Datengestützte Entscheidungsunterstützung zur Optimierung von CRM-Prozessen

Größe: px
Ab Seite anzeigen:

Download "Datengestützte Entscheidungsunterstützung zur Optimierung von CRM-Prozessen"

Transkript

1 Datengestützte Entscheidungsunterstützung zur Optimierung von CRM-Prozessen Vortrag für die Regionalgruppe München der Gesellschaft für Informatik O 2 (Germany) GmbH & Co. OHG Business Intelligence Center Udo Böhm

2 Intro: Alternative Titel des Vortrags Ursprünglich: Data-Mining für Customer Relationship Management (CRM) bei O 2 Eingereichter Titel: Datengestützte Entscheidungsunterstützung zur Optimierung von CRM-Prozessen Provokativer Vorschlag: Bekenntnisse eines Data-Mining-Häretikers Kompromiss: Warum erfolgreiches CRM mehr braucht als Data Mining Seite 2

3 Was es in diesem Vortrag nicht gibt.. 96% Bekanntheitsgrad von O 2 -.Vorstellung von O 2 -.eine weitere Data-Mining Erfolgsstory* -.ein Kochrezept für erfolgreiches CRM *siehe auch Parable of beer an diapers, Seite 3

4 Inhalt 1. Business Intelligence bei O 2 2. Data Mining Mythen 3. Modellerstellungsprozess bei BIC-CRM 4. Weg zum automatisierten CRM-Management Seite 4

5 Business Intelligence bei O 2

6 Service-Angebot des Business-Intelligence- Centers (BIC) Enterprise Data Warehouse A&U1 Unternehmensweites Berichtswesen Analysen Automatisiertes Kampagnen-Management Intelligente Steuerung von CRM-Prozessen Aufgabenbereich von BIC-CRM Seite 6

7 Unterstützung des Customer Relationship Management (CRM) durch Operatives CRM Kontakt Kampagnen Complaint Service Risk Prozesse Reporting Analysen Analytisches CRM Seite 7

8 CRM-Aktivitäten im Kunden-Lebenszyklus Wert Einführungs phase Wachstum- / Reife phase Abstiegsphase Welcome Programme Loyalty Arpu*-Up / Cost-Down Riskmanagement Regelkommunikation Kündigungsvermeidung Vertragsverlängerung Kündigungsrücknahme Zeit Kundenlebenszyklus *ARPU=Average Revenue per User Seite 8

9 Analytische Fragestellungen im CRM Segmentierung Profilanalyse Kundenprognose Mikrogeografie Prognose Simulation Seite 9

10 Wer ist der >>Kunde<<? Entitäts-Hierarchie für Privatkunden bei O 2 Hierarchie Beispielanwendung Adresse Coverage Planung 1 n Haushalt DSL Vermarktung 1 n Person Befragung / Mafo / Beschwerdebearbeitung 1 n Account / Vertragsinhaber 1 n Contract / Vertragsnutzer Mahnwesen. Tarifmigration Cross-/Up-Selling Seite 10

11 CRM-Data Mining Mythen Warum erfolgreiches analytisches CRM mehr braucht als Data Mining

12 Data Mining-Mythen* 1. Ich brauche mit DM keine Experten mehr und viel weniger Analysten 2. Data Mining kann auf beliebigen Datenquellen aufgesetzt werden 3. Data Mining gibt mir immer Hinweise, was ich machen soll 4. Gutes Data Mining braucht neueste Technik und Algorithmen *Auswahl, Aussagen beziehen sich auf Data-Mining im CRM-Bereich Seite 12

13 Data Mining: Unglückliche Begriffswahl? Mining suggeriert: Verhältnis Abraum:Ertrag = sehr hoch Seite 13

14 Besseres Analogon für Datenverarbeitung: Weingewinnung durch Veredlung Zunahme Aggregation Input des Prozesses Zunahme Abstraktion Experte / Knowledgebase Output des Prozesses Seite 14

15 Voraussetzung fürs Data Mining..Datenveredlung Interaktionen Transaktionen Stammdaten Externe Daten Zunahme Aggregation Log Aggregieren / Pseudonymisieren / Filtern / Bereinigen / Strukturieren Verdichten Ableitungen DWH Profiler Gesetzliche Vorschriften (Datenschutz,Telekommunikationsgesetz,.) Entscheidungsmodelle Entscheidungen / Aktionen / Interaktionen Metadaten Experten Datenveredlung Zunahme Abstraktion Data Mining Tools Output des Prozesses Data-Mining braucht vorverarbeitete Daten Seite 15

16 Beispiel für intelligente Datenveredlung: Neue Prediktoren für Prepay-Aufladungen Ziel: Aufladungen für Prepay-Verträge stimulieren Bisherige Prediktoren: Standardableitungen (Umsatz, Nutzung, vergangenes Aufladeverhalten ) Transaktionen haben mehr zu bieten: Restguthaben bei Aufladung (bis jetzt noch nicht verdichtet) Anstoß durch Marketingexperten: Untersuchung Assoziation Guthaben mit Aufladung Neue Prediktoren: z.b. Durchschnittliches Restguthaben bei Aufladung Weitere abgeleitete Merkmale: z.b. Verhältnis Restguthaben zu Aufladehöhe Seite 16

17 Data Mining Mythen und Gegenthesen 1. Ich brauche keine Experten mehr und viel weniger Analysten 2. Data Mining kann auf beliebige Datenquellen aufgesetzt werden 3. Data Mining gibt mir immer Hinweise, was ich machen soll 4. Gutes Data Mining braucht neueste Technik und Algorithmen 1. Erfolgreiches Data-Mining im CRM ist ohne Interaktion mit Experten nicht möglich 2. Data Mining im CRM funktioniert nur auf intelligent veredelten Daten Seite 17

18 Anbieter von Data-Mining-Lösungen für CRM Viele Anbieter von sehr guten Data-Mining-Tools Seite 18

19 Anbieter für zielgerichtete Daten- Veredlung In diesembereich sind Anbieter,,Algorithmen,,Methoden,etc. rar Seite 19

20 Modellerstellungsprozess bei BIC-CRM

21 Data Mining Mythen - Teil 2 1. Ich brauche keine Experten mehr und viel weniger Analysten 2. Data Mining kann auf beliebige Datenquellen aufgesetzt werden 3. Data Mining gibt mir immer Hinweise, was ich machen soll 4. Gutes Data Mining braucht neueste Technik und Algorithmen Seite 21

22 Was hilft hier? Tiefgehende Analyse der vorhandenen Information? Sie sind hier Wenn keine Erfahrungswerte vorliegen, nützt die beste Wissensverdichtung nichts Seite 22

23 Welche Maßnahme maximiert die Überlebenswahrscheinlichkeit? Zusätzliche Datengewinnung durch Testen Ø (Kontrollgruppe) Es muss Erfahrung gesammelt sein, damit eine Handlungsempfehlung gegeben werden kann Seite 23

24 Explizites Beispiel: Kündigungsvorhersage Data Mining Modelle liefern sehr gute Kündigungsprognosen. Doch wie Kündigungen verhindern? Verschiedene Maßnahmen wirken auf verschiedene Kundengruppen. Erkenntnis: Kündigungswahrscheinlichkeit selbst oft kein Prediktor für Wirkungsweise der Maßnahmen Seite 24

25 Datengewinnung durch Testen. <<Testdesign is 2.3 times Analysis >> (Chuck Gates*) Auftrag Auftraggeber Testdesign Testdurchführung Analyse Produktion/Umsetzung Selektion Kontakt Rollout Zeit Abzug der Profildaten Abzug der Reaktionsdaten Modell *Prof. emeritus Texas A&M Analysedatei Zielgruppenselektion Modellentwicklung Seite 25

26 Data Mining Mythen Teil 3 und Gegenthesen 1. Ich brauche keine Experten mehr und viel weniger Analysten 2. Data Mining kann auf beliebige Datenquellen aufgesetzt werden 3. Data Mining gibt mir immer Hinweise, was ich machen soll 4. Gutes Data Mining braucht neueste Technik und Algorithmen 1. Erfolgreiches Data-Mining ist ohne Interaktion mit Experten nicht möglich 2. Data Mining funktioniert nur auf intelligent veredelten Daten 3. Intelligente Datengenerierung ist Basis für Data Mining Seite 26

27 Ein lebendes Fossil im Data Mining. die Scorecard, erfolgreich in ihrem Ökosystem RANK Variablen Familie Variable Klasse von bis Score Anteil Gut-Quote 1 PORTAL Anzahl Anmelkdungen zu o2online im % 1.7 % 1 Portal % 3.3 % % 4.5 % % 6.5 % % 6.5 % % 8.2 % % 10.3 % % 13.2 % 1 33 und mehr % 21.6 % 2 PACKS Vertrag hat Surf/ -Pack-Feature N 0 97 % 7.1 % 2 Y % 24.2 % 3 PORTAL Kunde hat den Portal N 0 46 % 3.3 % 3 Client benutzt Y % 11.3 % 4 USAGE Prozent CDR's ins nationale Festnetz % 3.5 % % 6.0 % % 7.0 % % 7.2 % % 8.5 % % 8.5 % % 8.3 % % 9.7 % % 9.7 % % 8.8 % 5 PORTAL Kunde hat sich über WEB N 0 53 % 3.8 % 5 in o2online eingeloggt Y % 12.0 % 6 USAGE Trendometer Usageskala GPRS-WAP 0 stark fallend 0 9 % 4.5 % 6 1 fallend 0 56 % 6.7 % 6 2 stagnierend % 9.1 % 6 3 steigend 33 8 % 11.2 % 6 >3 stark steigend 53 1 % 16.3 % 7 VALUE Prognose der CLTV-Klasse in den A 0 7 % 6.1 % 7 nächsten 24 Monaten B % 6.5 % 7 C % 6.7 % 7 D % 8.6 % 7 E 47 9 % 10.5 % 8 CLIENT Geschlecht Female 0 35 % 5.4 % 8 Male % 8.8 % 9 CONTRACT Mobile Number Portability Flag (Nummer N 0 91 % 7.2 % 9 wurde mitgebracht) Y 41 9 % 11.8 %.. Seite 27

28 Data Mining Mythen Teil4 und Gegenthesen 1. Ich brauche keine Experten mehr und viel weniger Analysten 2. Data Mining kann auf beliebige Datenquellen aufgesetzt werden 3. Data Mining gibt mir immer Hinweise, was ich machen soll 4. Gutes Data Mining braucht neueste Technik und Algorithmen 1. Erfolgreiches Data-Mining im CRM ist ohne Interaktion mit Experten nicht möglich 2. Data Mining imcrm funktioniert nur auf intelligent veredelten Daten 3. Intelligente Datengenerierung ist notwendige Basis für Data Mining 4. Auch mit einfachen Algorithmen ist gutes Data Mining im CRM möglich Seite 28

29 Weg zum automatisierten CRM- Management

30 Herausforderungen in der Modellentwicklung Produktion / Umsetzung von Modellen Definition der Cut-Offs Responsequote DB je Kunde + 5 Ableitung des optimalen Cut-Offs über eine Wirtschaftlickeitsbetrachtung 5 % % 20 % kumulierter Anteil kumulierter Anteil hoher Score niedriger Score hoher Score niedriger Score Hinterlegung der Modelle in Metadaten automatisierte Skriptgenerierung automatisierte Ausführung der Skripte regelmäßige Überprüfung des Cut-Offs sowie des Modells - Änderung der Kundenbasis - saisonale Effekte - Marktdynamik (neuer Tarif ) Seite 30

31 Beispiel für Process-Intelligence 1. Next-Best-Activity (NBA) Kundenorientiertes CRM mit mehrdimensionaler Optimierung Seite 31

32 Beispiel für Prozessintelligenz : 2. Decision Engine Operative Systeme Datenbereinigung / -aggregation Datenveredelung zu entscheidungsrelevanten Merkmalen Lernen und Verstehen durch Simulation und Testing Operative Ausführung im Zielsystem Billing CRM Contacts Data Warehouse Datenveredelung Decision Engine analytische Modelle Handlungsempfehlungen Informationen Experten- Modelle Basis- Merkmale Champion Challenger 1 Challenger 2 Simulation Operatives Zielsystem Strategierouting Priorisierung Entscheidungsknoten Seite 32

33 Übersicht über CRM Applikationen bei BIC Zusammenspiel analytisches operatives CRM customer interaction interfaces Next Best Activity Process & customer intelligence Risk & Complaint Decision Engine planning & administration customer profile data mart data management customer analytics core data warehouse KPI s & reports Seite 33

34 Neue Herausforderungen für analytisches CRM bei O 2 Verkürzung der Zeit der Modellgenierung (Machine Learning, Realtime Decisioning,..) Optimiertes Testdesign (exploit & explore) Optimierung der CRM Knowledgebase Seite 34

35 Vielen Dank für Ihre Aufmerksamkeit! O 2 (Germany) GmbH & Co. OHG Business Intelligence Center Udo Böhm

Management Cockpits. Business Intelligence für Entscheider. Oliver Röniger EMEA Business Intelligence ORACLE Deutschland GmbH

Management Cockpits. Business Intelligence für Entscheider. Oliver Röniger EMEA Business Intelligence ORACLE Deutschland GmbH Management Cockpits Business Intelligence für Entscheider Oliver Röniger EMEA Business Intelligence ORACLE Deutschland GmbH email: oliver.roeniger@oracle.com Tel.: 0211 / 74839-588 DOAG, Mannheim, 15.

Mehr

Folien zum Textbuch. Kapitel 6: Managementunterstützungssysteme. Teil 2: Textbuch-Seiten 794-825

Folien zum Textbuch. Kapitel 6: Managementunterstützungssysteme. Teil 2: Textbuch-Seiten 794-825 Folien zum Textbuch Kapitel 6: Managementunterstützungssysteme Teil 2: Managementunterstützung auf strategischer Ebene Datenverwaltung und -auswertung Textbuch-Seiten 794-825 WI 1 MUS MUS auf strategischer

Mehr

Wachstumsförderung mit CRM

Wachstumsförderung mit CRM Wachstumsförderung mit CRM Computerwoche CRM Initiative Feb. 2007 Dr. Wolfgang Martin Analyst, Mitglied im CRM-Expertenrat und Research Advisor am Institut für Business Intelligence Wachstumsförderung

Mehr

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle 40. Congress der Controller, Themenzentrum C, München Steffen Vierkorn, Geschäftsführer Qunis GmbH, Neubeuern Die

Mehr

CUSTOMER MANAGEMENT 2014 QUALITÄTSMANAGEMENT IM KUNDENSERVICE DIE 360 SICHT DER KUNDEN AUF IHR UNTERNEHMEN

CUSTOMER MANAGEMENT 2014 QUALITÄTSMANAGEMENT IM KUNDENSERVICE DIE 360 SICHT DER KUNDEN AUF IHR UNTERNEHMEN Bernd Engel Sales Director CUSTOMER MANAGEMENT 2014 QUALITÄTSMANAGEMENT IM KUNDENSERVICE DIE 360 SICHT DER KUNDEN AUF IHR UNTERNEHMEN Kurzer Überblick GRÜNDUNG 1. Juli 2004 GESELLSCHAFTEN STANDORTE GESCHÄFTSFÜHRUNG

Mehr

Business Intelligence Center of Excellence

Business Intelligence Center of Excellence Center of Excellence Eine Businessinitiative von Systematika und Kybeidos Werner Bundschuh Was ist das? In der Praxis versteht man in den meisten Fällen unter die Automatisierung des Berichtswesens (Reporting).

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

Big Data Analytics Roadshow. Nils Grabbert. Wie man mit einer analytischen Datenbank im Retargeting mehr erreicht. Düsseldorf, 24.04.

Big Data Analytics Roadshow. Nils Grabbert. Wie man mit einer analytischen Datenbank im Retargeting mehr erreicht. Düsseldorf, 24.04. Folie Retargeting intelligent Wie man mit einer analytischen Datenbank im Retargeting mehr erreicht. Big Data Analytics Roadshow Düsseldorf, 24.04.2012 Nils Grabbert Director Data Science Der Retargeting

Mehr

Prozess- und Service-Orientierung im Unternehmen mehr als Technologie

Prozess- und Service-Orientierung im Unternehmen mehr als Technologie Prozess- und Service-Orientierung im Unternehmen mehr als Technologie Presse Talk CeBIT 2007 Dr. Wolfgang Martin Analyst, ibond Partner, Ventana Research Advisor und Research Advisor am Institut für Business

Mehr

Umsetzung der Anforderungen - analytisch

Umsetzung der Anforderungen - analytisch Umsetzung der Anforderungen - analytisch Titel des Lernmoduls: Umsetzung der Anforderungen - analytisch Themengebiet: New Economy Gliederungspunkt im Curriculum: 4.2.5.5 Zum Inhalt: In diesem Modul wird

Mehr

Mehr Erfolg im Kampagnenmanagement durch Uplift-Modelling

Mehr Erfolg im Kampagnenmanagement durch Uplift-Modelling Mehr Erfolg im Kampagnenmanagement durch Uplift-Modelling Herkömmliche Marketingkampagnen Vorgehensweise: Je nach Kampagnenart erfolgt die Selektion der Kunden anhand bestimmter Kriterien (z.b. Alter,

Mehr

Kundenwissen für den Energieversorger der Zukunft

Kundenwissen für den Energieversorger der Zukunft Kundenwissen für den Energieversorger der Zukunft Dr. Leading Tobias customer Graml insights CTO company tobias.graml@ben-energy.com for utilities in Europe Sechs Jahre Expertise in Datenanalyse und Kundenverhalten

Mehr

Neue Strategien und Innovationen im Umfeld von Kundenprozessen

Neue Strategien und Innovationen im Umfeld von Kundenprozessen Neue Strategien und Innovationen im Umfeld von Kundenprozessen BPM Forum 2011 Daniel Liebhart, Dozent für Informatik an der Hochschule für Technik Zürich, Solution Manager, Trivadis AG Agenda Einleitung:

Mehr

SAP Customer Engagement Intelligence - Kundenanalysen der nächsten Generation

SAP Customer Engagement Intelligence - Kundenanalysen der nächsten Generation SAP Customer Engagement Intelligence - Kundenanalysen der nächsten Generation Alexander Schroeter, Head of Outbound PM MEE, CRM & Commerce, SAP AG Regensdorf, November 19, 2013 SAP Customer Engagement

Mehr

BI@T-Mobile: Enabling Closed-Loop Capabilities

BI@T-Mobile: Enabling Closed-Loop Capabilities BI@T-Mobile: Enabling Closed-Loop Oracle Terabyte, Heinz Sandermann Business Intelligence, TMD Barbara Jansen BI Framework & Data Architecture, TMD Die Geschäftsfelder der Deutschen Telekom at home on

Mehr

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit BI Konsolidierung: Anspruch & Wirklichkeit Jacqueline Bloemen in Kooperation mit Agenda: Anspruch BI Konsolidierung Treiber Was sind die aktuellen Treiber für ein Konsolidierungsvorhaben? Kimball vs. Inmon

Mehr

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller Was ist? Hannover, CeBIT 2014 Patrick Keller Business Application Research Center Historie 1994: Beginn der Untersuchung von Business-Intelligence-Software am Lehrstuhl Wirtschaftsinformatik der Universität

Mehr

Mit Risk Analytics Kundenrisiken aktiv steuern

Mit Risk Analytics Kundenrisiken aktiv steuern Mit Risk Analytics Kundenrisiken aktiv steuern Was sind Risk Analytics? Unter Risk Analytics versteht man statistische Analysen und Data Mining-Verfahren. Sie untersuchen Risiken im Zusammenhang mit Kundenbeziehungen

Mehr

Load Strategy Datenmodell DQ-Check-Methoden DWH-Probleme? Datenqualität aus der Sicht des One-DWH s Franz Hopfenwieser AGENDA 26 PT AGENDA

Load Strategy Datenmodell DQ-Check-Methoden DWH-Probleme? Datenqualität aus der Sicht des One-DWH s Franz Hopfenwieser AGENDA 26 PT AGENDA Datenqualität aus der Sicht des One- s Franz Hopfenwieser 18. Juni 2007 ONE, Franz HOPFENWIESER, 18.6.2007 SEITE 1 AGENDA 26 PT AGENDA DQ wird konstruiert One /MIS Aufgabenteilung OA/ Load Strategy Datenmodell

Mehr

Komplexität der Information - Ausgangslage

Komplexität der Information - Ausgangslage Intuition, verlässliche Information, intelligente Entscheidung ein Reisebericht Stephan Wietheger Sales InfoSphere/Information Management Komplexität der Information - Ausgangslage Liefern von verlässlicher

Mehr

Visual Business Intelligence Eine Forschungsperspektive

Visual Business Intelligence Eine Forschungsperspektive Visual Business Intelligence Eine Forschungsperspektive Dr. Jörn Kohlhammer Fraunhofer-Institut für Graphische Datenverarbeitung IGD Fraunhoferstraße 5 64283 Darmstadt Tel.: +49 6151 155 646 Fax.: +49

Mehr

Innovatives Customer Analytics Uplift Modelling. Interview mit Customer Analytics Experte, Philipp Grunert

Innovatives Customer Analytics Uplift Modelling. Interview mit Customer Analytics Experte, Philipp Grunert Innovatives Customer Analytics Uplift Modelling Interview mit Customer Analytics Experte, Philipp Grunert Uplift Modelling Mehr Erfolg im Kampagnenmanagement Entscheidend für den Erfolg einer Marketing-Kampagne

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 2 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 2 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 2 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

software, hardware und wissen für business intelligence lösungen software, hardware and knowledge for business intelligence solutions

software, hardware und wissen für business intelligence lösungen software, hardware and knowledge for business intelligence solutions software, hardware und wissen für business intelligence lösungen software, hardware and knowledge for business intelligence solutions Vom OLAP-Tool zur einheitlichen BPM Lösung BI orientiert sich am Business

Mehr

TNS EX A MINE BehaviourForecast Predictive Analytics for CRM. TNS Infratest Applied Marketing Science

TNS EX A MINE BehaviourForecast Predictive Analytics for CRM. TNS Infratest Applied Marketing Science TNS EX A MINE BehaviourForecast Predictive Analytics for CRM 1 TNS BehaviourForecast Warum BehaviourForecast für Sie interessant ist Das Konzept des Analytischen Customer Relationship Managements (acrm)

Mehr

Direktmarketing im Zentrum digitaler Vertriebsstrategien

Direktmarketing im Zentrum digitaler Vertriebsstrategien Direktmarketing im Zentrum digitaler Vertriebsstrategien Standortbestimmung und Key Learnings für Verlage Hamburg, September 2014 Im Zentrum digitaler Vertriebsstrategien steht zunehmend die Analyse komplexer

Mehr

Data Warehouse ??? Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle

Data Warehouse ??? Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle ??? Zusammenfassung, Ergänzung, Querverbindungen, Beispiele A.Kaiser; WU-Wien MIS 188 Data Warehouse Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle

Mehr

Dr. Wolfgang Leußer NEXT BEST ACTIVITY DAS RICHTIGE ANGEBOT FÜR DEN RICHTIGEN KUNDEN ZUR PERFEKTEN ZEIT

Dr. Wolfgang Leußer NEXT BEST ACTIVITY DAS RICHTIGE ANGEBOT FÜR DEN RICHTIGEN KUNDEN ZUR PERFEKTEN ZEIT Dr. Wolfgang Leußer NEXT BEST ACTIVITY DAS RICHTIGE ANGEBOT FÜR DEN RICHTIGEN KUNDEN ZUR PERFEKTEN ZEIT Dr. Wolfgang Leußer POSITION Senior Consultant Competence Center Customer Intelligence AUSBILDUNG

Mehr

Intelligente Unternehmens- und Prozesssteuerung durch CPM

Intelligente Unternehmens- und Prozesssteuerung durch CPM Intelligente Unternehmens- und Prozesssteuerung durch CPM 5. IIR Forum BI, Mainz, Sept. 2006 Dr. Wolfgang Martin Analyst, ibond Partner, Ventana Research Advisor und Research Advisor am Institut für Business

Mehr

FREUDENBERG IT. Mobile Business Intelligence

FREUDENBERG IT. Mobile Business Intelligence FREUDENBERG IT Mobile Business Intelligence Mobile Business Intelligence AGENDA Herausforderung mobiler Lösungen Vorstellung der Produkte Freudenberg ITs Lösungen Warum SAP? Herausforderung mobiler Lösungen

Mehr

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen Frank Irnich SAP Deutschland SAP ist ein globales Unternehmen... unser Fokusgebiet... IT Security für... 1 globales Netzwerk > 70 Länder, >

Mehr

Analytisches CRM und Data Mining

Analytisches CRM und Data Mining Analytisches CRM und Data Mining Magische Zahlen für das Marketing Computerwoche Initiative CRM 2009 Dr. Wolfgang Martin Analyst, ibond Partner, Ventana Research Advisor und Mitglied im CRM Expertenrat

Mehr

DWH Szenarien. www.syntegris.de

DWH Szenarien. www.syntegris.de DWH Szenarien www.syntegris.de Übersicht Syntegris Unser Synhaus. Alles unter einem Dach! Übersicht Data-Warehouse und BI Projekte und Kompetenzen für skalierbare BI-Systeme. Vom Reporting auf operativen

Mehr

Unser Wissen und unsere Erfahrung bringen Ihr E-Business-Projekt sicher ans Ziel.

Unser Wissen und unsere Erfahrung bringen Ihr E-Business-Projekt sicher ans Ziel. M/S VisuCom Beratung Unser Wissen und unsere Erfahrung bringen Ihr E-Business-Projekt sicher ans Ziel. Design Auch das Erscheinungsbild Ihres E-Business-Projektes ist entscheidend. Unsere Kommunikationsdesigner

Mehr

Customer Centricity. Frankfurt, November 2011. Dr. Wolfgang Martin Analyst, ibond Partner, und Mitglied im CRM Expertenrat

Customer Centricity. Frankfurt, November 2011. Dr. Wolfgang Martin Analyst, ibond Partner, und Mitglied im CRM Expertenrat Customer Centricity Frankfurt, November 2011 Dr. Wolfgang Martin Analyst, ibond Partner, und Mitglied im CRM Expertenrat Customer Centricity Kundenbeziehungs-Management Die Evolution der Modelle Outbound,

Mehr

1 mysap Business Intelligence Entscheidungen im richtigen betriebswirtschaftlichen Kontext 1

1 mysap Business Intelligence Entscheidungen im richtigen betriebswirtschaftlichen Kontext 1 1 mysap Business Intelligence Entscheidungen im richtigen betriebswirtschaftlichen Kontext 1 1.1 Das Informationsdilemma Es besteht kein Zweifel darüber, dass heute und in Zukunft die Unternehmensstrategie

Mehr

Inhalt. Geleitwort 13. Vorwort 17. Einleitende Hinweise 19. 1 Business-Intelligence-Konzepte - Neuerungen 25

Inhalt. Geleitwort 13. Vorwort 17. Einleitende Hinweise 19. 1 Business-Intelligence-Konzepte - Neuerungen 25 Inhalt Geleitwort 13 Vorwort 17 Einleitende Hinweise 19 Handhabung des Buches 19 Übergreifendes Beispielszenario 19 Nach der Lektüre 21 Danksagung 21 1 Business-Intelligence-Konzepte - Neuerungen 25 1.1

Mehr

Vorhersagetechniken für zukünftiges Verhalten von Kunden

Vorhersagetechniken für zukünftiges Verhalten von Kunden IBM 360 Grad-Sicht auf den Kunden: Vorhersagetechniken für zukünftiges Verhalten von Kunden Sven Fessler, sven.fessler@de.ibm.com Solution Architect, IBM Germany Business Analytics & Optimization Das Spektrum

Mehr

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Datei: Asklepius DA Flyer_Leistung_2 Seite: 1 von:5 1 Umfassende Datenanalyse Mit Asklepius-DA

Mehr

BI für Jedermann. Neue Möglichkeiten durch die Oracle BI-Suite Enterprise Edition

BI für Jedermann. Neue Möglichkeiten durch die Oracle BI-Suite Enterprise Edition BI für Jedermann Neue Möglichkeiten durch die Oracle BI-Suite Enterprise Edition Wolfgang Rütter Bereichsleiter Informationssysteme OPITZ CONSULTING Gummersbach GmbH 1 Warum BI für Jedermann? 1. Historie

Mehr

Uplift Modelling mitsas

Uplift Modelling mitsas Praktische Anwendung des Uplift Modelling mitsas Hintergründe, Voraussetzungen, Tipps& Tricks 12.06.2013 Udo Böhm Inhalt Uplift Uplift-Modelling mit SAS 1. Warum brauchen wir Uplift Modellierung im analytischen

Mehr

Schober Targeting System ecommerce

Schober Targeting System ecommerce Schober Targeting System ecommerce Crossmediale, systematische Marktbearbeitung Vom einzelnen Baustein bis zur Gesamtstrategie Modulare Lösungen sofort einsetzbar IST IHR INFORMATIONS- MANAGEMENT UP to

Mehr

Kundenbeziehungsmanagement im Mittelstand

Kundenbeziehungsmanagement im Mittelstand Kundenbeziehungsmanagement im Mittelstand Mit Vernetzung zum Erfolg Prof. Dr.-Ing. Andreas Schmidt Lehrgebiet Wirtschaftsinformatik Hochschule Osnabrück 1 by Hilbring Cartoons, Oliver Hilbring, http://www.oli-hilbring.de/

Mehr

Analytisches CRM in der Automobilindustrie

Analytisches CRM in der Automobilindustrie Analytisches CRM in der Automobilindustrie Dr. Frank Säuberlich Practice Manager European Customer Solutions Urban Science International GmbH Automobilhersteller müssen neue Wege gehen Anforderungen in

Mehr

Aktuelle Trends im CRM

Aktuelle Trends im CRM . CRM-Symposium.. Aktuelle Trends im CRM Prof. Dr. Klaus D. Wilde Lehrstuhl für ABWL und Wirtschaftsinformatik Katholische Universität Eichstätt-Ingolstadt. &. Generation KM ext Best X Aktionsorientiertes

Mehr

Bachelor of Eng. (Wirtschafts-Ing.-wesen)

Bachelor of Eng. (Wirtschafts-Ing.-wesen) Persönliche Daten Name Philipp Müller Geburtsdatum 21.11.1982 Berufsausbildung Studium Industriekaufmann Bachelor of Eng. (Wirtschafts-Ing.-wesen) Kompetenzen Methodisch Datenmodellierung Fachlich Allgemeines

Mehr

Einstieg in Business Intelligence mit Microsoft SharePoint 2010

Einstieg in Business Intelligence mit Microsoft SharePoint 2010 Martin W. Angler Einstieg in Business Intelligence mit Microsoft SharePoint 2010 Microsoft Press Einleitung 11 Was Sie in diesem Buch finden 12 Aufbau dieses Buchs 12 Kapitel 1: Was ist Business Intelligence?

Mehr

Inhaltsverzeichnis. 1 Was ist Business Intelligence?... 23

Inhaltsverzeichnis. 1 Was ist Business Intelligence?... 23 Inhaltsverzeichnis Einleitung............................................................................. 11 Was Sie in diesem Buch finden......................................................... 12 Aufbau

Mehr

Open Source BI Trends. 11. Dezember 2009 Wien Konstantin Böhm

Open Source BI Trends. 11. Dezember 2009 Wien Konstantin Böhm Open Source BI Trends 11. Dezember 2009 Wien Konstantin Böhm Profil Folie 2 JAX 2009 11.12.2009 Gründung 2002, Nürnberg 50 Mitarbeiter Innovative Kunden Spezialisiert auf Open Source Integration Open Source

Mehr

connect and get connected Wachstum durch CRM dank neuen Kunden

connect and get connected Wachstum durch CRM dank neuen Kunden connect and get connected Wachstum durch CRM dank neuen Kunden Swiss CRM Forum 2011 rbc Solutions AG, General Wille-Strasse 144, CH-8706 Meilen welcome@rbc.ch, www.rbc.ch, +41 44 925 36 36 Agenda Einleitung

Mehr

Cockpits und Standardreporting mit Infor PM 10 09.30 10.15 Uhr

Cockpits und Standardreporting mit Infor PM 10 09.30 10.15 Uhr Cockpits und Standardreporting mit Infor PM 10 09.30 10.15 Uhr Bernhard Rummich Presales Manager PM Schalten Sie bitte während der Präsentation die Mikrofone Ihrer Telefone aus, um störende Nebengeräusche

Mehr

Erfolgreicher Umgang mit heutigen und zukünftigen Bedrohungen

Erfolgreicher Umgang mit heutigen und zukünftigen Bedrohungen Erfolgreicher Umgang mit heutigen und zukünftigen Bedrohungen Das Zusammenspiel von Security & Compliance Dr. Michael Teschner, RSA Deutschland Oktober 2012 1 Trust in der digitalen Welt 2 Herausforderungen

Mehr

Effektives Empfehlungsmarketing durch Customer Analytics bei der BAWAG P.S.K.

Effektives Empfehlungsmarketing durch Customer Analytics bei der BAWAG P.S.K. badger Effektives Empfehlungsmarketing durch Customer Analytics bei der BAWAG P.S.K. Die www.bawagpskfonds.at neue Bank. Die neue BAWAG. www.bawagpsk.com Montag, 25. Februar 2013 BAWAG P.S.K. EINE BANK

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

Data Warehouse. für den Microsoft SQL SERVER 2000/2005

Data Warehouse. für den Microsoft SQL SERVER 2000/2005 Warehouse für den Microsoft SQL SERVER 2000/2005 Begriffe 1 DWH ( Warehouse) ist eine fachübergreifende Zusammenfassung von Datentabellen. Mart ist die Gesamtheit aller Datentabellen für einen fachlich

Mehr

INTELLIGENTE WEB 2.0 TOOLS ZUR LEADGENERIERUNG

INTELLIGENTE WEB 2.0 TOOLS ZUR LEADGENERIERUNG INTELLIGENTE WEB 2.0 TOOLS ZUR LEADGENERIERUNG Wie kann Ihr PR, Marketing und Vertrieb effizient und effektiv von Web 2.0 profieren? WAS BIETET GÖLZ & SCHWARZ? INTELLIGENTE WEB 2.0 TOOLS ZUR LEADGENERIERUNG

Mehr

Closed-loop STADTWERKE MAINZ AG. 17. SAP - Konferenz, 17. November 2004. Quelle: CRM für die Versorgungswirtschaft, Die Integration von mysap CRM

Closed-loop STADTWERKE MAINZ AG. 17. SAP - Konferenz, 17. November 2004. Quelle: CRM für die Versorgungswirtschaft, Die Integration von mysap CRM Closed-loop loop-szenario Quelle: CRM für die Versorgungswirtschaft, Die Integration von mysap CRM und mysap Utilities, SAP AG, 2001 1 Synchronisation von Geschäftsobjekten zwischen mysap Utilities und

Mehr

Datawarehouse Architekturen. Einheitliche Unternehmenssicht

Datawarehouse Architekturen. Einheitliche Unternehmenssicht Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA

Mehr

Strategisches Informationsmanagement auf Basis von Data Warehouse-Systemen

Strategisches Informationsmanagement auf Basis von Data Warehouse-Systemen Strategisches Informationsmanagement auf Basis von Data Warehouse-Systemen SAS PharmaHealth & Academia Gabriele Smith KIS-Tagung 2005 in Hamburg: 3. März 2005 Copyright 2003, SAS Institute Inc. All rights

Mehr

COMARCH LOYALTY MANAGEMENT. Loyalität stärken, Engagement erhöhen und Gewinne maximieren

COMARCH LOYALTY MANAGEMENT. Loyalität stärken, Engagement erhöhen und Gewinne maximieren COMARCH LOYALTY MANAGEMENT Loyalität stärken, Engagement erhöhen und Gewinne maximieren GESCHÄFTLICHE HERAUSFORDE- RUNGEN Kundenorientierte Unternehmen müssen heute aus einer Vielzahl an Möglichkeiten

Mehr

Welcome to the Club!

Welcome to the Club! Customer Relationship Management Welcome to the Club! Prolog Viele Leute glauben, dass wir das Zeitalter des Internets erreicht haben. Tatsächlich ist es eher zutreffend, dass wir das Zeitalter des Kunden

Mehr

DIE DATEN IM ZENTRUM: SAS DATA MANAGEMENT

DIE DATEN IM ZENTRUM: SAS DATA MANAGEMENT DIE DATEN IM ZENTRUM: SAS DATA RAINER STERNECKER SOLUTIONS ARCHITECT SAS INSTITUTE SOFTWARE GMBH Copyr i g ht 2013, SAS Ins titut e Inc. All rights res er ve d. NEUE WEGE GEHEN SAS DATA GOVERNANCE & QUALITY

Mehr

Mining the Web. Analyse von Benutzerpfaden und Nutzertypen im Internet. Business Unit CRM Solutions SAS Deutschland. Dr.

Mining the Web. Analyse von Benutzerpfaden und Nutzertypen im Internet. Business Unit CRM Solutions SAS Deutschland. Dr. Mining the Web Analyse von Benutzerpfaden und Nutzertypen im Internet Dr. Frank Säuberlich Business Unit CRM Solutions SAS Deutschland Agenda 1. Einleitung: Der Lebenszyklus eines e-kunden Begriffsdefinition

Mehr

Dr. Nick Golovin Koch Media GmbH n.golovin@kochmedia.com. Einsatz von Data Federation für den schnellen Aufbau eines BI-Systems

Dr. Nick Golovin Koch Media GmbH n.golovin@kochmedia.com. Einsatz von Data Federation für den schnellen Aufbau eines BI-Systems Dr. Nick Golovin Koch Media GmbH n.golovin@kochmedia.com Einsatz von Data Federation für den schnellen Aufbau eines BI-Systems Inhalt 1. Unternehmensportrait 2. Ausgangssituation 3. Aufgabenstellung 4.

Mehr

Analytisches CRM. Workshop Data Mining im Datenbasierten Marketing. Michael Lamprecht und Jan Frick, Altran GmbH & Co. KG 26.06.

Analytisches CRM. Workshop Data Mining im Datenbasierten Marketing. Michael Lamprecht und Jan Frick, Altran GmbH & Co. KG 26.06. Analytisches CRM Workshop Data Mining im Datenbasierten Marketing Michael Lamprecht und Jan Frick, Altran GmbH & Co. KG 26.06.2015 Data Mining bietet Antworten auf zahlreiche analytische Fragestellungen

Mehr

Strategie für das Berichtswesen und Dashboards unter Einsatz von SAP BusinessObjects

Strategie für das Berichtswesen und Dashboards unter Einsatz von SAP BusinessObjects Strategie für das Berichtswesen und Dashboards unter Einsatz von SAP BusinessObjects Sven Hertrich WWI08A Roche Pharma AG Firmenvorstellung Roche Umsatz 2010 47 473 Mio. CHF Mitarbeiterzahl 2010 80 653

Mehr

Die Geister, die ich rief Chancen & Risiken operativer Data Warehouse Anwendungen Dr. Jens Johannesson Februar 2009

Die Geister, die ich rief Chancen & Risiken operativer Data Warehouse Anwendungen Dr. Jens Johannesson Februar 2009 Die Geister, die ich rief Chancen & Risiken operativer Data Warehouse Anwendungen Dr. Jens Johannesson Februar 2009 Inhalt Telefónica O 2 Deutschland Business Intelligence bei O 2 Operative BI Chancen

Mehr

GESCHÄFTSSTELLENERÖFFNUNG HAMBURG, 25. APRIL 2013

GESCHÄFTSSTELLENERÖFFNUNG HAMBURG, 25. APRIL 2013 OPEN SYSTEMS CONSULTING IT-KOMPLETTDIENSTLEISTER IM MITTELSTAND GESCHÄFTSSTELLENERÖFFNUNG HAMBURG, 25. APRIL 2013 Business Analytics Sascha Thielke AGENDA Die Geschichte des Reporting Begriffe im BA Umfeld

Mehr

Data/Information Quality Management

Data/Information Quality Management Data/Information Quality Management Seminar WI/Informationsmanagement im Sommersemester 2002 Markus Berberov, Roman Eder, Peter Gerstbach 11.6.2002 Inhalt! Daten und Datenqualität! Einführung und Definition!

Mehr

>> PERFORMANCE MANAGEMENT & CONTROLLING

>> PERFORMANCE MANAGEMENT & CONTROLLING A S C E NTION I N F O RMATION M A N A G E M E NT >> PERFORMANCE MANAGEMENT & CONTROLLING 04.10.2010 ascention.com 1 Facts INTERNATIONALE STANDORTE >> Wien (A) >> Friedrichshafen (D) >> St. Gallen (CH)

Mehr

Business Intelligence Data Warehouse. Jan Weinschenker

Business Intelligence Data Warehouse. Jan Weinschenker Business Intelligence Data Warehouse Jan Weinschenker 28.06.2005 Inhaltsverzeichnis Einleitung eines Data Warehouse Data Warehouse im Zusammenfassung Fragen 3 Einleitung Definition: Data Warehouse A data

Mehr

MetaNavigation der effizienteste Weg maximalen Mehrwert aus BI Metadaten zu ziehen

MetaNavigation der effizienteste Weg maximalen Mehrwert aus BI Metadaten zu ziehen MetaNavigation der effizienteste Weg maximalen Mehrwert aus BI Metadaten zu ziehen Pasquale Grippo Senior Manager/Business Unit Manager BI 18/20.10.2011 Oracle Business Analytics Summits Düsseldorf/München

Mehr

Siemens. 360 Performance Dashboard. Digitale Kanäle. Mehrwert. Namics. Emanuel Bächtiger. Consultant.

Siemens. 360 Performance Dashboard. Digitale Kanäle. Mehrwert. Namics. Emanuel Bächtiger. Consultant. Siemens. 360 Performance Dashboard. Digitale Kanäle. Mehrwert. Emanuel Bächtiger. Consultant. 20. August 2013 Gegründet in 1995 im Besitz von 26 Partnern 51 Mio. CHF Umsatz in 2012 400 Mitarbeiter in CH

Mehr

Nur Einsatz bringt Umsatz Wir stellen vor: SAP Cloud for Customer

Nur Einsatz bringt Umsatz Wir stellen vor: SAP Cloud for Customer Nur Einsatz bringt Umsatz Wir stellen vor: SAP Cloud for Customer Swiss CRM Forum, 11. Juni 2014 Kirsten Trocka Senior Solution Advisor, SAP Cloud SAP (Suisse) AG Die Customer Cloud von SAP Das CRM in

Mehr

Towards Automated Analysis of Business Processes for Financial Audits

Towards Automated Analysis of Business Processes for Financial Audits Towards Automated Analysis of Business Processes for Financial Audits Michael Werner Universität Hamburg michael.werner@wiso.uni hamburg.de Max Brauer Allee 60 22765 Hamburg StB Prof. Dr. Nick Gehrke Nordakademie

Mehr

Explosionsartige Zunahme an Informationen. 200 Mrd. Mehr als 200 Mrd. E-Mails werden jeden Tag versendet. 30 Mrd.

Explosionsartige Zunahme an Informationen. 200 Mrd. Mehr als 200 Mrd. E-Mails werden jeden Tag versendet. 30 Mrd. Warum viele Daten für ein smartes Unternehmen wichtig sind Gerald AUFMUTH IBM Client Technical Specialst Data Warehouse Professional Explosionsartige Zunahme an Informationen Volumen. 15 Petabyte Menge

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

DER DIGITAL ANALYST SPIELERISCH DAS INTERNET UND SEINE KUNDEN VERSTEHEN

DER DIGITAL ANALYST SPIELERISCH DAS INTERNET UND SEINE KUNDEN VERSTEHEN DER DIGITAL ANALYST SPIELERISCH DAS INTERNET UND SEINE KUNDEN VERSTEHEN FH-Prof. Dr. Claudia Brauer Management Center Innsbruck MCI MANAGEMENT CENTER INNSBRUCK Universitätsstraße 15 office@mci.edu 1 BIG

Mehr

Entscheidungsunterstützungssysteme

Entscheidungsunterstützungssysteme Vorlesung WS 2013/2014 Christian Schieder Professur Wirtschaftsinformatik II cschie@tu-chemnitz.eu Literatur zur Vorlesung Gluchowski, P.; Gabriel, R.; Dittmar, C.: Management Support Systeme und Business

Mehr

Das Potenzial von Multikanal- Recommendations nutzen Chancen und Grenzen der Personalisierung

Das Potenzial von Multikanal- Recommendations nutzen Chancen und Grenzen der Personalisierung Das Potenzial von Multikanal- Recommendations nutzen Chancen und Grenzen der Personalisierung Dr. Philipp Sorg (Senior Data Scientist) Peter Stahl (Senior Business Development Manager) 24. März 2015, Internet

Mehr

Raus aus der Bl-Falle

Raus aus der Bl-Falle Ronald Bachmann, Dr. Guido Kemper Raus aus der Bl-Falle Wie Business Intelligencezum Erfolg wird mitp Die Autoren 13 Vorwort 15 1 Einleitung 21 1.1 Was ist Business Intelligence (BI)? 21 1.2 Motive zur

Mehr

ibpm - intelligent Business Process Management: WWW.AXONIVY.COM

ibpm - intelligent Business Process Management: WWW.AXONIVY.COM ibpm - intelligent Business Process Management: ein neues Zeitalter bricht an. Peter Wiedmann 14.11.2014 WWW.AXONIVY.COM AGENDA 2 Vorstellung und Einführung Produktvorstellung ibpm die neue Dimension Anwendungsszenario

Mehr

vom Lead zum Top-Kunden in drei Schritten Alexandra Vetrovsky-Brychta Marketing on Tour in Wien, 10.11.2011

vom Lead zum Top-Kunden in drei Schritten Alexandra Vetrovsky-Brychta Marketing on Tour in Wien, 10.11.2011 Mehr Erfolg, mehr conversion vom Lead zum Top-Kunden in drei Schritten Alexandra Vetrovsky-Brychta Marketing on Tour in Wien, 10.11.2011 Agenda Kurzvorstellung Schober Qualifizierte Leadgenerierung Targeting

Mehr

Zyklus des CRM. CRM-Informationsarchitektur mit intelligenten Agenten. Kauf. Willkommenspaket gewünschte Leistung sicherstellen. Persönlicher Kontakt

Zyklus des CRM. CRM-Informationsarchitektur mit intelligenten Agenten. Kauf. Willkommenspaket gewünschte Leistung sicherstellen. Persönlicher Kontakt Zyklus des CRM. Persönlicher Kontakt Kauf Start Willkommenspaket gewünschte Leistung sicherstellen Call Center Zurückgewinnung Kennenlernen Service Beratung Dialog-Medien Trennung CRM-Informationsarchitektur

Mehr

Summary... 4. Keywords... 4. Granularität der Daten... 5. Mit Vorverdichtung hochaggregierte Daten bereithalten... 6

Summary... 4. Keywords... 4. Granularität der Daten... 5. Mit Vorverdichtung hochaggregierte Daten bereithalten... 6 Inhaltsverzeichnis Summary... 4 Keywords... 4 Granularität der Daten... 5 Mit Vorverdichtung hochaggregierte Daten bereithalten... 6 Partitionierung der Datenbestände... 7 Vergrößerter Aktionsradius von

Mehr

Next Best Product. Kundenspezifische Produktangebote in einer Multichannel Umgebung

Next Best Product. Kundenspezifische Produktangebote in einer Multichannel Umgebung Next Best Product Kundenspezifische Produktangebote in einer Multichannel Umgebung - Mag. Thomas Schierer - Erste Bank der oesterreichischen Sparkassen AG Agenda Erste Bank Allgemeine Information CRM in

Mehr

Intelligente Kundensegmentierung mit SAP HANA

Intelligente Kundensegmentierung mit SAP HANA GLOOOBAL E A l GLOOOBAL Energy Analyzer Intelligente Kundensegmentierung mit SAP HANA Die Herausforderung Wenn Energieversorger Strom an Unternehmenskunden verkaufen, ist ein detailliertes Verständnis

Mehr

RE.one. Self Service Information Management für die Fachabteilung

RE.one. Self Service Information Management für die Fachabteilung RE.one Self Service Information Management für die Fachabteilung Das Ziel Verwertbare Informationen aus Daten gewinnen Unsere Vision Daten Info Data Warehousing radikal vereinfachen in einem Tool Die Aufgabe

Mehr

Infor PM 10 auf SAP. Bernhard Rummich Presales Manager PM. 9.30 10.15 Uhr

Infor PM 10 auf SAP. Bernhard Rummich Presales Manager PM. 9.30 10.15 Uhr Infor PM 10 auf SAP 9.30 10.15 Uhr Bernhard Rummich Presales Manager PM Schalten Sie bitte während der Präsentation die Mikrofone Ihrer Telefone aus, um störende Nebengeräusche zu vermeiden. Sie können

Mehr

Big Data Herausforderungen für Rechenzentren

Big Data Herausforderungen für Rechenzentren FINANCIAL INSTITUTIONS ENERGY INFRASTRUCTURE, MINING AND COMMODITIES TRANSPORT TECHNOLOGY AND INNOVATION PHARMACEUTICALS AND LIFE SCIENCES Big Data Herausforderungen für Rechenzentren RA Dr. Flemming Moos

Mehr

RACE Reporting and Analysis of Communication Efficiency

RACE Reporting and Analysis of Communication Efficiency RACE Reporting and Analysis of Communication Efficiency Niedersächsischen PR Forum Lingen (Ems) / Fachhochschule Osnabrück 17. März 26 Frank Herkenhoff,, M.A. PLEON Kohtes Klewes München Sonnenstrasse

Mehr

Erfolgreiches Zusammenarbeiten von IT und Marketing am Beispiel von Meta Daten Management

Erfolgreiches Zusammenarbeiten von IT und Marketing am Beispiel von Meta Daten Management Erfolgreiches Zusammenarbeiten von IT und Marketing am Beispiel von Meta Daten Management Sprecher: Uwe Nadler, Senior Managing Consultant 1 Marketing braucht unterschiedliche Informationen, um entsprechende

Mehr

R im Enterprise-Modus

R im Enterprise-Modus R im Enterprise-Modus Skalierbarkeit, Support und unternehmensweiter Einsatz Dr. Eike Nicklas HMS Konferenz 2014 Was ist R? R is a free software environment for statistical computing and graphics - www.r-project.org

Mehr

Richtige und schnelle Entscheidungen trotz sich änderner Anforderungen mit Microsoft Dynamics AX und Microsoft SQL Server Reporting Services

Richtige und schnelle Entscheidungen trotz sich änderner Anforderungen mit Microsoft Dynamics AX und Microsoft SQL Server Reporting Services Launch Microsoft Dynamics AX 4.0 Richtige und schnelle Entscheidungen trotz sich änderner Anforderungen mit Microsoft Dynamics AX und Microsoft SQL Server Reporting Services Sonia Al-Kass Partner Technical

Mehr

Maximieren Sie Ihr Informations-Kapital

Maximieren Sie Ihr Informations-Kapital Maximieren Sie Ihr Informations-Kapital Zürich, Mai 2014 Dr. Wolfgang Martin Analyst, Mitglied im Boulder BI Brain Trust Maximieren des Informations-Kapitals Die Digitalisierung der Welt: Wandel durch

Mehr

NABUCCO Test Automation Automatisiertes Testen ohne Programmieren 20.03.2013

NABUCCO Test Automation Automatisiertes Testen ohne Programmieren 20.03.2013 20.03.2013 NABUCCO Test Automation Automatisiertes Testen ohne Programmieren 20.03.2013 Dominik Kaulfuss QA Erfahrung seit 2008 Experte für Test Automation und Test Design ISTQB Certified Tester Certified

Mehr

CRM meets SPM - Über die Konvergenz von CRM und SPM! Keynote MuniConS Rolf Pollmeier, Geschäftsführer MuniConS!

CRM meets SPM - Über die Konvergenz von CRM und SPM! Keynote MuniConS Rolf Pollmeier, Geschäftsführer MuniConS! CRM meets SPM - Über die Konvergenz von CRM und SPM! MUNICONS( think!(act!(!!!!!!!!!!!!!!!!!!!!!!!!!rolf Pollmeier!!!MuniConS GmbH! Keynote MuniConS Rolf Pollmeier, Geschäftsführer MuniConS! Im Zentrum

Mehr

Macht Knowledge- Management Unternehmen effizienter?

Macht Knowledge- Management Unternehmen effizienter? Macht Knowledge- Management Unternehmen effizienter? Karl-Heinz Plünnecke Geschäftsführer H.U.T GmbH 1 Software Performance Entwicklung Performance Was dann? ecommerce ERP SCM CRM Zeit 2 1 Noch Potential?

Mehr

Data Warehouse Version: June 26, 2007. Andreas Geyer-Schulz und Anke Thede

Data Warehouse Version: June 26, 2007. Andreas Geyer-Schulz und Anke Thede Data Warehouse Version: June 26, 2007 Andreas Geyer-Schulz und Anke Thede Schroff-Stiftungslehrstuhl Informationsdienste und Elektronische Märkte Fakultät für Wirtschaftswissenschaften Gebäude 20.20 Rechenzentrum,

Mehr

Business Performance Management Next Generation Business Intelligence?

Business Performance Management Next Generation Business Intelligence? Business Performance Management Next Generation Business Intelligence? München, 23. Juni 2004 Jörg Narr Business Application Research Center Untersuchung von Business-Intelligence-Software am Lehrstuhl

Mehr