.9. Wie ändert sich die Schwelle des Lasers? a) Sie wird größer. b) Sie bleibt gleich. m 1 2L log 1 R R 1 2 c) Sie wird kleiner.

17 Externe Quanteneffizienz Wie ändert sich die externe Quanteneffizienz, wenn man einen Halbleiterlaser verlängert? a) Sie wird kleiner. b) Sie wird größer. c) Sie bleibt gleich.

18 Externe Quanteneffizienz Wie ändert sich die externe Quanteneffizienz, wenn man einen Halbleiterlaser verlängert? a) Sie wird kleiner. b) Sie wird größer. m 1 2L log 1 R R 1 2 c) Sie bleibt gleich. e i m m i

19 Roter und blauer Laser Ein roter und ein blauer Halbleiterlaser haben die gleiche externe Quanteneffizienz. Bei welchem Laser ist die Steigung der Ausgangskennlinie dp/di größer? a) Beim roten Laser b) Beim blauen Laser

20 Roter und blauer Laser Ein roter und ein blauer Halbleiterlaser haben die gleiche externe Quanteneffizienz. Bei welchem Laser ist die Steigung der Ausgangskennlinie dp/di größer? a) Beim roten Laser b) Beim blauen Laser

21 Laserbedingung Welche der folgenden Bedingungen muss in einem Laser der Länge L für die Wellenlänge der Lasermoden m gelten? n ist der Brechungsindex des Lasermediums. a) L 2m m n b) L m m n c) L m 2n m

22 Laserbedingung Welche der folgenden Bedingungen muss in einem Laser der Länge L für die Wellenlänge der Lasermoden m gelten? n ist der Brechungsindex des Lasermediums. a) L 2m m n b) L m m n c) L m 2n m

23 Schwelle und Transparenz Wir betrachten die Transparenzstromdichte des Quantenfilms j tr, die Transparenzstromdichte des Lasers j tr und die Schwellenstromdichte des Lasers j th. Welche der folgenden Ungleichungen ist korrekt? a) j tr <j tr < j th b) j tr < j tr < j th c) j tr < j th < j tr d) j tr > j tr >j th

24 Schwelle und Transparenz Wir betrachten die Transparenzstromdichte des Quantenfilms j tr, die Transparenzstromdichte des Lasers j tr und die Schwellenstromdichte des Lasers j th. Welche der folgenden Ungleichungen ist korrekt? a) j tr <j tr < j th b) j tr < j tr < j th c) j tr < j th < j tr d) j tr > j tr >j th

25 Transparenzstromdichte des Q-Films j= j tr => N= N tr Quantenfilm wird transparent g g 0 log N N tr

26 Transparenzstromdichte des Lasers j= j tr => g = i Modale Verstärkung des Quantenfilms gleich interner Absorption => Laser wird transparent

27 Schwellenstromdichte des Lasers j= j th => g = i m Modale Verstärkung des Quantenfilms gleich interne Absorption plus Spiegelverluste => Laser erreicht Schwelle

28 Augerrekombination Wie hängt die Rate der Augerrekombination von der Ladungsträgerdichte ab? a) R Auger ~ N b) R Auger ~ N 2 c) R Auger ~ N 3 d) R Auger ~ N 4

29 Augerrekombination Wie hängt die Rate der Augerrekombination von der Ladungsträgerdichte ab? a) R Auger ~ N b) R Auger ~ N 2 c) R Auger ~ N 3 d) R Auger ~ N 4 Dreiteilchenprozess

30 Klein aber oho! Der Quantenfilm in einem Halbleiterlaser habe eine Länge von 1 mm, eine Breite von 100 µm und eine Dicke von 10 nm. Durch Strominjektion wird im Quantenfilm eine Ladungsträgerdichte von 2*10 18 cm -3 aufrechterhalten. Die Ladungsträger werden im Mittel nach 100 ps durch stimulierte Emission in Photonen mit einer Energie von 1eV umgewandelt. Welche Leistung strahlt der Laser ungefähr ab? a) 3 mw b) 30 mw c) 300 mw d) 3 W

31 Klein aber oho! Volumen des Quantenfilms 10-3 x 10-4 x 10-8 m 3 = m 3 Anzahl der Ladungsträger m 3 x2*10 24 m -3 = 2*10 9 Durch stimulierte Emission erzeugte Photonen 2*10 9 /10-10 s = 2 * s -1 Optische Leistung (mit 1eV=1.602*10-19 J) P = 2 * s -1 x 1.602*10-19 J 3W

32 Bestimmung interner Parameter Wie bestimmt man die interne Quanteneffizenz aus Laserkennlinien für verschiedene Längen? a) Auftragung von e gegen die Laserlänge L b) Auftragung von e gegen die inverse Laserlänge 1/L c) Auftragung von 1/ e gegen die Laserlänge L d) Auftragung von 1/ e gegen die inverse Laserlänge 1/L

33 Bestimmung interner Parameter Wie bestimmt man die interne Quanteneffizenz aus Laserkennlinien für verschiedene Längen? a) Auftragung von e gegen die Laserlänge L b) Auftragung von e gegen die inverse Laserlänge 1/L c) Auftragung von 1/ e gegen die Laserlänge L d) Auftragung von 1/ e gegen die inverse Laserlänge 1/L

34 Bestimmung interner Parameter Schnittpunkt mit y-achse liefert 1/ i 1/ e / i =1.09 Steigung: 0.48 mm Laserlänge (mm)

35 Welche der folgenden Abbildungen ist korrekt? Wall plug efficiency a b c d

36 Abbildung c Wall plug efficiency

32. Lektion. Laser. 40. Röntgenstrahlen und Laser

32. Lektion. Laser. 40. Röntgenstrahlen und Laser 32. Lektion Laser 40. Röntgenstrahlen und Laser Lernziel: Kohärentes und monochromatisches Licht kann durch stimulierte Emission erzeugt werden Begriffe Begriffe: Kohärente und inkohärente Strahlung Thermische

Mehr

Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II

Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II Photovoltaik:Direkte Umwandlung von Strahlungsenergie in elektrische Energie Anregung

Mehr

Laserzündung von Verbrennungsmotoren

Laserzündung von Verbrennungsmotoren Laserzündung von Verbrennungsmotoren Was geschah bisher? -Idee der Laserzündung -Mechanismus und Vorteile der Laserzündung -Plasmabildung und Einflussgrößen (Exkurs: Laserstrahlung) Wir unterscheiden grob:

Mehr

Versuch 42: Photovoltaik

Versuch 42: Photovoltaik Martin-Luther-Universität Halle-Wittenberg Institut für Physik Fortgeschrittenen- Praktikum Versuch 42: Photovoltaik An einer Silizium-Solarzelle sind folgende Messungen durchzuführen: 1) Messen Sie die

Mehr

Einführung in die optische Nachrichtentechnik. Halbleiterlaserstrukturen (HL-STRUK)

Einführung in die optische Nachrichtentechnik. Halbleiterlaserstrukturen (HL-STRUK) Einführung in die optische Nachrichtentechnik HL-STRUK/1 1 Quantum-well Laser Halbleiterlaserstrukturen (HL-STRUK) Im Abschnitt HL hatten wir im wesentlichen Halbleiterlaserstrukturen betrachtet mit Dicken

Mehr

31-1. R.W. Pohl, Bd. III (Optik) Mayer-Kuckuck, Atomphysik Lasertechnik, eine Einführung (Physik-Bibliothek).

31-1. R.W. Pohl, Bd. III (Optik) Mayer-Kuckuck, Atomphysik Lasertechnik, eine Einführung (Physik-Bibliothek). 31-1 MICHELSON-INTERFEROMETER Vorbereitung Michelson-Interferometer, Michelson-Experiment zur Äthertheorie und Konsequenzen, Wechselwirkung von sichtbarem Licht mit Materie (qualitativ: spontane und stimulierte

Mehr

Elektrische Leitung. Strom

Elektrische Leitung. Strom lektrische Leitung 1. Leitungsmechanismen Bändermodell 2. Ladungstransport in Festkörpern i) Temperaturabhängigkeit Leiter ii) igen- und Fremdleitung in Halbleitern iii) Stromtransport in Isolatoren iv)

Mehr

Theoretische Modellierung von experimentell ermittelten Infrarot-Spektren

Theoretische Modellierung von experimentell ermittelten Infrarot-Spektren Sitzung des AK-Thermophysik am 24./25. März 211 Theoretische Modellierung von experimentell ermittelten Infrarot-Spektren M. Manara, M. Arduini-Schuster, N. Wolf, M.H. Keller, M. Rydzek Bayerisches Zentrum

Mehr

Laserdiodengepumpter Nd:YAG-Laser und Frequenzverdopplung

Laserdiodengepumpter Nd:YAG-Laser und Frequenzverdopplung Technische Universität Darmstadt Fachbereich Physik Institut für Angewandte Physik Versuch 4.6: Laserdiodengepumpter Nd:YAG-Laser und Frequenzverdopplung Praktikum für Fortgeschrittene Von Daniel Rieländer

Mehr

VL 17. VL16. Hyperfeinstruktur. 16.1. Elektronspinresonanz 16.2. Kernspinresonanz VL 17

VL 17. VL16. Hyperfeinstruktur. 16.1. Elektronspinresonanz 16.2. Kernspinresonanz VL 17 VL16. Hyperfeinstruktur VL 17 VL 18 VL 17 16.1. Elektronspinresonanz 16.2. Kernspinresonanz 17.1. Laser (Light Amplification by Stimulated t Emission i of Radiation) Maser = Laser im Mikrowellenbereich,

Mehr

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks 1) Berechnung eines beugungslimitierten Flecks a) Berechnen Sie die Größe eines beugungslimitierten Flecks, der durch Fokussieren des Strahls eines He-Ne Lasers (633 nm) mit 2 mm Durchmesser entsteht.

Mehr

Optische Spektroskopie und Laserphysik

Optische Spektroskopie und Laserphysik Optische Spektroskopie und Laserphysik Dr. Cedrik Meier Institut für Experimentalphysik Was Euch in der nächste Stunde erwartet... Der Laser Was ist ein Laser? Geschichte des Lasers Eigenschaften von Laserlicht

Mehr

Hall-Effekt. Aufgaben

Hall-Effekt. Aufgaben Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum E8a all-effekt Aufgaben 1. Messen Sie die all-spannung und die Probenspannung einer Germaniumprobe bei konstanter Temperatur und

Mehr

6.5.1 Aufbau, Wirkungsgrad und Ankontaktierung von LED-Lampen

6.5.1 Aufbau, Wirkungsgrad und Ankontaktierung von LED-Lampen 92 6 Lichtemittierende Dioden (LEDs) 6.5 LED-Technologie 6.5.1 Aufbau, Wirkungsgrad und Ankontaktierung von LED-Lampen Kommerziell verfügbare Halbleiter-Leuchtdioden bestehen aus einem Halbleiter-Chip,

Mehr

h- Bestimmung mit LEDs

h- Bestimmung mit LEDs h- Bestimmung mit LEDs GFS im Fach Physik Nicolas Bellm 11. März - 12. März 2006 Der Inhalt dieses Dokuments steht unter der GNU-Lizenz für freie Dokumentation http://www.gnu.org/copyleft/fdl.html Inhaltsverzeichnis

Mehr

Sonnenenergie: Photovoltaik. Physik und Technologie der Solarzelle

Sonnenenergie: Photovoltaik. Physik und Technologie der Solarzelle Sonnenenergie: Photovoltaik Physik und Technologie der Solarzelle Von Prof. Dr. rer. nat. Adolf Goetzberger Dipl.-Phys. Bernhard Voß und Dr. rer. nat. Joachim Knobloch Fraunhofer-Institut für Solare Energiesysteme

Mehr

Festkörperlaser. Benedikt Konermann Kevin Thiele. Festkörperlaser Benedikt Konermann, Kevin Thiele

Festkörperlaser. Benedikt Konermann Kevin Thiele. Festkörperlaser Benedikt Konermann, Kevin Thiele Festkörperlaser Benedikt Konermann Festkörperlaser Gliederung Was heißt Laser? Was versteht man unter? t Was bedeutet stimulierte Emission? Entstehung des Laserlichtes Pumplichtquellen Welche gibt es?

Mehr

Zusammenfassung Diodenlaser

Zusammenfassung Diodenlaser Zusammenfassung Diodenlaser von Simon Stützer Stand: 12. November 2008 Grundlagen zu Halbleitern Abgrenzung von Leitern, Halbleitern, Isolatoren Halbleiter sind wie elektrische Isolatoren bei T = 0 K nichtleitend

Mehr

Photovoltaik: Strom aus der Sonne. Dr. Dietmar Borchert Fraunhofer ISE Labor- und Servicecenter Gelsenkirchen

Photovoltaik: Strom aus der Sonne. Dr. Dietmar Borchert Fraunhofer ISE Labor- und Servicecenter Gelsenkirchen Photovoltaik: Strom aus der Sonne Dr. Dietmar Borchert Fraunhofer ISE Labor- und Servicecenter Gelsenkirchen Gründe für die Notwendigkeit der Transformation der globalen Energiesysteme Schutz der natürlichen

Mehr

Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II Experimente mit Elektronen

Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II Experimente mit Elektronen 1 Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II xperimente mit lektronen 1 1.1 U dient zum rwärmen der Glühkathode in der Vakuumröhre. Durch den glühelektrischen

Mehr

Halbleitergrundlagen

Halbleitergrundlagen Halbleitergrundlagen Energie W Leiter Halbleiter Isolator Leitungsband Verbotenes Band bzw. Bandlücke VB und LB überlappen sich oder LB nur teilweise mit Elektronen gefüllt Anzahl der Elektronen im LB

Mehr

Der Freie-Elektronen-Laser an der Strahlungsquelle ELBE

Der Freie-Elektronen-Laser an der Strahlungsquelle ELBE Der Freie-Elektronen-Laser an der Strahlungsquelle ELBE Dr. Martin Sczepan Forschungszentrum Rossendorf Inhalt Laser für das Infrarot Was macht den Bereich des IR interessant? Der Infrarot-FEL im Vergleich

Mehr

Dieter Bäuerle. Laser. Grundlagen und Anwendungen in Photonik, Technik, Medizin und Kunst WILEY- VCH. WILEY-VCH Verlag GmbH & Co.

Dieter Bäuerle. Laser. Grundlagen und Anwendungen in Photonik, Technik, Medizin und Kunst WILEY- VCH. WILEY-VCH Verlag GmbH & Co. Dieter Bäuerle Laser Grundlagen und Anwendungen in Photonik, Technik, Medizin und Kunst WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA VII Inhaltsverzeichnis Vorwort V I Grundlagen 1 1 Die Natur des Lichts

Mehr

3D Laserscanning im Bezirk der WSD Süd 10 Jahre Erfahrung

3D Laserscanning im Bezirk der WSD Süd 10 Jahre Erfahrung 10 Jahre Erfahrung Übersicht: Ausrüstung, Arbeitssicherheit, Messprinzip Beispielhafte Anwendungen aus den Aufgabenbereichen: Baubestandserfassung (Brücken, Schleusen, Wehre) Beweissicherung (z.b. bei

Mehr

Standard Optics Information

Standard Optics Information INFRASIL 301, 302 1. ALLGEMEINE PRODUKTBESCHREIBUNG INFRASIL 301 und 302 sind aus natürlichem, kristallinem Rohstoff elektrisch erschmolzene Quarzgläser. Sie vereinen exzellente physikalische Eigenschaften

Mehr

ENERGIE AUS SONNENLICHT: PHYSIK DER ENERGIEKONVERSION

ENERGIE AUS SONNENLICHT: PHYSIK DER ENERGIEKONVERSION ENERGIE AUS SONNENLICHT: PHYSIK DER ENERGIEKONVERSION Dieter Neher Physik weicher Materie Institut für Physik und Astronomie Potsdam-Golm Potsdam, 23.4.2013 Weltweiter Energiebedarf Energiebedarf (weltweit)

Mehr

5.1. Wellenoptik d 2 E/dx 2 = m 0 e 0 d 2 E/dt 2 Die Welle hat eine Geschwindigkeit von 1/(m 0 e 0 ) 1/2 = 3*10 8 m/s Das ist die

5.1. Wellenoptik d 2 E/dx 2 = m 0 e 0 d 2 E/dt 2 Die Welle hat eine Geschwindigkeit von 1/(m 0 e 0 ) 1/2 = 3*10 8 m/s Das ist die 5. Optik 5.1. Wellenoptik d 2 E/dx 2 = m 0 e 0 d 2 E/dt 2 Die Welle hat eine Geschwindigkeit von 1/(m 0 e 0 ) 1/2 = 3*10 8 m/s Das ist die Lichtgeschwindigkeit! In Materie ergibt sich eine andere Geschwindikeit

Mehr

q : Ladung v : Geschwindigkeit n : Dichte der Ladungsträger

q : Ladung v : Geschwindigkeit n : Dichte der Ladungsträger D07 Fotoeffekt D07 1. ZIELE Beim Fotoeffekt werden frei bewegliche Ladungsträger durch die Absorption von Licht erzeugt. Man nutzt den Effekt, um Beleuchtungsstärken elektrisch zu messen. Im Versuch werden

Mehr

Einzelmolekülfluoreszenzspektroskopie (EFS)

Einzelmolekülfluoreszenzspektroskopie (EFS) Fortgeschrittenen Praktikum TU Dresden 29. Mai 2009 Einzelmolekülfluoreszenzspektroskopie (EFS) Klaus Steiniger, Alexander Wagner, Gruppe 850 klaus.steiniger@physik.tu-dresden.de, alexander.wagner@physik.tu-dresden.de

Mehr

Moderne Themen der Physik. Photonik. Dr. Axel Heuer. Exp. Quantenphysik, Universität Potsdam, Germany

Moderne Themen der Physik. Photonik. Dr. Axel Heuer. Exp. Quantenphysik, Universität Potsdam, Germany Moderne Themen der Physik Photonik Dr. Axel Heuer Exp. Quantenphysik, Universität Potsdam, Germany Übersicht 1. Historisches und Grundlagen 2. Hochleistungslaser 3. Diodenlaser 4. Einzelne Photonen 2 LASER

Mehr

Webinar: Thermische Simulation hilft bei der Auswahl des richtigen Wärmemanagementkonzeptes Würth Elektronik Circuit Board Technology

Webinar: Thermische Simulation hilft bei der Auswahl des richtigen Wärmemanagementkonzeptes Würth Elektronik Circuit Board Technology Webinar: Thermische Simulation hilft bei der Auswahl des richtigen Wärmemanagementkonzeptes Würth Elektronik Circuit Board Technology www.we-online.de/waermemanagement Seite 1 06.11.2014 Grundlagen Treiber

Mehr

CO 2 -Emissionen CO 2 -Emissionen CO 2 -Emissionen 1 10 2 3 4 5 6 7 8 9 A B 10 11 12 13 14 15 16 17 18 19 [Nm] 370 350 330 310 290 270 250 230 210 190 170 150 [kw] [PS] 110 150 100 136 90 122 80 109 70

Mehr

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis Physikalisches Anfängerpraktikum Gruppe Mo-6 Wintersemester 2005/06 Julian Merkert (229929) Versuch: P-40 Geometrische Optik - Vorbereitung - Vorbemerkung Die Wellennatur des Lichts ist bei den folgenden

Mehr

Glühlampe. Laser. Emitted Laser Beam. Laserbeam in Resonator R = 100% R = 98 %

Glühlampe. Laser. Emitted Laser Beam. Laserbeam in Resonator R = 100% R = 98 % Glühlampe Laser Laserbeam in Resonator R = 100% R = 98 % Emitted Laser Beam Worin unterscheidet sich Laserlicht von Licht einer konventionellen Lichtquelle? Es sind im wesentlichen drei Unterschiede: 1.

Mehr

Laser und Lichtgeschwindigkeit

Laser und Lichtgeschwindigkeit 1 Laser und Lichtgeschwindigkeit Vorbereitung: Brechungsgesetz, Totalreflexion, Lichtausbreitung in Medien (z.b. in Glasfasern), Erzeugung und Eigenschaften von Laserlicht, Kohärenz, Funktionsweise eines

Mehr

...vorab eine Einladung... Noch ein paar Bemerkungen zur Temperaturabhängigkeit des Halbleiters...

...vorab eine Einladung... Noch ein paar Bemerkungen zur Temperaturabhängigkeit des Halbleiters... ...vorab eine Einladung... Noch ein paar Bemerkungen zur Temperaturabhängigkeit des Halbleiters... 1 Temperaturerhöhung Je größer die Gitterkonstante, desto kleiner die Bandlücke. Temperaturerhöhung führt

Mehr

Probeklausur Sommersemester 2000

Probeklausur Sommersemester 2000 Probeklausur Sommersemester 2000 1. in Mensch, der 50 kg wiegt, schwimmt im Freibad. Wie viel Wasser verdrängt er? 500 l 7,5 m³ 75 l 150 l 50 l 2. urch ein lutgefäß der Länge 1 cm fließt bei einer ruckdifferenz

Mehr

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Solarzellen INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Abb. 1: Aufbau einer Silizium-Solarzelle 1 Warum geben

Mehr

2 3 4 5 6 7 8 9 10 11 [Nm] 350 330 310 290 270 250 230 210 190 170 150 130 110 90 70 [Nm] 400 380 360 340 320 130 PS 110 PS 85 PS 50 1000 1500 2000 2500 3000 3500 4000 RPM [kw] [PS] 100 136 0 4500 90 122

Mehr

Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Sandra Diefenbach Musterlösung zu Blatt 2

Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Sandra Diefenbach Musterlösung zu Blatt 2 Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Sandra Diefenbach Musterlösung zu Blatt 2 Aufgabe 3: Hagen- Rubens- Gesetz Das Hagen- Rubens Gesetz beschreibt das Reflektionsvermögen

Mehr

= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden

= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden 2. Halbleiter-Bauelemente 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden Zu 2.1: Fermi-Energie Fermi-Energie E F : das am absoluten Nullpunkt oberste besetzte

Mehr

Vortrag 2: Kohärenz VON JANIK UND JONAS

Vortrag 2: Kohärenz VON JANIK UND JONAS Vortrag 2: Kohärenz VON JANIK UND JONAS Vortrag 2: Kohärenz Inhalt: Kohärenz im Allgemeinen Kohärenzlänge Kohärenzbedingungen Zeitliche Kohärenz Räumliche Kohärenz MICHELSON Interferometer zum Nachweis

Mehr

JENOPTIK. Geschwindigkeitsmessungen mit Lasertechnologie. Referent: Wolfgang Seidel

JENOPTIK. Geschwindigkeitsmessungen mit Lasertechnologie. Referent: Wolfgang Seidel JENOPTIK Geschwindigkeitsmessungen mit Lasertechnologie Referent: Wolfgang Seidel Jenoptik-Konzern Überblick Konzernstruktur Corporate Center Laser & Materialbearbeitung Optische Systeme Industrielle Messtechnik

Mehr

LEDs und Laserdioden: die Lichtrevolution. Stephan Winnerl Abteilung Halbleiterspektroskopie, FZR

LEDs und Laserdioden: die Lichtrevolution. Stephan Winnerl Abteilung Halbleiterspektroskopie, FZR LEDs und Laserdioden: die Lichtrevolution Stephan Winnerl Abteilung Halbleiterspektroskopie, FZR Wie erhält man verschiedenfarbige LEDs? Warum ist die Farbe blau so wichtig? Wo werden HL-Laser Im Alltag

Mehr

Laser und Optik in der Stereolithographie

Laser und Optik in der Stereolithographie Laser und Optik in der Stereolithographie Als Charles W. Hull, Präsident der 3D Systems Inc., im Jahre 1982 die Idee zur Stereolithographie hatte, ahnte noch niemand, daß damit die Produktentwicklung revolutioniert

Mehr

Gepulste Laser und ihre Anwendungen. Alexander Pönopp

Gepulste Laser und ihre Anwendungen. Alexander Pönopp Proseminar SS 2014 Gepulste Laser und ihre Anwendungen Alexander Pönopp Lasermaterialbearbeitung - wofür Bearbeitung von Material, was schwer zu bearbeiten ist (z.b. Metall) Modifikation von Material -

Mehr

Optische Eigenschaften metallischer und dielektrischer Dünnfilme bei der Ionenstrahlbeschichtung

Optische Eigenschaften metallischer und dielektrischer Dünnfilme bei der Ionenstrahlbeschichtung Optische Eigenschaften metallischer und dielektrischer Dünnfilme bei der Ionenstrahlbeschichtung C. Bundesmann, I.-M. Eichentopf, S. Mändl, H. Neumann, Permoserstraße15, Leipzig, D-04318, Germany 1 Inhalt

Mehr

Elektrische Charakterisierung von Solarzellen mittels Strom-Spannungsmessungen

Elektrische Charakterisierung von Solarzellen mittels Strom-Spannungsmessungen Technische Universität Chemnitz Institut für Physik Physikalisches Praktikum: Computergestütztes Messen Elektrische Charakterisierung von Solarzellen mittels Strom-Spannungsmessungen Ort: Neues Physikgebäude,

Mehr

Funktionsweise des RUBIN - LASER. Light Amplification by Stimulated Emission of Radiation. von Katja Wollny und Nicole Hüser

Funktionsweise des RUBIN - LASER. Light Amplification by Stimulated Emission of Radiation. von Katja Wollny und Nicole Hüser Funktionsweise des RUBIN - LASER Light Amplification by Stimulated Emission of Radiation von Katja Wollny und Nicole Hüser Inhaltsverzeichnis - Entstehung - Das Experiment - Laser - Übersicht - Festkörper

Mehr

H2 1862 mm. H1 1861 mm

H2 1862 mm. H1 1861 mm 1747 mm 4157 mm H2 1862 mm H1 1861 mm L1 4418 mm L2 4818 mm H2 2280-2389 mm H1 1922-2020 mm L1 4972 mm L2 5339 mm H3 2670-2789 mm H2 2477-2550 mm L2 5531 mm L3 5981 mm L4 6704 mm H1 2176-2219 mm L1 5205

Mehr

Serie 6: Lichtdetektoren 03./04.07.2014

Serie 6: Lichtdetektoren 03./04.07.2014 Elektronikpraktikum - SS 2014 H. Merkel, D. Becker, S. Bleser, M. Steinen Gebäude 02-413 (Anfängerpraktikum) 1. Stock, Raum 430 Serie 6: Lichtdetektoren 03./04.07.2014 I. Ziel der Versuche Verständnis

Mehr

Nanostrukturierte thermoelektrische Materialien

Nanostrukturierte thermoelektrische Materialien Projektverbund Umweltverträgliche Anwendungen der Nanotechnologie Zwischenbilanz und Fachtagung, 27. Februar 2015 Wissenschaftszentrum, Straubing Nanostrukturierte thermoelektrische Materialien Prof. Dr.

Mehr

Mit Hilfe von einem Glasfaserkabel kann der Laserstrahl dorthin geleitet werden, wo er benötigt wird.

Mit Hilfe von einem Glasfaserkabel kann der Laserstrahl dorthin geleitet werden, wo er benötigt wird. SPARKLING SCIENCE PROJEKT FEMTOLAS MATERIALBEARBEITUNG MIT LASER Schuljahr 2014/15: SchülerInnen des Gymnasiums Maria Regina, Hofzeile 22, 1190 Wien, beim IFT, Institut für Fertigungstechnik und Hochleistungslasertechnik

Mehr

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also Aufgabe 1 Ein reines Material habe sc-struktur und eine Dichte von 10 g/cm ; in (1,1,1) Richtung messen Sie eine Schallgeschwindigkeit (für große Wellenlängen) von 000 m/s. Außerdem messen Sie bei nicht

Mehr

Femtosekundenspektroskopie Mit ultrakurzen Laserpulsen den angeregten Zuständen auf der Spur

Femtosekundenspektroskopie Mit ultrakurzen Laserpulsen den angeregten Zuständen auf der Spur Festkörperforschung/Materialwissenschaften Femtosekundenspektroskopie Mit ultrakurzen Laserpulsen den angeregten Zuständen auf der Spur Laquai, Frédéric; Baluschev, Stanislav; Max-Planck-Institut für Polymerforschung,

Mehr

AX-7600. 1. Sicherheitsinformationen

AX-7600. 1. Sicherheitsinformationen AX-7600 1. Sicherheitsinformationen AX-7600 ist ein Laserprodukt Klasse II und entspricht der Sicherheitsnorm EN60825-1. Das Nichtbeachten der folgenden Sicherheitsanweisungen kann Körperverletzungen zur

Mehr

Photonik. Physikalisch-technische Grundlagen der Lichtquellen, der Optik und des Lasers von Prof. Dr. Rainer Dohlus. Oldenbourg Verlag München

Photonik. Physikalisch-technische Grundlagen der Lichtquellen, der Optik und des Lasers von Prof. Dr. Rainer Dohlus. Oldenbourg Verlag München Photonik Physikalisch-technische Grundlagen der Lichtquellen, der Optik und des Lasers von Prof. Dr. Rainer Dohlus Oldenbourg Verlag München Vorwort VII 1 Grundlagen der Lichtentstehung 1 1.1 Einführung

Mehr

Herzlich willkommen zum Sommerfest des PING e.v.

Herzlich willkommen zum Sommerfest des PING e.v. Herzlich willkommen zum Sommerfest des PING e.v. Elektronik Basteltag bei PING! Leuchtdioden (LED) Taschenlampe Schritt-für-Schritt Aufbau Hilfestellung durch die anwesenden PINGels Taschenlampe darfst

Mehr

Laser MEDIZINISCHE LASERANWENDUNGEN. 4. Unterrichtseinheit. Akronym: LASER = Light Amplification by Stimulated Emission of Radiation.

Laser MEDIZINISCHE LASERANWENDUNGEN. 4. Unterrichtseinheit. Akronym: LASER = Light Amplification by Stimulated Emission of Radiation. # 96 MEDIZINISCHE LASERANWENDUNGEN 4. Unterrichtseinheit Laser Akronym: LASER = Light Amplification by Stimulated Emission of Radiation vorher: nachher: E 1 E 1 E 0 E 0 E 1 E 1 E 0 E 0 E 1 E 1 E 0 E 0

Mehr

Photonische Materialien 13. Vorlesung

Photonische Materialien 13. Vorlesung Photonische Materialien 13. Vorlesung Einführung in quantenmechanische Aspekte und experimentelle Verfahren (1) Lumineszenz-Label (1) Supramolekulare und biologische Systeme (1) Halbleiter Nanopartikel

Mehr

Opt_grundlagen.doc h. völz 1/11 6.11.0311

Opt_grundlagen.doc h. völz 1/11 6.11.0311 Optische Speicherung Inhalte: Mittels Lichtsignale: Fotografie, Kinofilm, Mikrofilm, Videospeicherung Mittels opt. lichttechnischer Methoden: Lithographie, Buchdruck, Barcode, CD und Videodisc Eigenschaften

Mehr

Kunststoffoptiken für CPV Anwendungen

Kunststoffoptiken für CPV Anwendungen Kunststoffoptiken für CPV Anwendungen Thomas Luce Eschenbach Optik GmbH thomas.luce@eschenbach optik.de Spectaris Forum München, Intersolar 2011 Einleitung Optik Spritzguß Primäroptiken Thermoplastische

Mehr

Versuch EL-V5: Charakterisierung von Laserdioden

Versuch EL-V5: Charakterisierung von Laserdioden Versuch EL-V5: Charakterisierung von Laserdioden Inhaltsverzeichnis 1 Hinweise zum Arbeiten mit Lasern 2 1.1 Allgemeine Hinweise............................... 2 1.2 Hinweise zum verwendeten Laser........................

Mehr

Versuchsvorbereitung P1-51

Versuchsvorbereitung P1-51 Versuchsvorbereitung P1-51 Tobias Volkenandt 22. Januar 2006 Im Versuch zu TRANSISTOREN soll weniger die Physik dieses Bauteils erläutern, sondern eher Einblicke in die Anwendung von Transistoren bieten.

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E3 WS 20/2 Übungen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung 9.0.2,

Mehr

Physikalische Grundlagen der Röntgentechnik und Sonographie Bildaufnahme Röntgen

Physikalische Grundlagen der Röntgentechnik und Sonographie Bildaufnahme Röntgen Physikalische Grundlagen der Röntgentechnik und Sonographie Bildaufnahme Röntgen PD Dr. Frank Zöllner Computer Assisted Clinical Medicine Faculty of Medicine Mannheim University of Heidelberg Theodor-Kutzer-Ufer

Mehr

2 Diode. 2.1 Formelsammlung. Diffusionsspannung Φ i = kt q ln N AN D n 2 i (2.1) Überschussladungsträgerdichten an den Rändern der Raumladungszone

2 Diode. 2.1 Formelsammlung. Diffusionsspannung Φ i = kt q ln N AN D n 2 i (2.1) Überschussladungsträgerdichten an den Rändern der Raumladungszone 2 Diode 2.1 Formelsammlung Diffusionsspannung Φ i = kt q ln N AN D n 2 i (2.1) Überschussladungsträgerdichten an den Rändern der Raumladungszone ( q ) ] p n( n )=p n0 [ep kt U pn 1 bzw. (2.2) ( q ) ] n

Mehr

Stefan Seeger, Klaus Ellmer. HMI-Berlin Abteilung Solare Energetik Glienicker Str. 100 14109 Berlin. Seeger@hmi.de

Stefan Seeger, Klaus Ellmer. HMI-Berlin Abteilung Solare Energetik Glienicker Str. 100 14109 Berlin. Seeger@hmi.de Präparation von CuInS Schichten durch reaktives Magnetronsputtern: Einfluss der Teilchenenergie auf Morphologie und elektrische und optische Eigenschaften Stefan Seeger, Klaus Ellmer HMIBerlin Abteilung

Mehr

Lasertechnik Praktikum. Nd:YAG Laser

Lasertechnik Praktikum. Nd:YAG Laser Lasertechnik Praktikum Nd:YAG Laser SS 2013 Gruppe B1 Arthur Halama Xiaomei Xu 1. Theorie 2. Messung und Auswertung 2.1 Justierung und Beobachtung des Pulssignals am Oszilloskop 2.2 Einfluss der Verstärkerspannung

Mehr

Gruppe: 1/8 Versuch: 4 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer:

Gruppe: 1/8 Versuch: 4 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer: Gruppe: 1/8 Versuch: 4 PRAKTIKUM MESSTECHNIK VERSUCH 5 Operationsverstärker Versuchsdatum: 22.11.2005 Teilnehmer: 1. Vorbereitung 1.1. Geräte zum Versuchsaufbau 1.1.1 Lawinendiode 1.1.2 Photomultiplier

Mehr

Optische Spektroskopie an Nanostrukturen

Optische Spektroskopie an Nanostrukturen Kapitel 2 Optische Spektroskopie an Nanostrukturen In dieser Arbeit werden Photolumineszenz- und Raman-Spektroskopie zur Untersuchung von Halbleiter-Nanostrukturen eingesetzt. Diese Methoden bieten gegenüber

Mehr

3. Cluster und Nanopartikel. Cluster: Anzahl von Atomen und Struktur ist wohldefiniert Nanopartikel: Anzahl von Atomen nicht genau bestimmt

3. Cluster und Nanopartikel. Cluster: Anzahl von Atomen und Struktur ist wohldefiniert Nanopartikel: Anzahl von Atomen nicht genau bestimmt 3. Cluster und Nanopartikel Cluster: Anzahl von Atomen und Struktur ist wohldefiniert Nanopartikel: Anzahl von Atomen nicht genau bestimmt 1 Struktur ist grössenabhängig Bsp.: Au-Cluster Erst große Cluster

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #21 26/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Brechkraft Brechkraft D ist das Charakteristikum einer Linse D = 1 f! Einheit: Beispiel:! [ D]

Mehr

Die Revolution des Lichtes

Die Revolution des Lichtes Jakob WALOWSKI Universität Göttingen Tōhoku Universität, Sendai Einleitung Der Laser wird zusammen mit dem Transistor zu den grundlegenden technischen Erfindungen der zweiten Hälfte des 20. Jahrhunderts

Mehr

VIOSIL SQ FUSED SILICA (SYNTHETISCHES QUARZGLAS)

VIOSIL SQ FUSED SILICA (SYNTHETISCHES QUARZGLAS) VIOSIL SQ FUSED SILICA (SYNTHETISCHES QUARZGLAS) Beschreibung VIOSIL SQ wird von ShinEtsu in Japan hergestellt. Es ist ein sehr klares (transparentes) und reines synthetisches Quarzglas. Es besitzt, da

Mehr

Laser. Funktionsprinzip und Anwendungen in der Medizintechnik. Nils Nichelmann

Laser. Funktionsprinzip und Anwendungen in der Medizintechnik. Nils Nichelmann Laser Funktionsprinzip und Anwendungen in der Medizintechnik Nils Nichelmann Gliederung Optische Strahlungsquellen (physikalische Grundlagen) Technische Realisierung eines Lasers Anwendungen in der Medizin

Mehr

Lasersicherheitsbelehrung. Universität Hamburg 2009/10

Lasersicherheitsbelehrung. Universität Hamburg 2009/10 Lasersicherheitsbelehrung Universität Hamburg 2009/10 Übersicht 1. Gefahr von Laserstrahlung für Auge und Haut 2. Einteilung der Laser nach Klassen 3. Selbstständige Berechnung der Laserschutzbrillenstufe

Mehr

Photovoltaik - Neuentwicklungen der letzten Jahre

Photovoltaik - Neuentwicklungen der letzten Jahre Photovoltaik - Neuentwicklungen der letzten Jahre Rolf Brendel Bayerisches Zentrum für Angewandte Energieforschung www.zae-bayern.de Abteilung Thermosensorik und Photovoltaik, Erlangen Übersicht Neue Sichtweise

Mehr

Atomic Force Microscopy

Atomic Force Microscopy 1 Gruppe Nummer 103 29.4.2009 Peter Jaschke Gerd Meisl Atomic Force Microscopy Inhaltsverzeichnis 1. Einleitung... 2 2. Theorie... 2 3. Ergebnisse und Fazit... 4 2 1. Einleitung Die Atomic Force Microscopy

Mehr

Serie 55 - Industrie-Relais 7-10 A

Serie 55 - Industrie-Relais 7-10 A Serie 55 - Industrie-Relais 7-10 A Miniatur-Industrie-Relais für Leiterplatte oder steckbar Spulen für AC und DC Relaisschutzart: RT III (waschdicht) bei 55.12, 55.13, 55.14 erhältlich Kompatibel mit Zeitrelais

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 7. Übungsblatt - 6.Dezember 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Optische

Mehr

Wasseraufbereitung mit UV LEDs. Seminarvortrag SS 2008 Katrin Sedlmeier Betreuer: Joachim Stellmach

Wasseraufbereitung mit UV LEDs. Seminarvortrag SS 2008 Katrin Sedlmeier Betreuer: Joachim Stellmach Wasseraufbereitung mit UV LEDs Seminarvortrag SS 2008 Katrin Sedlmeier Betreuer: Joachim Stellmach Inhaltsverzeichnis 1 Motivation 2 2 Wasserdesinfektion mit UV Strahlung 2 2.1 Wieso UV Strahlung?........................

Mehr

Thema 1: Prozessoptimierung nitridbasierter Sensoren. Problem: Parasitäre Strompfade in der AlGaN-Schicht Ansatz: Ansatz der Bachelorarbeit:

Thema 1: Prozessoptimierung nitridbasierter Sensoren. Problem: Parasitäre Strompfade in der AlGaN-Schicht Ansatz: Ansatz der Bachelorarbeit: Thema 1: Prozessoptimierung nitridbasierter Sensoren Konventionelles Design: Projekt: Herstellung sensitiver Gas- und Flüssigkeitsdetektoren auf GaN-Basis. Problem: Parasitäre Strompfade in der AlGaN-Schicht

Mehr

E14a Halbleiterdioden

E14a Halbleiterdioden Fakultät für Physik und Geowissenschaften Physikalisches Grundraktikum E14a Halbleiterdioden Aufgaben 1. Nehmen Sie die Strom-Sannungs-Kennlinie einer Si-iode, einer Zener-iode (Z-iode) und einer Leuchtdiode

Mehr

Kolloquiumsarbeit 2006/2007 Der Nanolaser Charlotte Thie

Kolloquiumsarbeit 2006/2007 Der Nanolaser Charlotte Thie Inhalt Kapitel Seite Vorwort 3 1. Von der Entstehung des Lichtes 5 1.1 Die Quantelung der Energie 5 1.2 Das Bohr- Sommerfeldsche Atommodell 7 1.3 Absorption, spontane und induzierte Emission 10 1.4 Diskrete

Mehr

Der Laser. Einleitung. Physikalische Grundlagen

Der Laser. Einleitung. Physikalische Grundlagen Der Laser Einleitung Das Prinzip der Lichtverstärkung durch stimulierte Emission von Strahlung (LASER) ist schon sehr lange bekannt. Als Erster beschäftigte sich Albert Einstein mit der theoretischen Möglichkeit

Mehr

Überblick. über neue Bildempfängersysteme vom Film zum Festkörperdetektor. Karl-Friedrich Kamm Philips Medizin Systeme, Hamburg

Überblick. über neue Bildempfängersysteme vom Film zum Festkörperdetektor. Karl-Friedrich Kamm Philips Medizin Systeme, Hamburg Überblick über neue Bildempfängersysteme vom Film zum Festkörperdetektor Karl-Friedrich Kamm Philips Medizin Systeme, Hamburg Technologie Digitaler Detektoren 1977 DSA 1981 1. CR 1992 1. DR (Se) 1998 Flach-

Mehr

Physikalisches Praktikum I. Optische Abbildung mit Linsen

Physikalisches Praktikum I. Optische Abbildung mit Linsen Fachbereich Physik Physikalisches Praktikum I Name: Optische Abbildung mit Linsen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: ruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Photovoltaik. Herstellung und innovative Konzepte. Von Sebastian Illing und Nora Igel

Photovoltaik. Herstellung und innovative Konzepte. Von Sebastian Illing und Nora Igel Photovoltaik Herstellung und innovative Konzepte Von Sebastian Illing und Nora Igel Photovoltaik - Herstellung und innovative Konzepte Inhaltsübersicht 1. Herstellung 1.1 Siliziumproduktion 1.2 Zellenproduktion

Mehr

5 Ionenlaser... 83 5.1 Laser für kurze Wellenlängen... 83 5.2 Edelgasionenlaser... 85 5.3 Metalldampfionenlaser (Cd,Se,Cu)... 90 Aufgaben...

5 Ionenlaser... 83 5.1 Laser für kurze Wellenlängen... 83 5.2 Edelgasionenlaser... 85 5.3 Metalldampfionenlaser (Cd,Se,Cu)... 90 Aufgaben... 1 Licht, Atome, Moleküle, Festkörper...................... 1 1.1 Eigenschaften von Licht................................. 1 1.2 Atome: Elektronenbahnen, Energieniveaus................ 7 1.3 Atome mit mehreren

Mehr

FORD RANGER Ranger_2013.5_Cover_V2.indd 1 12/02/2013 12:59

FORD RANGER Ranger_2013.5_Cover_V2.indd 1 12/02/2013 12:59 FORD RANGER 1 2 3 4 5 1.8 m3 6 7 8 9 10 11 3 7 8 5 1 2 4 6 9 10 12 13 3500kg 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 [Nm] 475 450 425 400 375 350 325 [kw] [PS] 180 245 165 224 150 204 135 184

Mehr

LED-UV. umweltfreundlich zum trockenen Bogen. GraphicTeam GmbH

LED-UV. umweltfreundlich zum trockenen Bogen. GraphicTeam GmbH LED-UV umweltfreundlich zum trockenen Bogen Traditioneller UV-Strahler, auch für H-UV und LE-UV eine durchgehende Röhre für die maximale Strahlungsbreite Zündvorgang und Erreichen der Betriebstemperatur

Mehr

Zwei-Niveau-System. Laser: light amplification by stimulated emission of radiation. W ind.absorption = n 1 ρ B. Laserbox. W ind.

Zwei-Niveau-System. Laser: light amplification by stimulated emission of radiation. W ind.absorption = n 1 ρ B. Laserbox. W ind. Laser: light amplification by stimulated emission of radiation W ind.absorption = n 1 ρ B Laserbox 8πhν = B c A W ind.emission = n ρ B Besetzungs-Inversion notwendig Zwei-Niveau-System 1,0 Besetzung des

Mehr

Versuch 21: Der Transistor

Versuch 21: Der Transistor Versuch 21: Der Transistor Protokoll Namen: Christina Thiede Datum der Durchführung: 18.10.2004 Martin Creutziger Assistent: Alexander Weismann Gruppe: A6 testiert: 1 Einleitung Neben dem Vermitteln eines

Mehr

Computer Graphik I (3D) Dateneingabe

Computer Graphik I (3D) Dateneingabe Computer Graphik I (3D) Dateneingabe 1 3D Graphik- Pipeline Anwendung 3D Dateneingabe Repräsenta

Mehr

Gibt es myonische Atome?

Gibt es myonische Atome? Minitest 7 Das Myon it ist ein Elementarteilchen, t das dem Elektron ähnelt, jedoch jd eine deutlich höhere Masse (105,6 MeV/c 2 statt 0,511 MeV/c 2 ) aufweist. Wie das Elektron ist es mit einer Elementarladung

Mehr

Halbleiterlaser [3] Sze, S. M.: Physics of Semiconductor Devices, 2 nd Edition, New York, Wiley, 1981. Chapters 12.4, 12.5

Halbleiterlaser [3] Sze, S. M.: Physics of Semiconductor Devices, 2 nd Edition, New York, Wiley, 1981. Chapters 12.4, 12.5 8 Nd:YAG - Laser 1. Teil: cw-laser Vorausgesetzte Kenntnisse Emissions- und Absorptionseffekte, optisches Pumpen, optische Resonatoren, Stabilitätsbedingung, Verhalten von Lasern im stationären Betrieb

Mehr

FVS Workshop 2000. TCO in Solarmodulen

FVS Workshop 2000. TCO in Solarmodulen 60 TCO-Schichten in CIGS- Dünnschichtsolarmodulen Michael Powalla*, Mike Oertel und Richard Menner Zentrum für Sonnenenergie und Wasserstoff-Forschung michael.powalla@zsw-bw.de 61 Die CIGS-Modul-Technologie

Mehr

Die Physik der Solarzelle

Die Physik der Solarzelle Die Physik der Solarzelle Bedingungen für die direkte Umwandlung von Strahlung in elektrische Energie: 1) Die Strahlung muß eingefangen werden (Absorption) 2) Die Lichtabsorption muß zur Anregung beweglicher

Mehr

Markieren, Gravieren und Beschriften mit Gravograph YAG Laser Technik

Markieren, Gravieren und Beschriften mit Gravograph YAG Laser Technik Markieren, Gravieren und Beschriften mit Gravograph YAG Laser Technik Dauerhaft Markieren, Gravieren und Beschriften sind Aufgaben, die in sämtlichen Bereichen der Produktion heute zu finden sind. Selbst

Mehr