Wasserstoff-Atom Lösung der radialen SGL

Größe: px
Ab Seite anzeigen:

Download "Wasserstoff-Atom Lösung der radialen SGL"

Transkript

1 Wassestoff-Atom Lösung de adialen SGL Die adiale SGL des H-Atoms lautet: d R d + dr d + ηr + α R ( + 1) R = mit μee η= μ Ze α= e 4 πε Lösungsansatz: 1) Auffinden de Lösung fü (Asymptotische Lösung: R ()) ) Multiplikation von R () mit Potenzeihe 3) Randbedingungen Abbuch de Potenzeihe 1) Asymptotische Lösung : η R () = Be η<

2 ) Ansatz fü allgemeine Lösung de adialen SGL: β R() R () P() B e P() = = β= η q q 1 Unendliche Potenzeihe q= P() = b = b + b + b + d R dr α ( + 1) Einsetzen in adiale SGL: + + ηr + R R = d d d d ( 1) P P()e P( )e P()e β β β α β + β + ( )e + η + P()e = d d d β d β dp() β P()e P()e e = β + = d d d β β dp() d P() β β dp() =β P()e β e + e βe d d d

3 d β dp() β β P()e = e β P()e = d d dp() β e P()e d β = β e β Alle Teme in adiale SGL enthalten als Fakto: Heausküzen dp() d P() dp() dp() β β P() β + β + P() + η η=β d d d β = η d α P() + P() ( + 1) P() = β P() dp() d P() dp() β d d d β + + dp() d β P() β P ( ) + α P() ( + 1) P() =

4 Zusammenfassen und odnen de Teme nach Odnung de Ableitung von P(): β dp( ) d P() dp() dp() β α ( + 1) + β + P() d d d d + P() P() = dp() 1 dp() α β ( + 1) + P() β + = d d q Diffeentialgleichung fü P(); Einsetzen von P() = bq liefet eine sogenannte Rekusionsfomel fü die Koeffizienten de Reihe: q= = β (q + 1) α bq+ 1 b q (q + )(q + 1) ( + 1) 3) Potenzeihe P() divegiet fü (P( ) ) β = β + β e 1 R () konvegiet fü We dominiet? P()!!

5 Damit R() fü muss Potenzeihe nach endliche Anzahl von Temen abbechen, z.b. fü q = p Unendliche Potenzeihe Polynom p-ten Gades β (p + 1) α bp+ 1= bp = (p + )(p + 1) ( + 1) Gleichung efüllt, wenn Zähle de Rekusionsfomel = β (p + 1) α= α α β= = (p + 1) n n = ganze Zahl p =,1,,3 n = 1,,3, 4, (Haupt)Quantenzahl n Zusatzbedingung: Nenne des Ausducks fü b p+1 daf nicht Null weden (p + )(p + 1) > ( + 1)

6 n(n + 1) > ( + 1) n > ode n + 1 Wichtige Beziehung zwischen Quantenzahlen n und Aus α μee β=, β= η, η= und n μ Ze e α= 4 πε Zeμ E = E = n = 1,,3, 4 1 e 1 n (4 πε) n = Bohsches Egebnis fü H-Atom, wenn Z = 1 E ist nu von Quantenzahl n abhängig und nicht von und m ( Entatung de Wellenfunktionen des H-Atoms)

7 Radiale Eigenfunktionen: R() = Ne P () β = βn n, n 1 an Lague sche Polynome a = Bohsche Radius Nomieungsfakto Definition des Bohschen Radius: a = h ε πμ ee β α μ Ze 1 μ e 4π Z= 1 e e n = = = n 4πε n 4π ε μ e π 1 1 n e = = h εh n a Angabe von Abständen in Einheiten des Bohschen Radius: R ( ρ ) = Ne P ( ρ) ρ= ρ/n n, n, a

8 Eigenfunktionen des Wassestoff-Atoms Zusammensetzen von Radial- und Winkelanteil: ψ = N e P ( ρ) P (cos ϑ) e ρ/n m imϕ nm n n, ψ = R ( ρ) θ ( ϑ) Φ ( ϕ) nm n m m m Y ( ϑ, ϕ) Lague- Polynome Legende- Polynome Kugelflächen- Funktionen

9 Quantenzahlen und Entatung de Wellenfunktionen 3 Quantenzahlen: Hauptquantenzahl: n = 1,, 3,.. Nebenquantenzahl: =, 1,,., n-1 n Magnetische Quantenzahl: m = +1, + 1,,, + 1, +,, + 1, + Mögliche Kombinationen von Quantenzahlen: m n = 1 3 = 1 1 m = Jede -Wet + 1 m-wete Jede n-wet =, 1,., n-1 Zustände des H-Atoms mit Quantenzahl n sind n -fach entatet Zahl de zu einem n gehöigen linea unabhängigen Eigenfunktionen: = n 1 = ( + 1) = n

10 Wassestoff-Atom Nomiete adiale Eigenfunktionen R ( ρ) = N P ( ρ) e ρ = a ; a = ρ n n R n Bohsche Radius Laguesches Polynom R /a 3 n, Bitte beachten: Die Angabe de adialen Eigenfunktionen des H-Atoms im Atkins, 4.Aufl., Tab. 1.1, sowie in füheen Auflagen, ist stak fehlehaft. Im Wedle titt in den Tabellen mit den adialen Eigenfunktionen sowie mit den gesamten Eigenfunktionen leide auch 3 ein Fehle auf: es wude de Fakto a vegessen. Dies ist im Gäbeskipt und auf diesen Folien koigiet.

11 Wassestoff-Atom Nomiete Kugelflächenfunktionen Y m ( ϑφ, ) = N P m (cos ϑ) e imφ Y Assoziietes Legende- Polynom

12 Nomiete Eigenfunktionen des H-Atoms ψ ρϑφ ρ ϑ ρ / (,, ) ( ) n m (cos ) im φ nm = Nn Pn e P e 3 ψ /a ψ 1 ψ ψ 1-1 ψ 1 ψ 11 ψ 3 ψ 31-1

13 Nomiete Eigenfunktionen des H-Atoms ψ ρϑφ ρ ϑ ρ / (,, ) ( ) n m (cos ) im φ nm = Nn Pn e P e 3 ψ /a ψ 31 ψ 311 ψ 3- ψ 3-1 ψ 3 ψ 31 ψ 3

14 Reelle Eigenfunktionen des H-Atoms Ν /a 3 Katesische Koodinaten ρcos ϑ= z a ρsin ϑcos φ x = a ρsin ϑsin φ y = a

15 Reelle Eigenfunktionen des H-Atoms Ν /a 3

16 Nomenklatu de Quantenzahlen des H-Atoms Hauptquantenzahl n Enegie des Elektons: n = K- L- M- N-Schale (Bohs Atommodell) Nebenquantenzahl Bahndehimpuls des = 1 3 n-1 Elektons s p d f (shap, pincipal, diffuse, fundamental) Magnetische Quantenzahl m z-komponente des m =,, -, -1,, +1, -, Bahndehimpuls des Elektons 1 Spinquantenzahl S Eigendehimpuls S = 3 4 ; Sz = ± des Elektons (Nicht aus SGL ableitba; folgt aus Diacs (Pauli-Vebot Pinzip de elativistische Quantenmechanik) Spinpaaung: max. e - po Obital) Expt. Magnet. Eigenschaften von Atomen + ( )

17 Enegietemschema des Wassestoff-Atoms

18 Pinzipielle Dastellungsweisen de Eigenfunktionen: ψ ( 1 m) (ψ 1) 1 ( 1 m) 3 y 1 1 m 1 1 m 1 1 m x 1 1 m 1 Obital = ψnm Aufenthaltswahscheinlichkeitsdichte = nm ψ = W(x,y,z) dxdydz 3 Wolkendastellung =^ Dichte de Punkte entspicht de Göße von ψ

19 Pinzipielle Dastellungsweisen de Eigenfunktionen: ψ ( 1 m) 1 Obital = ψnm x 1 1 m Aufenthaltswahscheinlichkeitsdichte = nm ψ = W(x,y,z) dxdydz

20 Pinzipielle Dastellungsweisen de Eigenfunktionen: y 1 1 m x 1 1 m 3 Wolkendastellung =^ Dichte de Punkte entspicht de Göße von ψ

21 Pinzipielle Dastellungsweisen de Eigenfunktionen: 4 Radiale Aufenthaltswahscheinlichkeitsdichte dw/d dw/d = Wahscheinlichkeit, das Elekton in eine Kugelschale mit Radius und Dicke d anzuteffen d Volumen eine Kugelschale: 4 π d Wahscheinlichkeit/Volumen = Wahscheinlichkeitsdichte: ψ Radiale Aufenthaltswahscheinlichkeit: dw =ψ 4π d dw d = ψ 4π

22 Pinzipielle Dastellungsweisen de Eigenfunktionen: 4 Radiale Aufenthaltswahscheinlichkeitsdichte dw/d Beispiel: 1s-Obital ψ = 1 / a / e ψ = e 3 3 a πa π 1 a dw 1 4 = e 4π = e d πa a /a 3 3 /a

23 Pinzipielle Dastellungsweisen de Eigenfunktionen: 4 Gaphische Dastellung von dw/d fü 1s-Obital

24 Pinzipielle Dastellungsweisen de Eigenfunktionen: 5 Höhenlinien-Dastellung W = Wahscheinlichkeit, das Elekton in eine Kugel mit Radius anzuteffen W = ψ 4π d = const ; fü = a const =.3 Wahscheinlichkeit, das Elekton in Kugeln mit Radius a anzuteffen, betägt ~ 1/3; bei /3 de Atome hat Elekton einen gößeen Abstand. Höhenliniendiagamm fü ein 1s Elekton im H-Atom Räumliche Dastellung von Obitalen (Kalottenmodelle): 1.) Obeflächen, die 99.7% de Elektonendichte umschließen (const =.997).) Obeflächen, auf denen die Wellenfunktion auf ±.1 abgefallen ist (vgl. Atikel von Bickmann, Gäbeskipt)

25 Gaphische Dastellung de Eigenfunktionen: Radialanteil Zahl de Nullduchgänge = n- -1, d.h. Zunahme mit n, Abnahme mit R( ) f ( ϑ, φ) Nullstelle Knotenkugelfläche

26 Gaphische Dastellung de Eigenfunktionen: Winkelanteil s-obitale: Y = 1 4π s-obital = Kugel mit Radius 1 4π p-obitale: z.b. p x : Y ( ϑ, φ) = 3 sinϑ cosφ 4π + +

27 Gaphische Dastellung de Eigenfunktionen: Winkelanteil Pespektivische Dastellung: s- und p-obitale

28 Gaphische Dastellung de Eigenfunktionen: Winkelanteil d-obitale:

29 Gaphische Dastellung de Eigenfunktionen: Winkelanteil d-obitale: Pespektivische Dastellung

30 Gaphische Dastellung von ψ : Radialanteil

31 Gaphische Dastellung von ψ : Winkelanteil p x Kugelgestalt geht veloen Pespektivische Dastellung:

32 Gaphische Dastellung de adialen Aufenthaltswahscheinlichkeit = 4πρ R ( ) dw d 1s: maximale adiale Aufenthaltswahscheinlichkeit bei = a s, 3s: maximale adiale Aufenthaltswahscheinlichkeit wandet nach außen

Kerne und Teilchen. Kernkraft. Moderne Experimentalphysik III Vorlesung 16. MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK

Kerne und Teilchen. Kernkraft. Moderne Experimentalphysik III Vorlesung 16.  MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Kene und Teilchen Modene Expeimentalphysik III Volesung 16 MICHAEL FEINDT INSTITUT FÜ EXPEIMENTELLE KENPHYSIK Kenkaft KIT Univesität des Landes Baden-Wüttembeg und nationales Foschungszentum in de Helmholtz-Gemeinschaft

Mehr

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1 . H Atom Grundlagen.1 Schrödingergleichung mit Radial-Potenzial V(r). Kugelflächen-Funktionen Y lm (θ,φ).3 Radial-Wellenfunktionen R n,l (r).4 Bahn-Drehimpuls l.5 Spin s Physik IV SS 005. H Grundl..1 .1

Mehr

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil 1. Grundlagen der Quantenmechanik (a) Wellenfunktion: Die Wellenfunktion Ψ(x, t) beschreibt den quantenmechanischen Zustand eines Teilchens am Ort x zur

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

Magnetismus EM 63. fh-pw

Magnetismus EM 63. fh-pw Magnetismus Elektische Fluß 64 Elektische Fluß, Gauss sches Gesetz 65 Magnetische Fluß 66 eispiel: magnetische Fluß 67 Veschiebungsstom 68 Magnetisches Moment bewegte Ladungen 69 Magnetisches Moment von

Mehr

Spektroskopie Teil 2. Andreas Dreizler. FG Energie- und Kraftwerkstechnik Technische Universität Darmstadt

Spektroskopie Teil 2. Andreas Dreizler. FG Energie- und Kraftwerkstechnik Technische Universität Darmstadt Spektoskopie Teil Andeas Deizle FG Enegie- und Kaftwekstechnik Technische Univesität Damstadt Übesicht Boh sches Modell des H-Atoms Quantenmechanische Bescheibung des H- Atoms Quantenmechanische Bescheibung

Mehr

4. Aufbau der Elektronenhülle 4.1. Grundlagen 4.2. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5.

4. Aufbau der Elektronenhülle 4.1. Grundlagen 4.2. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5. 4. Aufbau der Elektronenhülle 4.. Grundlagen 4.. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5. Atomorbitale 4. Aufbau der Elektronenhülle 4.. Grundlagen 4.. Bohrsches

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010 Übungen Physik VI (Kerne und Teilchen) Sommersemester 21 Übungsblatt Nr. 3 Bearbeitung bis 6.5.21 Aufgabe 1: Neutronensterne Im Allgemeinen kann man annehmen, dass die Dichte in Zentrum von Neutronensternen

Mehr

Grundwissen. 9. Jahrgangsstufe. Mathematik

Grundwissen. 9. Jahrgangsstufe. Mathematik Gundwissen 9. Jahgangsstufe Mathematik Seite 1 1 Reelle Zahlen 1.1 Rechnen mit Quadatwuzeln a ist diejenige nicht negative Zahl, die zum Quadat a egibt. d.h.: ist keine Wuzel aus 4. Eine Wuzel kann nicht

Mehr

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten 3.3.5 Rechenregeln Für Skalarfelder f, g und Vektorfelder v, w gelten die Beziehungen fg) = f g + g f v w) = v ) w + w ) v + v w) + w v) f v) = f v + v f v w) = w v) v w) 3.5a) 3.5b) 3.5c) 3.5d) f) = div

Mehr

Lösung der Aufgabe 4.2.2

Lösung der Aufgabe 4.2.2 Elektomagnetische Felde und Wellen: Lösung de Aufgabe 422 1 Lösung de Aufgabe 422 Übeabeitet von: JüM 172005 Aufgabe wie in de Klausu Eine Kugel vom adius ist gleichfömig in x-ichtung polaisiet mit P =

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Einführung in die theoretische Physik II Sommersemester 2015

Einführung in die theoretische Physik II Sommersemester 2015 Einführung in die theoretische Physik II Sommersemester 25 martin.eckstein@mpsd.cfel.de Ausgewählte Aufgaben zur Klausurvorbereitung Lösungshinweise Aufgabe : Elektrostatik Betrachten Sie eine geladene

Mehr

4.3 Das Wasserstoffatom

4.3 Das Wasserstoffatom 1.3 Das Wasserstoffatom Das Wasserstoffatom besteht aus einem Atomkern, der für den normalen Wasserstoff einfach durch ein Proton gegeben ist, mit der Masse m p, und einem Elektron mit der Masse m e. Vernachlässigen

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten

2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten Inhalt: 1. Regeln und Normen Modul: Allgemeine Chemie 2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten 3.Bausteine der Materie Atomkern: Elementarteilchen, Kernkräfte,

Mehr

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen Theoretischen Physik II SS 007 Klausur II - Aufgaben und Lösungen Aufgabe Hohlleiter Gegeben sei ein in z-richtung unendlich langer, gerader Hohlleiter (Innenradius R/3, Außenradius R), der einen Stromfaden

Mehr

1 Drehimpuls. 1.1 Motivation für die Definition des Drehimpulses. 1.2 Algebraische Eigenschaften des Drehimpulses

1 Drehimpuls. 1.1 Motivation für die Definition des Drehimpulses. 1.2 Algebraische Eigenschaften des Drehimpulses 1 Drehimpuls Wir werden im folgenden dreidimensionale Probleme der Quantenmechanik behandeln. Ein wichtiger Begriff dabei ist der Drehimpuls. Wir werden zuerst die Definition des quantenmechanischen Drehimpulses

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Felder und Wellen WS 2016/2017

Felder und Wellen WS 2016/2017 Felder und Wellen WS 216/217 Musterlösung zum 2. Tutorium 1. Aufgabe (**) Berechnen Sie das el. Feld einer in z-richtung unendlich lang ausgedehnten unendlich dünnen Linienladung der Ladungsdichte η pro

Mehr

2.3 Elektrisches Potential und Energie

2.3 Elektrisches Potential und Energie 2.3. ELEKTRISCHES POTENTIAL UND ENERGIE 17 2.3 Elektisches Potential un Enegie Aus e Mechanik wissen wi, ass ie Abeit Q, ie an einem Massepunkt veichtet wi, wenn iese um einen (kleinen) Vekto veschoben

Mehr

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt Übungen zu Ingenieu-Mathematik III WS 3/4 Blatt 7..4 Aufgabe 38: Betachten Sie eine Ellipse (in de Ebene) mit den Halbachsen a und b und bestimmen Sie die Kümmung in den Scheitelpunkten. Lösung:Eine Paametisieung

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

2.1. Das Wasserstoffatom Atommodelle (vor 1900)

2.1. Das Wasserstoffatom Atommodelle (vor 1900) 2.1. Das Wasserstoffatom 2.1.1. Atommodelle (vor 1900) 105 2.1.2. Eigenzustände des Wasserstoffatoms Ein einfaches Beispiel: Wasserstoff in Wechselwirkung mit einem klassischen Feld. Eigenenergien wasserstoffähnlicher

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

c = Ausbreitungsgeschwindigkeit (2, m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 )

c = Ausbreitungsgeschwindigkeit (2, m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 ) 2.3 Struktur der Elektronenhülle Elektromagnetische Strahlung c = λ ν c = Ausbreitungsgeschwindigkeit (2,9979 10 8 m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 ) Quantentheorie (Max Planck, 1900) Die

Mehr

Atommodell. Atommodell nach Bohr und Sommerfeld Für sein neues Atommodell stellte Bohr folgende Postulate auf:

Atommodell. Atommodell nach Bohr und Sommerfeld Für sein neues Atommodell stellte Bohr folgende Postulate auf: Für sein neues Atommodell stellte Bohr folgende Postulate auf: Elektronen umkreisen den Kern auf bestimmten Bahnen, wobei keine Energieabgabe erfolgt. Jede Elektronenbahn entspricht einem bestimmten Energieniveau

Mehr

8.3 Die Quantenmechanik des Wasserstoffatoms

8.3 Die Quantenmechanik des Wasserstoffatoms Dieter Suter - 409 - Physik B3 8.3 Die Quantenmechanik des Wasserstoffatoms 8.3.1 Grundlagen, Hamiltonoperator Das Wasserstoffatom besteht aus einem Proton (Ladung +e) und einem Elektron (Ladung e). Der

Mehr

Physikalisches Praktikum A 5 Balmer-Spektrum

Physikalisches Praktikum A 5 Balmer-Spektrum Physikalisches Praktikum A 5 Balmer-Spektrum Versuchsziel Es wird das Balmer-Spektrum des Wasserstoffatoms vermessen und die Rydberg- Konstante bestimmt. Für He und Hg werden die Wellenlängen des sichtbaren

Mehr

Aufgabe 1: Elektro-mechanischer Oszillator

Aufgabe 1: Elektro-mechanischer Oszillator 37. Internationale Physik-Olympiade Singapur 6 Lösungen zur zweiten Runde R. Reindl Aufgabe : Elektro-mechanischer Oszillator Formeln zum Plattenkondensator mit der Plattenfläche S, dem Plattenabstand

Mehr

Magnetismus EM 33. fh-pw

Magnetismus EM 33. fh-pw Magnetismus Das magnetische eld 34 Magnetische Kaft (Loentz-Kaft) 37 Magnetische Kaft auf einen elektischen Leite 38 E- eld s. -eld 40 Geladenes Teilchen im homogenen Magnetfeld 41 Magnetische lasche (inhomogenes

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester / Anwesenheitsübung -.November Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe ( ) ( Punkte) Eine harmonische elektromagnetische

Mehr

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Übungsblatt Musterlösung Fachbereich Rechts- und Wirtschaftswissenschaften Wintersemester 06/7 Aufgabe (Definitionsbereiche) Bestimme

Mehr

Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik).

Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik). phys4.017 Page 1 10.4.2 Bahndrehimpuls des Elektrons: Einheit des Drehimpuls: Der Bahndrehimpuls des Elektrons ist quantisiert. Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen

Mehr

Das quantenmechanische Atommodell

Das quantenmechanische Atommodell Ende 93 konzipierte de Broglie seine grundlegenden Ideen über die Dualität von Welle und Korpuskel. Albert Einstein hatte schon 905 von den korpuskularen Eigenschaften des Lichtes gesprochen; de Broglie

Mehr

15.5 Stetige Zufallsvariablen

15.5 Stetige Zufallsvariablen 5.5 Stetige Zufallsvariablen Es gibt auch Zufallsvariable, bei denen jedes Elementarereignis die Wahrscheinlich keit hat. Beispiel: Lebensdauer eines radioaktiven Atoms Die Lebensdauer eines radioaktiven

Mehr

Übungsblatt 3 - Lösungen

Übungsblatt 3 - Lösungen Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

Aufbau von Atomen. Atommodelle Spektrum des Wasserstoffs Quantenzahlen Orbitalbesetzung Periodensystem

Aufbau von Atomen. Atommodelle Spektrum des Wasserstoffs Quantenzahlen Orbitalbesetzung Periodensystem Aufbau von Atomen Atommodelle Spektrum des Wasserstoffs Quantenzahlen Orbitalbesetzung Periodensystem Wiederholung Im Kern: Protonen + Neutronen In der Hülle: Elektronen Rutherfords Streuversuch (90) Goldatome

Mehr

3.5 Potential an der Zellmembran eines Neurons

3.5 Potential an der Zellmembran eines Neurons VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 3.5 Potential an de Zellmemban eines Neuons Goldmann Gleichung fü mehee Ionen allgemein E R T F ln n k 1 n k 1 z z k k P k P k m [ X ] + z P[

Mehr

Differenzengleichungen

Differenzengleichungen Universität Basel Wirtschaftswissenschaftliches Zentrum Differenzengleichungen Dr. Thomas Zehrt Inhalt: 1. Einführungsbeispiele 2. Definition 3. Lineare Differenzengleichungen 1. Ordnung (Wiederholung)

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt.

Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt. 12 Moleküle Slide 267 Vorbemerkungen Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt. Je 2 Elektronen

Mehr

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ 7. Elektrische Leitfähigkeit von estkörpern 7.1 Die elektrischen Eigenschaften von Kristallen Die grundlegende Eigenschaften kennzeichnen das elektrische Verhalten von estkörpern: 1. Der spezifische Widerstand

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur

Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2014-2 1 Aufgabe 1 ( 7 Punkte) Eine ebene Welle der Form E = (E x, ie x, 0) exp{i(kz + ωt)} trifft aus dem Vakuum bei z = 0 auf ein Medium mit ε = 6 und

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29 Dynamische Systeme und Zeitreihenanalyse Komplexe Zahlen Kapitel 3 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.0/29 Motivation Für die

Mehr

x 2 +1=0? Wo sind die Nullstellen von x 2 +1 versteckt? 5. Lange Nacht der Mathematik Thomas Westermann Wo ist das Problem?

x 2 +1=0? Wo sind die Nullstellen von x 2 +1 versteckt? 5. Lange Nacht der Mathematik Thomas Westermann Wo ist das Problem? =0? im n Wo sind die Nullstellen von versteckt? Thomas Westermann 5. Lange Nacht der Mathematik HS Karlsruhe 5. April 008 Parabeln y=x : Normalparabel Einfache Funktion Scheitel bei S=(0/0) Einen Schnittpunkt

Mehr

Aufgabe 1: a) Die Effektivverzinsung einer Nullkuponanleihe lässt sich anhand der folgenden Gleichung ermitteln: F =

Aufgabe 1: a) Die Effektivverzinsung einer Nullkuponanleihe lässt sich anhand der folgenden Gleichung ermitteln: F = Aufgabe : a Die Effektivvezinsung eine Nullkuponanleihe lässt sich anhand de folgenden Gleichung emitteln: Hie gilt P( c( aktuelle Maktpeis de Anleihe Nennwet de Anleihe 4 und folglich i P( / c( c( i c(

Mehr

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen 3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

8 Euklidische Vektorräume und Fourierreihen

8 Euklidische Vektorräume und Fourierreihen Mathematik für Ingenieure II, SS 9 Dienstag 7.7 $Id: fourier.te,v 1.6 9/7/7 13:: hk Ep $ $Id: diff.te,v 1. 9/7/7 16:13:53 hk Ep $ 8 Euklidische Vektorräume und Fourierreihen 8.4 Anwendungen auf Differentialgleichungen

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

Zwei konkurrierende Analogien in der Elektrodynamik

Zwei konkurrierende Analogien in der Elektrodynamik Zwei konkuieende Analogien in de Elektodynamik Holge Hauptmann Euopa-Gymnasium, Wöth am Rhein holge.hauptmann@gmx.de Analogien: Elektodynamik 1 Physikalische Gößen de Elektodynamik elektische Ladung Q

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Multiplikation und Division in Polarform

Multiplikation und Division in Polarform Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin

Mehr

Unterlagen Fernstudium - 3. Konsultation 15.12.2007

Unterlagen Fernstudium - 3. Konsultation 15.12.2007 Untelagen Fenstudium - 3. Konsultation 5.2.2007 Inhaltsveeichnis Infomationen u Püfung 2 2 Aufgabe 7. Umstömte Keisylinde mit Auftieb 3 3 Aufgabe 8. Komplexes Potential und Konfome Abbildung 0 Infomationen

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Mathematik Analytische Geometrie

Mathematik Analytische Geometrie Mathematik Analytische Geometrie Grundlagen:. Das -Dimensionale kartesische Koordinatensystem: x x x. Vektoren und Ortsvektoren: a x = x x ist ein Vektor, der eine Verschiebung um x -Einheiten in x-richtung,

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

Lösung zum Parabolspiegel

Lösung zum Parabolspiegel Lösung zum Parabolspiegel y s 1 s 2 Offensichtlich muss s = s 1 + s 2 unabhängig vom Achsenabstand y bzw. über die Parabelgleichung auch unabhängig von x sein. f F x s = s 1 + s 2 = f x + y 2 + (f x) 2

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4

Mehr

Kerne und Teilchen. Aufbau der Kerne (1) Moderne Experimentalphysik III Vorlesung 17.

Kerne und Teilchen. Aufbau der Kerne (1) Moderne Experimentalphysik III Vorlesung 17. Kerne und Teilchen Moderne Experimentalphysik III Vorlesung 17 MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Aufbau der Kerne (1) KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Daltonsche Atomhypothese (1808)

Daltonsche Atomhypothese (1808) Daltonsche Atomhypothese (1808) Chemische Elemente bestehen aus kleinsten, chemisch nicht weiter zerlegbaren Teilchen, den Atomen. Alle Atome eines Elementes haben untereinander gleiche Masse, während

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

9. Das Wasserstoff-Atom. 9.1 Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

9. Das Wasserstoff-Atom. 9.1 Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: 09. Wasserstoff-Atom Page 1 9. Das Wasserstoff-Atom 9.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Exakte Lösungen der stationären Schrödingergleichung

Exakte Lösungen der stationären Schrödingergleichung Teil III Exakte Lösungen der stationären Schrödingergleichung Inhaltsangabe 6 Eindimensionale Probleme 43 6.1 Das Teilchen im unendlich tiefen Kasten.......... 44 6.1.1 Modell und Lösung der Schrödingergleichung...

Mehr

Harmonische Polynome im R 3

Harmonische Polynome im R 3 Harmonische Polynome im R 3 Christoph Fürst, Alexander Grubhofer, Claudia Jabornegg Gerlinde Sigl, Stefan Steinerberger Einführung und Definitionen Definition Sei C (R 3 ) die Menge der {f : R 3 C : f

Mehr

3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen

3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen KAPITEL 3 INTERPOLATION UND APPROXIMATION 4 33 Newtonsche Interpolationsformel / Dividierte Differenzen Das Verfahren von Neville ist unpraktisch, wenn man das Polynom selbst sucht oder das Polynom an

Mehr

d zyklische Koordinaten oder Terme der Form F(q, t) dt

d zyklische Koordinaten oder Terme der Form F(q, t) dt 6 Woche.doc, 3.11.10.5 "Reep" u Lösung von Bewegungspoblemen mi Hilfe de Lagange- Gleichungen II.. Beispiele 1. Wähle geeignee ( Zwangbedingungen, Smmeie) veallgemeinee Koodinaen ( 1,,..., f ) n (, ) n.

Mehr

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x =

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x = 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 014 Mathematik 1 + Übung 1 Gleichungen mit Wurzeln Bestimmen Sie alle Lösungen der folgenden Gleichungen. Beachten Sie dabei, dass

Mehr

29. Lektion. Atomaufbau. 39. Atomaufbau und Molekülbindung

29. Lektion. Atomaufbau. 39. Atomaufbau und Molekülbindung 29. Lektion Atomaufbau 39. Atomaufbau und Molekülbindung Lernziele: Atomare Orbitale werden von Elektronen nach strengen Regeln der QM aufgefüllt. Ein Orbital darf von nicht mehr als zwei Elektronen besetzt

Mehr

Statische Magnetfelder In der Antike war natürlich vorkommender Magnetstein und seine anziehende Wirkung auf Eisen bekannt.

Statische Magnetfelder In der Antike war natürlich vorkommender Magnetstein und seine anziehende Wirkung auf Eisen bekannt. Statische Magnetfelde In de Antike wa natülich vokommende Magnetstein und seine anziehende Wikung auf Eisen bekannt.. Jahhundet: Vewendung von Magneten in de Navigation. Piee de Maicout 69: Eine Nadel,

Mehr

Das von Neumannsche Theorem. von Martin Fiedler

Das von Neumannsche Theorem. von Martin Fiedler Das von eumannsche Theorem von Martin Fiedler Einleitung In der Mitte des letzten Jahrhunderts beschäftigten sich viele Physiker mit der Frage nach der Vollständigkeit der Quantentheorie. Einige Physiker,

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

Stefan Ruzika. 24. April 2016

Stefan Ruzika. 24. April 2016 Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers

Mehr

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 12-13 Prof. Dr. Alexander Mirlin Blatt 10

Mehr

9.2. Bereichsintegrale und Volumina

9.2. Bereichsintegrale und Volumina 9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Grundlagen der Chemie Allgemeine Chemie Teil 2

Grundlagen der Chemie Allgemeine Chemie Teil 2 Allgemeine Chemie Teil 2 Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu AO-Theorie Wellenmechanik So wie Licht

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

3. Geben Sie ein Bespiel, wie man Bra und Ket Notation nützen kann.

3. Geben Sie ein Bespiel, wie man Bra und Ket Notation nützen kann. Fragen zur Vorlesung Einführung in die Physik 3 1. Was ist ein quantenmechanischer Zustand? 2. Wenn die Messung eines quantenmechanischen Systems N unterscheidbare Ereignisse liefern kann, wie viele Parameter

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS ARBEITSBLATT 15 DER KREIS Zunächst einmal wollen wi uns übelegen, was man mathematisch unte einem Keis vesteht. Definition: Ein Keis ist die Menge alle Punkte, die von einem gegebenen Punkt ( Keismittelpunkt)

Mehr

Elektrostatik. Kräfte zwischen Ladungen: quantitative Bestimmung. Messmethode: Coulombsche Drehwaage

Elektrostatik. Kräfte zwischen Ladungen: quantitative Bestimmung. Messmethode: Coulombsche Drehwaage Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld i) Feldbegiff, Definitionen ii) Dastellung von Felden iii) Feldbeechnungen

Mehr

Formelsammlung zum Starterstudium Mathematik

Formelsammlung zum Starterstudium Mathematik Formelsammlung zum Starterstudium Mathematik Universität des Saarlandes ¼ Version.3 Inhaltsverzeichnis. Potenzgesetze. Vollständige Induktion 3. Betragsgleichungen, Betragsungleichungen 4 4. Folgen und

Mehr

Der Graph der Logarithmusfunktion entsteht aus dem Graphen der Exponentialfunktion durch Spiegelung an der 1. Winkelhalbierenden.

Der Graph der Logarithmusfunktion entsteht aus dem Graphen der Exponentialfunktion durch Spiegelung an der 1. Winkelhalbierenden. 0. Logaithmusfunktion n de Abbildung sind de Gaph de Exponentialfunktion zu Basis und de Gaph ihe Umkehfunktion, de Logaithmusfunktion zu Basis dagestellt. Allgemein: Die Exponentialfunktion odnet jede

Mehr

19.3 Oberflächenintegrale

19.3 Oberflächenintegrale 19.3 Oberflächenintegrale Definition: Sei D R 2 ein Gebiet und p : D R 3 eine C 1 -Abbildung x = p(u) mit x R 3 und u = (u 1, u 2 ) T D R 2 Sind für alle u D die beiden Vektoren und u 1 linear unabhängig,

Mehr

3. Vom Wasserstoffatom zum Periodensystem der Elemente

3. Vom Wasserstoffatom zum Periodensystem der Elemente 3. Vom Wasserstoffatom zum Periodensystem der Elemente Im vorangegangenen Kapitel haben wir uns mit den grundlegenden Konzepten der Quantenmechanik auseinandergesetzt. Ein weiteres Ziel dieser Vorlesung

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr