Klassifikation linear separierbarer Probleme

Größe: px
Ab Seite anzeigen:

Download "Klassifikation linear separierbarer Probleme"

Transkript

1 Klassifikation linear separierbarer Probleme Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme / 26

2 Gliederung Neuronale Netze und Lineare Algebra 2 Formulierung des Lernproblems 3 Ein erstes Lernverfahren 4 Das Verfahren ist praktikabel (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme 2 / 26

3 Parameterfreie Klassifikation Eine naheliegende Idee ist, Klassen im mehrdimensionalen Raum durch Geraden abzugrenzen: Im Bild links hat die Gerade dem Term y = f(x) = a x + b Für einen Punkt (x p, y p ) gilt dann die Regel: (x p, y p ) in Klasse blau y p a x p + t Mehr Geraden kommen später dran. (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme 3 / 26

4 Verallgemeinerung der Geradengleichung Hinter der Geradengleichung steckt eine allgemeinere Form: ( ) ( ) a xp y p a x p + t a x p + y p t t Schematisch (und noch allgemeiner): x p y p g f f(g(x p, y p )) y p n Eingänge x i und Ausgang y = f(x,..., x n ) g ist die Integrierfunktion (g(x,.., x n ) = f ist die Ausgabefunktion. i n w i x i ). (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme 4 / 26

5 Perzeptronen Modell für einfache 2-Klassen-Probleme Das mathematische Modell eines einfachen Perzeptrons ist gegeben durch einen Gewichtsvektor (w,..., w n ) und einen Eingabevektor (x,..., x n ), das Skalarprodukt aus dem Gewichts- und einem Eingabevektor und einem Schwellwert θ. Das Perzeptron klassifiziert nach der Regel: Klassifikationsregel eines Perzeptrons, falls f(g(x,..., x n, w,..., w n ), θ) = 0, sonst Die Aktivierungsfunktion n -dimensionale Ebene. i n i n w i x i > θ. w i x i = θ definiert eine (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme 5 / 26

6 Perzeptronen Modell für einfache 2-Klassen-Probleme Beispiel: x + x 2 hat die folgende Grenzgerade und separiert den R 2 in Rot und Blau: (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme 6 / 26

7 Perzeptronen Das abstrakte Verarbeitungsmodell Inspiration aus der Biologie: Weiterleitung von Aktivierungen in Nervenfasern über Synapsen. Modell: Netz wird durch 3 Matrizen symbolisiert: Verbindungsmatrix, Schwellwertmatrix und Anregungsmatrix Rechnung erfolgt durch Neuberechnen der Anregungsmatrix (schlagartig, ebenenweise, usw.) 2. Modell: Neuronen sind aktive Berechnungseinheiten, die lokal auf Eingaben reagieren und Ausgaben produzieren. Asynchrone Arbeitsweise gut vorstellbar (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme 7 / 26

8 Skalarprodukt und Perzeptron Für einen Gewichtsvektor w = (w, w 2,..., w n ) und einen Eingabevektor x = (x, x 2,..., x n ) entspricht die Ausgabefunktion f(w, x) = w i x i i n dem Skalarprodukt von w und x: w w x = w 2... w n x x 2... x n f(w, x) = θ beschreibt die Trennebene, die das Perzeptron konstruiert. Für die Trennebene gilt: x n = w i x i θ w n i n (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme 8 / 26

9 Skalarprodukt und Perzeptron Mit x = λ, x 2 = λ 2,... sind dies die Ortsvektoren λ λ 2 x =. w n [θ λ w λ 2 w 2... λ n w n ] Diese liegen in der Ebene, die u.a. diese Parameterdarstellung besitzt: x(λ, λ 2,..., λ n ) =. θ w n +λ. w w n + λ 2. w 2 w n +... } {{ } φ(λ,λ 2,...,λ n ) (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme 9 / 26

10 Skalarprodukt und Perzeptron (2) Die Vektoren φ(λ, λ 2,..., λ n ) liegen in der definierten Ebene. Steht der Gewichtsvektor w wirklich senkrecht zu ihnen? Es genügt zu zeigen, dass w zu einem durch φ(λ, λ 2,..., λ n ) beschriebenen Vektor senkrecht steht. Sei λ = λ 2 = = λ n = w n : w ṇ ˆφ = φ(w n, w n,..., w n ) =. w w 2 w n Nun ist aber ( n ) w ˆφ = w w n + w 2 w n w n w n + w n w i = 0 w n i= und somit die beiden Vektoren senkrecht zueinander (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme 0 / 26

11 Skalarprodukt und Perzeptron (3) Der Richtungsvektor ist also zum Gewichtsvektor senkrecht. w = ( ) ( ) ( ) = 0 ( /) (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme / 26

12 Geometrische Interpretation des Skalarprodukts Zwischen dem Skalarprodukt von w, und einer Eingabe x gilt folgender Zusammenhang zum Winkel zwischen den beiden Vektoren: w x = cos(w, x) w x Daraus folgt für den Winkel zwischen w und x: stumpfer Winkel: w x < 0 x liegt unter der Trennebene. Das Perzeptron feuert nicht. spitzer Winkel: w x > 0 x liegt über der Trennebene. Das Perzeptron feuert. (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme 2 / 26

13 Aktivierung eines Perzeptrons Überschreitung eines allgemeinen Schwellwerts θ: x i w i = cos(w, x) w x θ i n w und x spielen für den Winkel keine Rolle und werden in der Praxis meist durch Normierung der Vektoren auf gesetzt. Bei festem θ feuert das Neuron also nur, wenn der Winkel zwischen w und x nicht zu groß ist. Magenta und Grün sind die Aktivierungsgrenzen zu θ = 2 bzw. θ = 0. 2 D.h. der Abstand von x zur Trenngeraden darf nicht zu groß sein. (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme 3 / 26

14 Das Lernproblem für Perzeptronen Gegeben: eine gelabelte Stichprobe: Punkte P, die in positive Klasse sollen (grün) 2 Punkte N, die in negative Klasse sollen (rot) x := (x,..., x n ) Dabei gilt für alle x P : w i x i θ i n Gesucht: n Gewichte w i 2 Schwellwert θ (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme 4 / 26

15 Suche nach einer analytischen Lösung Ausgangssituation (willkürlich festgelegt): w =, w 2 =, θ = 0. Für den grünen Punkt (2, ) gilt: ( ) ( 2 ) = 3 > 0 Aber für den roten Punkt (3, ) gilt: ( ) ( ) 3 = 4 > 0 Das ist aber eine Fehlklassifikation. Der Gewichtsvektor muss also nach links gedreht werden. (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme 5 / 26

16 Suche nach einer analytischen Lösung Es sind also zwei Bedingungen gleichzeitig zu erfüllen: ( ) ( ) ( ) ( ) w 2 w 3 θ und θ w 2 Umformuliert: Also: w 2 2w + w 2 + θ = 0 3w w 2 + θ = 0 w = 2θ und w 2 = 2w θ Für θ = 0, (willkürlich) ergibt sich: w = 0, 2 und w 2 = 0, 3. Verallgemeinert auf alle Punkte aus der Stichprobe: x (k) w + w w n +lθ = 0 k l k l x (k) 2 k l x (k) n (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme 6 / 26

17 Suche nach einer analytischen Lösung Bei statistischen, also verrauschten, Daten ist das Gleichungssystem fast nie lösbar. Unser Beispiel zeigt, dass die verschiedenen Klassen so ineinander liegen können, dass sie nicht durch eine Gerade getrennt werden können. Die Trennebene passt schon besser ist, aber nicht optimal. Da es keine richtige Lösung gibt, suchen wir ein Iterationsverfahren, dass eine Lösung mit möglichst kleinem Fehler findet. (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme 7 / 26

18 Das Lernproblem Eine leicht andere Formulierung als eben: Gegeben: Eine gelabelte Stichprobe: Punkte P, die in positive Klasse sollen 2 Punkte N, die in negative Klasse sollen Gesucht: n + Gewichte w i Vorgehensweise beim Herstellen der Stichprobe: Koordinaten der Punkte aus N mit multiplizieren. Die n + -te Koordinate bekommt den Wert. Das n + -te Gewicht ist der Schwellwert θ. Für alle x P N gilt dann: i n+ w i x i 0 (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme 8 / 26

19 Ein einfacher Lernalgorithmus w t ist der aktuelle Gewichtsvektor nach t Iterationen. Start: Test: Addiere: Subtrahiere: Wähle Gewichtsvektor w 0 zufällig t := 0 falls alle Punkte richtig klassifiziert, fertig Wähle Punkt x falls x P w t x > 0 gehe zu Test falls x P w t x 0 gehe zu Addiere falls x N w t x < 0 gehe zu Test falls x N w t x 0 gehe zu Subtrahiere w t+ = w t + x t = t + gehe zu Test w t+ = w t x t = t + gehe zu Test (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme 9 / 26

20 Ein einfacher Lernalgorithmus Einfacher noch geht es, wenn man S = P N ansetzt: w t ist der aktuelle Gewichtsvektor nach t Iterationen. Start: Test: Update: Wähle Gewichtsvektor w 0 zufällig t := 0 falls alle Punkte richtig klassifiziert, fertig Wähle Punkt x falls x P w t x > 0 gehe zu Test falls x P w t x 0 gehe zu Update w t+ = w t + x t = t + gehe zu Test (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme 20 / 26

21 Analyse des Lernalgorithmus () Falschklassifikation eines positiven Beispiels ( ) ( ) x w t+ x w t = + x x 2 w2 t + x = x w t + x 2 > x w t 2 (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme 2 / 26

22 Analyse des Lernalgorithmus (2) Falschklassifikation eines negativen Beispiels ( ) ( ) x w t+ x w t = x w2 t x = x w t x 2 < x w t 2 x 2 (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme 22 / 26

23 Konvergenzbeweis für den Lernalgorithmus () Annahmen: Alle Vektoren aus N werden nach P geworfen (mit negativem Vorzeichen). Alle Vektoren sind normiert. Der Lösungsvektor sei w. Beweisskizze: Sei nun w t+ der aus w t nach falscher Klassifizierung von p erzeugte Gewichtsvektor. Der Unterschied zwischen w und w t+ ist dann: cos(τ) = w w t+ w t+ (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme 23 / 26

24 Konvergenzbeweis für den Lernalgorithmus (2) Ziel ist zu erreichen, dass cos(τ) =, d.h. w = w t nach einer endlichen Schrittzahl t. w w t+ = w (w t + p) Ausgehend von t = 0 gilt = w w t + w p w w t + δ (δ = min{w p p P }) w w w w 0 + δ In jeder Iteration kommt ein δ hinzu. Also schließlich: w w t+ w w 0 + (t + ) δ (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme 24 / 26

25 Konvergenzbeweis für den Lernalgorithmus (3) Außerdem gilt: w t+ 2 = (w t + p)(w t + p) = w t 2 + 2w t p + p 2 (w (t) p 0) w t 2 + p 2 w t 2 + p ist falsch klassifiziert, daher: w (t) p 0. p ist gemäß Voraussetzung normiert, daher: p 2 =. Das heißt wieder, dass ausgehend von t = 0 für jedes t gilt (per Induktion): w t+ 2 w (t + ) Damit gilt weiter: cos(τ) w w 0 + (t + )δ w (t + ) (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme 25 / 26

26 Konvergenzbeweis für den Lernalgorithmus (4) cos(τ) steigt mit wachsendem t, kann aber nicht übersteigen. Daher konvergiert cos(τ) gegen einen festen Wert. Im Idealfall gilt w = w t für ein t 0. Damit ergibt sich w w t+ w t+ cos(τ) w w 0 + (t + )δ w (t + ) > 0 Fazit: Bei beliebig großen, d.h. also rein theoretischen Stichproben ändert sich irgendwann der Fehler nicht mehr. Praktisch relevante Stichproben können zu klein sein, um so lange iterieren zu können. Der Fehler oszilliert dann. Konsequenz für die Praxis: Mehr Daten sind bessere Daten. (Lehrstuhl Informatik 8) Klassifikation linear separierbarer Probleme 26 / 26

Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg Perzeptronen Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Perzeptronen 1 / 22 Gliederung 1 Schwellwert-Logik (MCCULLOCH-PITTS-Neuron)

Mehr

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20 Gliederung / Künstliche Neuronale Netze Perzeptron Einschränkungen Netze von Perzeptonen Perzeptron-Lernen Perzeptron Künstliche Neuronale Netze Perzeptron 3 / Der Psychologe und Informatiker Frank Rosenblatt

Mehr

Neuronale Netze mit mehreren Schichten

Neuronale Netze mit mehreren Schichten Neuronale Netze mit mehreren Schichten Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Neuronale Netze mit mehreren

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Übersicht Neuronale Netze Motivation Perzeptron Grundlagen für praktische Übungen

Mehr

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5 Vektorrechnung 0. August 07 Inhaltsverzeichnis Vektoren Grundlegende Rechenoperationen mit Vektoren 3 3 Geometrie der Vektoren 5 4 Das Kreuzprodukt 9 Vektoren Die reellen Zahlen R können wir uns als eine

Mehr

Klassifikation von Daten Einleitung

Klassifikation von Daten Einleitung Klassifikation von Daten Einleitung Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Klassifikation von Daten Einleitung

Mehr

Definition von R n. Parallelverschiebungen in R n. Definition 8.1 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R... R (n-mal), d.h.

Definition von R n. Parallelverschiebungen in R n. Definition 8.1 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R... R (n-mal), d.h. 8 Elemente der linearen Algebra 81 Der euklidische Raum R n Definition von R n Definition 81 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R R (n-mal), dh R n = {(x 1, x 2,, x n ) : x

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr

(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform.

(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform. (hoffentlich kurze) Einführung: martin.loesch@kit.edu (0721) 608 45944 Überblick Einführung Perzeptron Multi-layer Feedforward Neural Network MLNN in der Anwendung 2 EINFÜHRUNG 3 Gehirn des Menschen Vorbild

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Neuronale Netze Motivation Perzeptron Übersicht Multilayer Neural Networks Grundlagen

Mehr

Praktische Optimierung

Praktische Optimierung Wintersemester 27/8 Praktische Optimierung (Vorlesung) Prof. Dr. Günter Rudolph Fakultät für Informatik Lehrstuhl für Algorithm Engineering Metamodellierung Inhalt Multilayer-Perceptron (MLP) Radiale Basisfunktionsnetze

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Basistext Geraden und Ebenen

Basistext Geraden und Ebenen Basistext Geraden und Ebenen Parameterdarstellung Geraden Eine Gerade ist durch zwei Punkte P und Q, die auf der Geraden liegen, eindeutig festgelegt. Man benötigt zur Darstellung den Vektor. Dieser wird

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Aufgaben der letzten Stunde Übersicht Neuronale Netze Motivation Perzeptron Multilayer

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Deep Learning (II) Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 25.07.2017 1 von 14 Überblick Faltungsnetze Dropout Autoencoder Generative Adversarial

Mehr

11. Neuronale Netze 1

11. Neuronale Netze 1 11. Neuronale Netze 1 Einführung (1) Ein künstliches neuronales Netz ist vom Konzept her eine Realisierung von miteinander verschalteten Grundbausteinen, sogenannter Neuronen, welche in rudimentärer Form

Mehr

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden Analytische Geometrie - Schnittwinkel. Möglichkeiten und Formeln Gerade / Gerade: cos( ) = u u 2 u u 2 Gerade / Ebene: sin( ) = n u n u Ebene / Ebene: cos( ) = n n 2 n n 2 u, u 2 Richtungsvektoren der

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Eigenschaften neuronaler Netze: hohe Arbeitsgeschwindigkeit durch Parallelität, Funktionsfähigkeit auch nach Ausfall von Teilen des Netzes, Lernfähigkeit, Möglichkeit zur Generalisierung

Mehr

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07 Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C - 6/7. Gegenseitige Lage von Geraden Gesucht ist die gegenseitige Lage der Geraden g durch die beiden Punkte A( ) und B( 5 9 ) und der Geraden

Mehr

Grundwissen Abitur Geometrie 15. Juli 2012

Grundwissen Abitur Geometrie 15. Juli 2012 Grundwissen Abitur Geometrie 5. Juli 202. Erkläre die Begriffe (a) parallelgleiche Pfeile (b) Vektor (c) Repräsentant eines Vektors (d) Gegenvektor eines Vektors (e) Welcher geometrische Zusammenhang besteht

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Inhalt (Biologische) Neuronale Netze Schwellenwertelemente Allgemein Neuronale Netze Mehrschichtiges Perzeptron Weitere Arten Neuronaler Netze 2 Neuronale Netze Bestehend aus vielen Neuronen(menschliches

Mehr

Lagebeziehung von Ebenen

Lagebeziehung von Ebenen M8 ANALYSIS Lagebeziehung von Ebenen Es gibt Möglichkeiten für die Lagebeziehung zwischen zwei Ebenen. Die Ebenen sind identisch. Die Ebenen sind parallel. Die Ebenen schneiden sich in einer Geraden Um

Mehr

Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform

Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform Bernhard Scheideler Albrecht-Dürer-Gymnasium Hagen Hilfen zur Analytischen Geometrie (). Dezember 0 Inhalt: Die Lagebeziehungen zwischen

Mehr

1.1. Geradengleichung aus Steigung und y-achsenabschnitt

1.1. Geradengleichung aus Steigung und y-achsenabschnitt Version vom 4. Januar 2007 Gleichungen von Geraden in der Ebene 1999 Peter Senn * 1.1. Geradengleichung aus Steigung und y-achsenabschnitt In dieser Form lautet die Gleichung der Geraden wie folgt: g:

Mehr

Thema 3: Radiale Basisfunktionen und RBF- Netze

Thema 3: Radiale Basisfunktionen und RBF- Netze Proseminar: Machine Learning 10 Juli 2006 Thema 3: Radiale Basisfunktionen und RBF- Netze Barbara Rakitsch Zusammenfassung: Aufgabe dieses Vortrags war es, die Grundlagen der RBF-Netze darzustellen 1 Einführung

Mehr

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua3673 Fragen und Antworten Vektorgeometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis Vektorgeometrie im Raum. Fragen................................................. Allgemeines..........................................

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

Lineare Algebra und analytische Geometrie

Lineare Algebra und analytische Geometrie TI voyage 200 Kompaktwissen Lineare Algebra und analytische Geometrie Eine kleine Hilfe für Schüler der DSB Seite 2 TI voyage 200 Kompaktwissen Algebra/Geometrie Diese Anleitung soll helfen, Aufgaben aus

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

% ' ' & w 1. x 1 M $ # w = x n. w n.,l,x n. x T = (x 1. x i. w i. Treppenfunktion H (Heavisidefunktion) als Aktivierungsfunktion

% ' ' & w 1. x 1 M $ # w = x n. w n.,l,x n. x T = (x 1. x i. w i. Treppenfunktion H (Heavisidefunktion) als Aktivierungsfunktion Perzeptron (mit Gewichten w 1,..., w n und Schwellwert θ, an dessen Eingänge Werte x 1,...,x n angelegt worden sind) x 1 w 1 θ x n w n Eingabewerte x 1,...,x n (reelle Zahlen, oft zwischen 0 und 1, manchmal

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

Hesse-Normalform einer Ebene

Hesse-Normalform einer Ebene Hesse-Normalform einer Ebene Der Ortsvektor x eines Punktes X auf einer Ebene durch P orthogonal zu einem Normalenvektor n erfüllt x n = d, d = p n. Ò Ò ½ Ò È Ç Hesse-Normalform einer Ebene 1-1 Bei der

Mehr

Übungsblatt

Übungsblatt Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe

Mehr

Neuronale Netze Aufgaben 2

Neuronale Netze Aufgaben 2 Neuronale Netze Aufgaben 2 martin.loesch@kit.edu (0721) 608 45944 Aufgabe 3: Netz von Perzeptronen Die Verknüpfung mehrerer Perzeptronen zu einem Netz erlaubt die Lösung auch komplexerer Probleme als nur

Mehr

Lehrskript Mathematik Q12 Analytische Geometrie

Lehrskript Mathematik Q12 Analytische Geometrie Lehrskript Mathematik Q1 Analytische Geometrie Repetitorium der analytischen Geometrie Eine Zusammenfassung der analytischen Geometrie an bayerischen Gymnasien von Markus Baur, StR Werdenfels-Gymnasium

Mehr

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen Was bisher geschah Lernen: überwachtes Lernen korrigierendes Lernen bestärkendes Lernen unüberwachtes Lernen biologisches Vorbild neuronaler Netze: Neuron (Zellkörper, Synapsen, Axon) und Funktionsweise

Mehr

Geometrie 3. Lagebeziehung zwischen geometrischen Objekten. 28. Oktober Mathe-Squad GbR. Lagebeziehung zwischen geometrischen Objekten 1

Geometrie 3. Lagebeziehung zwischen geometrischen Objekten. 28. Oktober Mathe-Squad GbR. Lagebeziehung zwischen geometrischen Objekten 1 Geometrie 3 Lagebeziehung zwischen geometrischen Objekten Mathe-Squad GbR 28. Oktober 2016 Lagebeziehung zwischen geometrischen Objekten 1 Lage zweier Geraden Geraden g : #» X = #» A + λ #» u mit λ R h

Mehr

Schwellenwertelemente. Rudolf Kruse Neuronale Netze 8

Schwellenwertelemente. Rudolf Kruse Neuronale Netze 8 Schwellenwertelemente Rudolf Kruse Neuronale Netze 8 Schwellenwertelemente Ein Schwellenwertelement (Threshold Logic Unit, TLU) ist eine Verarbeitungseinheit für Zahlen mitneingängenx,...,x n und einem

Mehr

Grundwissen. 2.Aufstellen von Geradengleichungen: Man nimmt einen Startvektor und bildet aus 2 Punkten einen Richtungsvektor!

Grundwissen. 2.Aufstellen von Geradengleichungen: Man nimmt einen Startvektor und bildet aus 2 Punkten einen Richtungsvektor! Grundwissen 1.Aufstellen eines Vektors: Merkregel: Spitze minus Fuß! 2.Aufstellen von Geradengleichungen: Man nimmt einen Startvektor und bildet aus 2 Punkten einen Richtungsvektor! 3.Aufstellen von Ebenengleichungen

Mehr

VEKTOREN. Allgemeines. Vektoren in der Ebene (2D)

VEKTOREN. Allgemeines. Vektoren in der Ebene (2D) VEKTOREN Allgemeines Man unterscheidet im Schulgebrauch zwischen zweidimensionalen und dreidimensionalen Vektoren (es kann aber auch Vektoren geben, die mehr als 3 Komponenten haben). Während zweidimensionale

Mehr

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner SS 0 Blatt 9 9060 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach Lösungsvorschlag a Die gegebene Matrix

Mehr

6.4 Neuronale Netze zur Verarbeitung von Zeitreihen

6.4 Neuronale Netze zur Verarbeitung von Zeitreihen 6.4 Neuronale Netze zur Verarbeitung von Zeitreihen Aufgabe: Erlernen einer Zeitreihe x(t + 1) = f(x(t), x(t 1), x(t 2),...) Idee: Verzögerungskette am Eingang eines neuronalen Netzwerks, z.b. eines m-h-1

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester Lösungsblatt 3 Maschinelles Lernen und Klassifikation

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester Lösungsblatt 3 Maschinelles Lernen und Klassifikation Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Lösungsblatt 3 Maschinelles Lernen und Klassifikation Aufgabe : Zufallsexperiment

Mehr

Zusammenfassung zum Thema Vektor- und Matrizenrechnung

Zusammenfassung zum Thema Vektor- und Matrizenrechnung Zusammenfassung zum Thema Vektor- und Matrizenrechnung Mathematischer Vorkurs für Physiker und Naturwissenschaftler WS 2014/2015 Grundbegriffe der Linearen Algebra Viele physikalische Größen (Geschwindigkeit,

Mehr

Vektorprodukt. Satz: Für a, b, c V 3 und λ IR gilt: = a b + a c (Linearität) (Linearität) b = λ

Vektorprodukt. Satz: Für a, b, c V 3 und λ IR gilt: = a b + a c (Linearität) (Linearität) b = λ Vektorprodukt Satz: Für a, b, c V 3 und λ IR gilt: 1 a b = b a (Anti-Kommutativität) ( ) 2 a b + c ( 3 a λ ) b = λ = a b + a c (Linearität) ( a ) b (Linearität) Satz: Die Koordinatendarstellung des Vektorprodukts

Mehr

Analytische Geometrie Seite 1 von 6. Die Addition von Vektoren kann veranschaulicht werden durch das Aneinanderhängen von Pfeilen.

Analytische Geometrie Seite 1 von 6. Die Addition von Vektoren kann veranschaulicht werden durch das Aneinanderhängen von Pfeilen. Analytische Geometrie Seite 1 von 6 1. Wichtige Formeln AB bezeichnet den Vektor, der die Verschiebung beschreibt, durch die der Punkt A auf den Punkt B verschoben wird. Der Vektor, durch den die Verschiebung

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

Aufgaben / Lösungen der Klausur Nr. 4 vom Juni 2002 im LK 12. nx ln(x)dx

Aufgaben / Lösungen der Klausur Nr. 4 vom Juni 2002 im LK 12. nx ln(x)dx Aufgaben / Lösungen der Klausur Nr. 4 vom Juni 2002 im LK 2 Aufgabe ) a) Berechne für alle natürlichen Zahlen n N das Integral e nx ln(x)dx. Mit Hilfe der partiellen Integration für f (x) = nx, somit f(x)

Mehr

Mathematik Analytische Geometrie

Mathematik Analytische Geometrie Mathematik Analytische Geometrie Grundlagen:. Das -Dimensionale kartesische Koordinatensystem: x x x. Vektoren und Ortsvektoren: a x = x x ist ein Vektor, der eine Verschiebung um x -Einheiten in x-richtung,

Mehr

und spannen die folgende Ebene auf: E = a + Ru + Rv.

und spannen die folgende Ebene auf: E = a + Ru + Rv. .5. Geraden und Ebenen Parameterdarstellungen von Geraden und Ebenen gewinnt man, indem man einen Ortsvektor (mit Spitze auf der Geraden oder Ebene und einen bzw. zwei Richtungsvektoren wählt, welche die

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

Das Wichtigste auf einen Blick

Das Wichtigste auf einen Blick Das Wichtigste auf einen Blick Zusammenfassung Geometrie.Parameterform einer Geraden Eine Gerade ist wie auch in der Analysis durch zwei Punkte A, B im Raum eindeutig bestimmt einer der beiden Punkte,

Mehr

Abstand zweier zueinander windschiefen Geraden

Abstand zweier zueinander windschiefen Geraden Fachreferat aus dem Fach Mathematik Abstand zweier zueinander windschiefen Geraden Jakob Schöttl 2009-02-17 Inhaltsverzeichnis 1 Deklaration 1 2 Denition von windschief 2 3 Meine eigenen Versuche 2 3.1

Mehr

2.2 Kollineare und koplanare Vektoren

2.2 Kollineare und koplanare Vektoren . Kollineare und koplanare Vektoren Wie wir schon gelernt haben, können wir einen Vektor durch Multiplikation mit einem Skalar verlängern oder verkürzen. In Abbildung 9 haben u und v die gleiche Richtung,

Mehr

9. Übung zur Linearen Algebra II -

9. Übung zur Linearen Algebra II - 9. Übung zur Linearen Algebra II - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. SS 00. Aufgabe 33 (i) Beweise oder widerlege: In einem euklidischen VR gilt x + y = x + y x y (Satz von Pythagoras).

Mehr

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops 15. DETERMINANTEN 1 Für n Vektoren b 1,..., b n im R n definiert man ihre Determinante det(b 1,..., b n ) Anschaulich gilt det(b 1,..., b n ) = Orientierung der Vektoren b 1,..., b n Volumen des von den

Mehr

Reranking. Parse Reranking. Helmut Schmid. Institut für maschinelle Sprachverarbeitung Universität Stuttgart

Reranking. Parse Reranking. Helmut Schmid. Institut für maschinelle Sprachverarbeitung Universität Stuttgart Institut für maschinelle Sprachverarbeitung Universität Stuttgart schmid@ims.uni-stuttgart.de Die Folien basieren teilweise auf Folien von Mark Johnson. Koordinationen Problem: PCFGs können nicht alle

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik

Mehr

Skalarprodukt, Norm & Metrik

Skalarprodukt, Norm & Metrik Skalarprodukt, Norm & Metrik Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. Mai 2016 Stefan Ruzika 5: Skalarprodukt, Norm & Metrik 11. Mai 2016 1 / 13 Gliederung 1

Mehr

Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und

Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Ausgaben Aktivierungsfunktionen: Schwellwertfunktion

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

Analytische Geometrie II

Analytische Geometrie II Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor

Mehr

2.5. Geraden und Ebenen

2.5. Geraden und Ebenen .5. Geraden und Ebenen Parameterdarstellungen von Geraden und Ebenen gewinnt man, indem man einen Ortsvektor (mit Spitze auf der Geraden oder Ebene und einen bzw. zwei Richtungsvektoren wählt, welche die

Mehr

Analytische Geometrie, Vektorund Matrixrechnung

Analytische Geometrie, Vektorund Matrixrechnung Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?

Mehr

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron Neuronale Netzwerke Gliederung Biologische Motivation Künstliche neuronale Netzwerke Das Perzeptron Aufbau Lernen und Verallgemeinern Anwendung Testergebnis Anwendungsbeispiele Zusammenfassung Biologische

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Aufbau und Beschreibung Neuronaler Netzwerke

Aufbau und Beschreibung Neuronaler Netzwerke Aufbau und Beschreibung r 1 Inhalt Biologisches Vorbild Mathematisches Modell Grundmodelle 2 Biologisches Vorbild Das Neuron Grundkomponenten: Zellkörper (Soma) Zellkern (Nukleus) Dendriten Nervenfaser

Mehr

Im Falle einer zweimal differenzierbaren Funktion lässt sich das Krümmungsverhalten anhand der zweiten Ableitung feststellen.

Im Falle einer zweimal differenzierbaren Funktion lässt sich das Krümmungsverhalten anhand der zweiten Ableitung feststellen. Konvex, Konkav, Wendepunkt: Sei f : D R eine Funktion und sei I D ein Intervall. Gilt für alle x 1,x 2 I f ( x1 +x ) 2 2 f(x 1)+f(x 2 ), 2 dann heißt f konvex (linksgekrümmt) in I. Gilt für alle x 1,x

Mehr

5. Probeklausur - Lösung

5. Probeklausur - Lösung EI M5 2011-12 MATHEMATIK 5. Probeklausur - Lösung 1. Aufgabe (2 Punkte) Bilde die erste Ableitung der Funktion f mit sin für reelle Zahlen x. Hier haben wir unter der Wurzel noch eine Funktion, daher benutzen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 4 5. Semester ARBEITSBLATT 4. Normalvektordarstellung einer Gerade

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 4 5. Semester ARBEITSBLATT 4. Normalvektordarstellung einer Gerade ARBEITSBLATT 4 Normalvektordarstellung einer Gerade Noch eine Darstellung einer Gerade gibt es. Die Idee dahinter ist Folgende: Eine Gerade ist auch festgelegt, indem ich einen Punkt der Gerade und den

Mehr

Das Modell von McCulloch und Pitts

Das Modell von McCulloch und Pitts Humboldt Universität Berlin Institut für Informatik Dr. Kock Seminar Künstliche Neuronale Netze Das Modell von McCulloch und Pitts Alexandra Rostin 24..25 SE Künstliche Neuronale Netze Das Modell von McCulloch

Mehr

Training von RBF-Netzen. Rudolf Kruse Neuronale Netze 134

Training von RBF-Netzen. Rudolf Kruse Neuronale Netze 134 Training von RBF-Netzen Rudolf Kruse Neuronale Netze 34 Radiale-Basisfunktionen-Netze: Initialisierung SeiL fixed ={l,...,l m } eine feste Lernaufgabe, bestehend ausmtrainingsbeispielenl=ı l,o l. Einfaches

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

1. Funktionen. 1.3 Steigung von Funktionsgraphen

1. Funktionen. 1.3 Steigung von Funktionsgraphen Klasse 8 Algebra.3 Steigung von Funktionsgraphen. Funktionen y Ist jedem Element einer Menge A genau ein E- lement einer Menge B zugeordnet, so nennt man die Zuordnung eindeutig. 3 5 6 8 Dies ist eine

Mehr

Übungsblatt 1: Lösungswege und Lösungen

Übungsblatt 1: Lösungswege und Lösungen Übungsblatt : Lösungswege und Lösungen 5..6 ) Hier geht es weniger um mathematisch-strenge Beweise als darum, mit abstrakten Vektoren ohne Komponenten) zu hantieren und damit die Behauptungen plausibel

Mehr

Formelsammlung Mathematik Grundkurs Inhalt

Formelsammlung Mathematik Grundkurs Inhalt Formelsammlung Mathematik Grundkurs Inhalt Inhalt...1 Trigonometrie Grundlagen... Vektoren...3 Skalarprodukt...4 Geraden...5 Abstandsberechnungen...6 Ebenen...7 Lineare Gleichungssysteme (LGS)...8 Gauß'sches

Mehr

Algebra 3.

Algebra 3. Algebra 3 www.schulmathe.npage.de Aufgaben 1. In einem kartesischen Koordinatensystem sind die Punkte A( 3), B( ) sowie für jedes a (a R) ein Punkt P a (a a a) gegeben. a) Zeigen Sie, dass alle Punkte

Mehr

Geometrische Deutung linearer Abbildungen

Geometrische Deutung linearer Abbildungen Geometrische Deutung linearer Abbildungen Betrachten f : R n R n, f(x) = Ax. Projektionen z.b. A = 1 0 0 0 1 0 0 0 0 die senkrechte Projektion auf die xy-ebene in R 3. Projektionen sind weder injektiv

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13

Corinne Schenka Vorkurs Mathematik WiSe 2012/13 4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:

Mehr

HTW MST Mathematik 1. Vektorrechnung. Zu Aufgabe 1. Zu Aufgabe Lösungen zu Übungsblatt 5. Lösung: Lösung: = 39

HTW MST Mathematik 1. Vektorrechnung. Zu Aufgabe 1. Zu Aufgabe Lösungen zu Übungsblatt 5. Lösung: Lösung: = 39 Vektorrechnung Zu Aufgabe 1 Berechnen Sie den Flächeninhalt des Dreiecks, das durch die Vektoren 1 a =, b =, 3 1 c = 6 1 aufgespannt wird! Zu Aufgabe Berechnen Sie das Volumen des durch folgende 3 Vektoren

Mehr

Neuronale Netze in der Phonetik: Feed-Forward Netze. Pfitzinger, Reichel IPSK, LMU München {hpt 14.

Neuronale Netze in der Phonetik: Feed-Forward Netze. Pfitzinger, Reichel IPSK, LMU München {hpt 14. Neuronale Netze in der Phonetik: Feed-Forward Netze Pfitzinger, Reichel IPSK, LMU München {hpt reichelu}@phonetik.uni-muenchen.de 14. Juli 2006 Inhalt Typisierung nach Aktivierungsfunktion Lernen in einschichtigen

Mehr

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors Einführu hnung Was ist ein Vektor? In Bereichen der Naturwissenschaften treten Größen auf, die nicht nur durch eine Zahlenangabe dargestellt werden können, wie Kraft oder Geschwindigkeit. Zur vollständigen

Mehr

Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze Reinhard Eck 1

Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze Reinhard Eck 1 Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze 2.04.2006 Reinhard Eck Was reizt Informatiker an neuronalen Netzen? Wie funktionieren Gehirne höherer Lebewesen?

Mehr

1 Definitionen: 6 Punkte gesamt

1 Definitionen: 6 Punkte gesamt ANTWORTEN zum KOLLOQIUM zur Einführung in die Lineare Algebra Hans G. Feichtinger Sommersemester 2014 Fr., 25. Juli 2014, 10:00, Fakultät f. Mathematik Punktezahl: (1) 6 (2) 9 (3) 5 (4) 10 TOTAL (von 30):

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Vektorrechnung: Anwendungsaufgaben zu Graden und Ebenen

Vektorrechnung: Anwendungsaufgaben zu Graden und Ebenen Vektorrechnung: Anwendungsaufgaben zu Graden und Ebenen ) Ein Flugzeug fliegt auf geradem Weg von A(; 4; ) nach B(5; ; ) und benötigt dafür eine Minute. Die Koordinaten wurden in km angegeben. Es fliegt

Mehr

Mathe GK, Henß. Kreis in der Ebene

Mathe GK, Henß. Kreis in der Ebene in der Ebene Einen in der Ebene kann man vektoriell einfach beschreiben, denn er ist dadurch festgelegt, dass seine Punkte zum ittelpunkt denselben Abstand r haben. Statt müsste genauer linie gesagt werden.

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 7 11. Mai 2010 Kapitel 8. Vektoren Definition 76. Betrachten wir eine beliebige endliche Anzahl von Vektoren v 1, v 2,..., v m des R n, so können

Mehr

13 Lösen von Gleichungssystemen

13 Lösen von Gleichungssystemen Vorkurs Mathematik 2 3 LÖSEN VON GLEICHUNGSSYSTEMEN 3 Lösen von Gleichungssystemen Zu Beginn des Kurses haben wir folgendes Gleichungssystem gelöst: 2 + 3y = 5 () + 2y = 4 (2) In diesem Beispiel haben

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

Schulmathematik: Lineare Algebra & Analytische Geometrie. Kapitel 3: Lineare Analytische Geometrie. MAC.05043UB/MAC.05041PH, VU im SS 2017

Schulmathematik: Lineare Algebra & Analytische Geometrie. Kapitel 3: Lineare Analytische Geometrie. MAC.05043UB/MAC.05041PH, VU im SS 2017 Schulmathematik: Lineare Algebra & Analytische Geometrie Kapitel 3: Lineare Analytische Geometrie MAC.05043UB/MAC.0504PH, VU im SS 207 http://imsc.uni-graz.at/pfeiffer/207s/linalg.html Christoph GRUBER,

Mehr