Mathematik für Ingenieure

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mathematik für Ingenieure"

Transkript

1 A. Hoffmann B. Marx W. Vogt Mathematik für Ingenieure Lineare Algebra, Analysis Theorie und Numerik 1. Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sysney Mexico City Madrid Amsterdam

2 I Grundlagen 1 Kapitel 1 Elementare Logik Aussagen Aussagenverknüpfungen und Aussagenfunktionen Boolesche Algebra und Boolesche Funktion Aussageformen und Quantoren Beweistechniken Aufgaben 31 Kapitel 2 Elementare Mengenlehre Mengen und Elemente Konstruktion von Mengen, Verknüpfung von Mengen Kartesisches Produkt von Mengen Aufgaben 43 Kapitel 3 Algebra, Ordnung und Toplogie der reellen Zahlen Induktion Algebraische Strukturen bei den Zahlen Ordnungsstrukturen bei den Zahlen Verträglichkeit zwischen Algebra und Ordnung Toplogie der Zahlen Darstellung von Zahlen im Computer Elemente der Kombinatorik Aufgaben 68 Kapitel 4 Komplexe Zahlen Gaußsche Zahlenebene, Körper der komplexen Zahlen Geometrische Veranschaulichung der Operationen Die Addition, Subtraktion und Multiplikation mit reellen Zahlen Die trigonometrische Darstellung Multiplikation Division Die Exponentialdarstellung einer komplexen Zahl, e z,sinz, cosz Berechnung der n ten Wurzeln aus einer komplexen Zahl 84 5

3 4.4 Riemannfläche Logarithmus Potenzgesetze und Logarithmengesetze Die komplexe Vollebene der Punkt z = Geometrie in der komplexen Vollebene Topologie der komplexen Zahlen Anwendung der komplexen Zahlen in der Elektrotechnik Aufgaben 104 Kapitel 5 Relationen und Abbildungen Grundlegende Definitionen und Eigenschaften Mächtigkeit von Mengen Beispiele von Funktionen Umkehrfunktion einer reellen Funktion einer Veränderlichen Die symmetrische Gruppe der Abbildungen S M Aufgaben 140 II Lineare Algebra 143 Kapitel 6 Lineare Räume Axiomensystem, Beispiele Matrizen Basis, Dimension Affiner Raum Unterräume, Dimensionssätze Lineare Gleichungssysteme - Gaußalgorithmus Matrixrang, Inverse Matrix Koordinaten - Darstellung und Transformation Aufgaben 193 Kapitel 7 Lineare Abbildungen Definition, Beispiele, Grundlagen Lösungsprinzipien linearer Gleichungen Koordinatenmatrix einer linearen Abbildung Transformation der Koordinatenmatrix Lineare Funktionale im Raum X duale Basis Basisdarstellung linearer Abbildungen Basis- und Koordinatentransformation in X Die duale Abbildung L #, Annullatoren 227 6

4 7.9 Aufgaben 234 Kapitel 8 Multilineare Abbildungen Definition, Koordinaten, Tensor Potenzabbildung und Polynome Determinantenform und Determinante Aufgaben 258 Kapitel 9 Lineare Abbildungen in Hilberträumen Raum mit Skalarprodukt, QR-Zerlegung Adjungierte Abbildungen Selbstadjungierte Endomorphismen Orthogonale und unitäre Abbildungen Normale Endomorphismen Aufgaben 293 Kapitel 10 Spektralzerlegung linearer Endomorphismen Eigenwerte, Eigenvektoren, Hauptachsentransformation Positive (negative) Definitheit Spektralzerlegung normaler Endomorphismen Analytische Funktionen normaler Endomorphismen Vertauschbarkeit normaler Endomorphismen Jordannormalform von Endomorphismen Analytische Funktionen beliebiger Endomorphismen Aufgaben 331 Kapitel 11 Singulärwertzerlegung linearer Abbildungen Singulärwertzerlegung Norm einer linearen Abbildung Pseudoinverse einer linearen Abbildung Lineare Quadratmittel-Approximation Aufgaben 350 III Analysis 353 Kapitel 12 Folgen Konvergenz Rechnen mit Zahlenfolgen 368 7

5 12.3 Konvergenzkriterien für Zahlenfolgen Reihen Aufgaben 388 Kapitel 13 Normierte Vektorräume Norm Prähilberträume Vollständigkeit Aufgaben 405 Kapitel 14 Stetigkeit Topologische Grundbegriffe Grenzwerte von Funktionen Stetige Funktionen Banachscher Fixpunktsatz Aufgaben 435 Kapitel 15 Funktionenfolgen Gleichmäßige Konvergenz Potenzreihen Elementare Funktionen Aufgaben 467 Kapitel 16 Differenziation Die Differenzierbarkeit einer Abbildung Partielle Ableitungen Mittelwertsätze Der Taylorsche Satz Die Differenzierbarkeit implizit definierter Funktionen Extrema von Funktionen mehrerer Variabler Extrema von Funktionen ohne Nebenbedingung Extrema von Funktionen mit Nebenbedingungen Aufgaben 542 Kapitel 17 Integralrechnung in einer Variablen Das bestimmte Riemannsche Integral Der Hauptsatz der Differenzial- und Integralrechnung Integrationsregeln und Integrationstechniken 567 8

6 17.4 Uneigentliche Integrale Unbeschränkter Integrationsbereich Unbeschränkter Integrand Parameterabhängige Integrale Anwendungen der Integralrechnung Volumen eines Rotationskörpers Parametrisierte Kurven, Bogenlänge Einige Begriffe der Kurvengeometrie Aufgaben 616 IV Numerische Methoden 619 Kapitel 18 Direkte Verfahren für lineare Gleichungssysteme LU-Zerlegung und Gauß-Algorithmus Pivotisierung und Pivotstrategien Matrixinversion und Cholesky-Zerlegung Matrixnormen, Konditionszahlen und Fehlerschätzung Aufgaben 660 Kapitel 19 Iterative Verfahren für große lineare Gleichungssysteme Splitting-Verfahren Systeme mit spezieller Struktur und Relaxation Krylov-Unterräume und Arnoldi-Verfahren GMRES-Verfahren und BiCG-Verfahren Aufgaben 699 Kapitel 20 Approximation von Eigenwerten und Eigenvektoren Vektoriteration und inverse Iteration QR-Zerlegung und QR-Verfahren QR-Zerlegung QR-Verfahren Krylov-Unterraum-Methoden Aufgaben 734 Kapitel 21 Numerische Methoden für nichtlineare Gleichungssysteme Picard-Verfahren Newton-Verfahren Vereinfachte Newton-Verfahren Anwendungen des Newton-Verfahrens 769 9

7 21.5 Großdimensionale nichtlineare Systeme Parameterabhängige nichtlineare Systeme Numerische Kurvenverfolgung Aufgaben 800 Kapitel 22 Numerische Interpolation und Integration Polynom-Interpolation von Funktionen Newton- und Hermite-Interpolation Spline-Interpolation Anwendungen von Splines Numerische Integration Newton-Cotes- und Gauß-Legendre-Formeln Zusammengesetzte Integrationsformeln Romberg-Verfahren und adaptive Integrationsformeln Aufgaben 844 Literaturverzeichnis 847 Sachregister

Dirk Hachenberger Mathematik für Informatiker

Dirk Hachenberger Mathematik für Informatiker Dirk Hachenberger Mathematik für Informatiker ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Inhaltsverzeichnis Vorwort

Mehr

Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab

Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab Wolfgang Kohn Riza Öztürk Mathematik für Ökonomen Ökonomische Anwendungen der linearen Algebra und Analysis mit Scilab 3., erweiterte und überarbeitete Auflage ^ Springer Gabler Inhaltsverzeichnis Teil

Mehr

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11. ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische

Mehr

Mathematik für Ökonomen

Mathematik für Ökonomen Springer-Lehrbuch Mathematik für Ökonomen Ökonomische Anwendungen der linearen Algebra und Analysis mit Scilab Bearbeitet von Wolfgang Kohn, Riza Öztürk 1. Auflage 2012. Taschenbuch. xv, 377 S. Paperback

Mehr

Einführung in die Mathematik für Volks- und Betriebswirte

Einführung in die Mathematik für Volks- und Betriebswirte Einführung in die Mathematik für Volks- und Betriebswirte Von Prof. Dr. Heinrich Bader und Prof. Dr. Siegbert Fröhlich Mit 45 A bbildungen 8. A uflage R. Oldenbourg Verlag München Wien INHALTSVERZEICHNIS

Mehr

Mathematik für Techniker

Mathematik für Techniker Mathematik für Techniker 5. Auflage mit 468 Bildern, 531 Beispielen und 577 Aufgaben mit Lösungen rs Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Rechenoperationen 15 1.1 Grundbegriffe

Mehr

Objektorientierte Softwaretechnik

Objektorientierte Softwaretechnik Bernd Brügge, Allen H. Dutoit Objektorientierte Softwaretechnik mit UML, Entwurfsmustern und Java ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney

Mehr

Bausteine mechatronischer Systeme

Bausteine mechatronischer Systeme William Bolton Bausteine mechatronischer Systeme 3. Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Inhaltsverzeichnis

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Modulhandbuch für die Bachelorstudiengänge. Mathematik Technomathematik Wirtschaftsmathematik Lehramt (vertieft) Lehramt (nicht vertieft) WS 2007/08

Modulhandbuch für die Bachelorstudiengänge. Mathematik Technomathematik Wirtschaftsmathematik Lehramt (vertieft) Lehramt (nicht vertieft) WS 2007/08 WS 2007/08 Mathematik, Technomathematik, Wirtschaftsmathematik (FAU) 1 Modulhandbuch für die Bachelorstudiengänge Mathematik Technomathematik Wirtschaftsmathematik Lehramt (vertieft) Lehramt (nicht vertieft)

Mehr

Inhaltsverzeichnis. TEIL I: Einführung in EXCEL

Inhaltsverzeichnis. TEIL I: Einführung in EXCEL Inhaltsverzeichnis TEIL I: Einführung in EXCEL 1 Das Tabellenkalkulationsprogramm EXCEL... 1 1.1 Tabellenkalkulation... 1 1.2 Anwendungsgebiete... 1 1.3 Hilfefunktionen... 2 2 Benutzeroberflächen der Versionen

Mehr

Studiengang. Bachelor of Education. (B.Ed.) Lehramt. Gymnasium. Mathematik

Studiengang. Bachelor of Education. (B.Ed.) Lehramt. Gymnasium. Mathematik Studiengang Bachelor of Education (B.Ed.) Lehramt Gymnasium Mathematik der Universität Mannheim Modulkatalog (Stand: 03.09.2015) 1 Inhaltsverzeichnis Vorwort... 3 Modulübersicht...4 Modulbeschreibungen...

Mehr

ToDo-Liste für s Mathe-Abi 2009

ToDo-Liste für s Mathe-Abi 2009 ToDo-Liste für s Mathe-Abi 2009 7. Februar 2009 1 Grenzwerte und Folgen 1. Unterschied arithmetische Folge zu geometrische Folge 2. Rekursive Darstellung von Zerfalls- und Wachstumsvorgängen (a) lineares

Mehr

EXCEL in der Wirtschaftsmathematik

EXCEL in der Wirtschaftsmathematik Hans Benker EXCEL in der Wirtschaftsmathematik Anwendung von Tabellenkalkulationsprogrammen für Studenten, Dozenten und Praktiker Springer Vieweg Inhaltsverzeichnis TEIL I: Einführung in EXCEL 1 Das Tabellenkalkulationsprogramm

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Public-Key-Algorithmen WS2015/2016

Public-Key-Algorithmen WS2015/2016 Public-Key-Algorithmen WS2015/2016 Lernkontrollfragen Michael Braun Was bedeuten die kryptographischen Schutzziele Vertraulichkeit, Integrität, Nachrichtenauthentizität, Teilnehmerauthentizität, Verbindlichkeit?

Mehr

W. Schäfer/K. Georgi/G. Trippier. Mathematik-Vorkurs

W. Schäfer/K. Georgi/G. Trippier. Mathematik-Vorkurs W. Schäfer/K. Georgi/G. Trippier Mathematik-Vorkurs Mathematik- Vorkurs Übungs- und Arbeitsbuch für Studienanfänger Von Prof. Dr. rer. nat. habil. Wolfgang Schäfer Oberstudienrat Kurt Georgi und Doz. Dr.

Mehr

Günter M. Gramlich. Mathematik-Studienhilfen. Eine Einführung. Lineare Algebra. 2., aktualisierte Auflage

Günter M. Gramlich. Mathematik-Studienhilfen. Eine Einführung. Lineare Algebra. 2., aktualisierte Auflage Günter M. Gramlich Mathematik-Studienhilfen Lineare Algebra Eine Einführung 2., aktualisierte Auflage Günter M. Gramlich Lineare Algebra Mathematik - Studienhilfen Herausgegeben von Prof. Dr. Bernd Engelmann

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

Technische Mathematik

Technische Mathematik Lehrplan Technische Mathematik Fachschule für Technik Fachrichtungsbezogener Lernbereich Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024

Mehr

Abschlussbericht Mathematik-Online

Abschlussbericht Mathematik-Online Abschlussbericht Mathematik-Online 1 Zusammenfassung. Im November 2001 riefen die Universitäten Stuttgart und Ulm das von dem Ministerium für Wissenschaft, Forschung und Kunst geförderte Projekt Mathematik-

Mehr

ÜBERBLICK ÜBER DAS KURS-ANGEBOT

ÜBERBLICK ÜBER DAS KURS-ANGEBOT ÜBERBLICK ÜBER DAS KURS-ANGEBOT Alle aufgeführten Kurse sind 100 % kostenfrei und können unter http://www.unterricht.de abgerufen werden. ANALYSIS / INFINITESIMALRECHNUNG Nullstellen * Nullstellen einer

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Modulbezeichnung in Englisch Algebra II Qualifikationsstufe/Geberstudien Bachelormodul/ Lehramt Gymnasium. N.N. verantwortlicher. Modulverantwortung /

Modulbezeichnung in Englisch Algebra II Qualifikationsstufe/Geberstudien Bachelormodul/ Lehramt Gymnasium. N.N. verantwortlicher. Modulverantwortung / Algebra II Modulbezeichnung in Englisch Algebra II Qualifikationsstufe/Geberstudien Bachelormodul/ Lehramt Gymnasium 82-105-L-MAT09-H-0610 N.N. Lehramt (H. Fischer) Leistungspunkte (ECTS-Punkte) 5 Gründliches

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel Vorlesung 2 22 bzw 23 Januar 204 Lineares Gleichungssystem a a 2 b b 2 = F a a 2 a 3 b b 2 b 3 c c 2 c 3 = V V =< a, b c > c b a b a F V Seite 70 a x + a 2 x 2 + a 3 x 3 b = 0 < a x + a 2 x 2 + a 3 x 3

Mehr

1. Methode der Finiten Elemente

1. Methode der Finiten Elemente 1. Methode der Finiten Elemente 1.1 Innenraumprobleme 1.2 Außenraumprobleme 1.3 Analysen 1.4 Bewertung Prof. Dr. Wandinger 5. Numerische Methoden Akustik 5.1-1 1.1 Innenraumprobleme 1.1.1 Schwache Formulierung

Mehr

http://www.mathematik.uni-kl.de/ gramlich

http://www.mathematik.uni-kl.de/ gramlich Vorwort MATLAB ist inzwischen in vielen Hochschulen, Universitäten und Fachhochschulen gleichermaßen ein etabliertes Programmsystem, das sowohl im Fach Mathematik selbst als auch in noch stärkerem Maße

Mehr

Karl-Heinz Zimmermann. Diskrete Mathematik. Books on Demand

Karl-Heinz Zimmermann. Diskrete Mathematik. Books on Demand Diskrete Mathematik Karl-Heinz Zimmermann Diskrete Mathematik Books on Demand Prof. Dr. Karl-Heinz Zimmermann TU Hamburg-Harburg 21071 Hamburg Germany Bibliografische Information der Deutschen Bibliothek

Mehr

Windows-Testumgebung

Windows-Testumgebung Thomas Joos Windows-Testumgebung Für Ausbildung und Beruf ADDISON-WESLEY An imprint of Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam

Mehr

Wolff Hauck Küchlin Mathematik für Informatik und BioInformatik

Wolff Hauck Küchlin Mathematik für Informatik und BioInformatik Wolff Hauck Küchlin Mathematik für Informatik und BioInformatik Springer Berlin Heidelberg New York Hongkong London Mailand Paris Tokio M.P.H. Wolff P. Hauck W. Küchlin Mathematik für Informatik und BioInformatik

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Brückenkurs Mathematik Mathe: Das 1x1 der Ingenieurwissenschaften

Brückenkurs Mathematik Mathe: Das 1x1 der Ingenieurwissenschaften Brückenkurs Mathematik Mathe: Das x der Ingenieurwissenschaften Gewöhnliche Differentialgleichungen, lineare Algebra oder Integralrechnung vertiefte Kenntnisse der Mathematik sind Voraussetzung für den

Mehr

MCSE-Zertifizierungsupgrade auf Windows Server 2003

MCSE-Zertifizierungsupgrade auf Windows Server 2003 Stephan Hirsch, David Kube MCSE-Zertifizierungsupgrade auf Windows Server 2003 Für Examen Nr. 70 296 ADDISON-WESLEY An imprint of Pearson Education München Boston San Francisco Harlow, England Don Mills,

Mehr

Schulinternes Curriculum. Mathematik

Schulinternes Curriculum. Mathematik Gymnasium Zitadelle Schulinternes Curriculum (G 8) Stand: Schuljahr 2012/13 Gymnasium Zitadelle Schulinternes Curriculum Seite 1 EF Eingeführtes Lehrbuch: Lambacher Schweizer 10 Einführungsphase Funktionen

Mehr

Feature-based Programming

Feature-based Programming Stefan Richter Feature-based Programming Planung, Programmierung, Projekt-Management: Über die Kunst systematisch zu planen und mit Agilität umzusetzen ADDISON-WESLEY An imprint of Pearson Education München

Mehr

Wirtschaftsmathematik für Dummies

Wirtschaftsmathematik für Dummies Christoph Mayer, Sören Jensen, Suteika Bort, beborah Rumsey, Mark Ryan und Mary Jane Sterling Wirtschaftsmathematik für Dummies Herausaegeben Von Christoph Mayer, Sören Jensen und Suteika Bort WILEY- VCH

Mehr

Java Server Faces. Andy Bosch. Das Standard-Framework zum Aufbau webbasierter Anwendungen. An imprint of Pearson Education

Java Server Faces. Andy Bosch. Das Standard-Framework zum Aufbau webbasierter Anwendungen. An imprint of Pearson Education Andy Bosch Java Server Faces Das Standard-Framework zum Aufbau webbasierter Anwendungen An imprint of Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City

Mehr

7. Numerik mit MATLAB

7. Numerik mit MATLAB Start Inhalt Numerik mit MATLAB 1(24) 7. Numerik mit MATLAB 7.1 Lineare Algebra Normen. Matrixzerlegungen. Gleichungssysteme. 7.2 Lineare Ausgleichsrechnung qr, svd, pinv, \. 7.3 Interpolation interp1,

Mehr

Webanwendungen mit IBM Rational und IBM WebSphere V6

Webanwendungen mit IBM Rational und IBM WebSphere V6 Joachim Gucker, Michael Müller, Dietmar Rager, Stefan Schäffer, Walter Schilder, Veronika Thurner, Dina Winkler Webanwendungen mit IBM Rational und IBM WebSphere V6 Effizient entwickeln mit J2EE 1.4, JSF

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Artur Trzewik sw562@uni-essen.de v1., 26.3.1998 korrigiert 16. Februar 2 Zusammenfassung Warnung: für die Richtigkeit der Definitionnen

Mehr

Internationale Wirtschaft

Internationale Wirtschaft Paul R. Krugman Maurice Obstfeld Internationale Wirtschaft Theorie und Politik der Außenwirtschaft 6. Auflage,*». \ 4 1 ^ l t',t * ' k PEARSON / Studium ein Imprint von Pearson Education München Boston

Mehr

Klaus-Groth-Schule - Neumünster Fachcurriculum Mathematik

Klaus-Groth-Schule - Neumünster Fachcurriculum Mathematik Jahrgang 10 Funktionen Funktionsbegriff - Definition - vielfältige Anwendungen - Umkehrbarkeit (intuitiv, Anwendungen) ganzrationale Funktionen Modellierung - Ablesen der Werte - Ungefähre Bestimmung der

Mehr

Achim Bühl, Peter Zöfel SPSS. Methoden für die Markt- und Meinungsforschung. Technische Unäversität Darmstadt

Achim Bühl, Peter Zöfel SPSS. Methoden für die Markt- und Meinungsforschung. Technische Unäversität Darmstadt Inv.-Nr: Achim Bühl, Peter Zöfel SPSS Methoden für die Markt- und Meinungsforschung Technische Unäversität Darmstadt Institut für Sportwissenschaft - Bibliothek Magdalenenstraße 27, 64289 Darmstadt Tel.:

Mehr

Magento Theme-Design. professionelle Themes für Ihren Shop Y%ADDISON-WESLEY. Entwerfen Sie Schritt für Schritt. Richard Carter

Magento Theme-Design. professionelle Themes für Ihren Shop Y%ADDISON-WESLEY. Entwerfen Sie Schritt für Schritt. Richard Carter Richard Carter Magento Theme-Design Entwerfen Sie Schritt für Schritt professionelle Themes für Ihren Shop Y%ADDISON-WESLEY An imprint of Pearson Education München Boston San Francisco Harlow, England

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

Statistische Methoden

Statistische Methoden Statistische Methoden Dr CJ Luchsinger 6 Repetition: Rechnen mit Matrizen für die Statistik Matrizen sind aus zwei Gründen für die Statistik sehr wichtig: Sie ermöglichen uns einerseits eine sehr elegante

Mehr

Impressum Herausgeber: Studienberatung Mathe und Wima Redaktion und Gestaltung: Studienberatung Mathe Druck: Zentrale Vervielfältigung der

Impressum Herausgeber: Studienberatung Mathe und Wima Redaktion und Gestaltung: Studienberatung Mathe Druck: Zentrale Vervielfältigung der 2 Impressum Herausgeber: Studienberatung Mathe und Wima Redaktion und Gestaltung: Studienberatung Mathe Druck: Zentrale Vervielfältigung der Universität Bielefeld Satz: L A TEX Redaktionsanschrift: Studienberatung

Mehr

Grundlagen der 3D-Modellierung

Grundlagen der 3D-Modellierung April 28, 2009 Inhaltsverzeichnis 1 Einführung 2 Direkte Darstellungsschemata 3 Indirekte Darstellungsschemata 4 Parametrische Kurven und Freiformflächen 5 Abschluss Motivation Vom physikalischen Körper

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Springer Studium Mathematik Bachelor

Springer Studium Mathematik Bachelor Springer Studium Mathematik Bachelor Herausgegeben von M. Aigner, Freie Universität Berlin, Berlin, Germany H. Faßbender, Technische Universität Braunschweig, Braunschweig, Germany B. Gentz, Universität

Mehr

Georg-August-Universität Göttingen. Modulverzeichnis

Georg-August-Universität Göttingen. Modulverzeichnis Georg-August-Universität Göttingen Modulverzeichnis für den Bachelor-Teilstudiengang "Mathematik" (zu Anlage II.27 der Prüfungs- und Studienordnung für den Zwei-Fächer-Bachelor-Studiengang) (Amtliche Mitteilungen

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

SCSI-Bus und IDE-Schnittstelle

SCSI-Bus und IDE-Schnittstelle Friedhelm Schmidt SCSI-Bus und IDE-Schnittstelle Moderne Peripherie-Schnittstellen: Hardware, Protokollbeschreibung und praktische Anwendung 4., aktualisierte Auflage An imprint of Pearson Education München

Mehr

Windows Scripting lernen

Windows Scripting lernen Holger Schwichtenberg, Sven Conrad, Thomas Gartner, Oliver Scheer Windows Scripting lernen Anfangen, anwenden, verstehen An imprint of Pearson Education München Boston San Francisco Harlow, England Don

Mehr

Grundzüge der Beschaffung, Produktion und Logistik

Grundzüge der Beschaffung, Produktion und Logistik Sebastian Kummer (Hrsg.) Oskar Grün Werner Jammernegg Grundzüge der Beschaffung, Produktion und Logistik Das Übungsbuch 2., aktualisierte Auflage Higher Education München Harlow Amsterdam Madrid Boston

Mehr

Charles F. Goldfarb Priscilla Walmsley Deutsche Übersetzung: Frank Langenau XML in Office 2003 Daten managen mit Word, Excel, FrontPage und InfoPath

Charles F. Goldfarb Priscilla Walmsley Deutsche Übersetzung: Frank Langenau XML in Office 2003 Daten managen mit Word, Excel, FrontPage und InfoPath Charles F. Goldfarb Priscilla Walmsley Deutsche Übersetzung: Frank Langenau XML in Office 2003 Daten managen mit Word, Excel, FrontPage und InfoPath An imprint of Pearson Education München Boston San Francisco

Mehr

SQL objektorientiert

SQL objektorientiert Dušan Petković SQL objektorientiert An imprint of Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Vorwort 11 Teil 1: Einführung 15

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

ITIL V3 Basis-Zertifizierung

ITIL V3 Basis-Zertifizierung Nadin Ebel ITIL V3 Basis-Zertifizierung Grundlagenwissen und Zertifizierungsvorbereitung für die ITIL Foundation-Prüfung ^- ADDISON-WESLEY An imprint of Pearson Education München Boston San Francisco Harlow,

Mehr

Modulhandbücher. der Mathematisch-Naturwissenschaftlichen Fakultät. der Universität zu Köln. für das Fach Mathematik

Modulhandbücher. der Mathematisch-Naturwissenschaftlichen Fakultät. der Universität zu Köln. für das Fach Mathematik Modulhandbücher der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln für das Fach Mathematik im Studiengang Bachelor of Arts mit bildungswissenschaftlichem Anteil und im Master of

Mehr

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ).

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ). Aufgabe Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(3A E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Bild(A

Mehr

2.1 Codes: einige Grundbegriffe

2.1 Codes: einige Grundbegriffe Gitter und Codes c Rudolf Scharlau 2. Mai 2009 51 2.1 Codes: einige Grundbegriffe Wir stellen die wichtigsten Grundbegriffe für Codes über dem Alphabet F q, also über einem endlichen Körper mit q Elementen

Mehr

Optimierung. Florian Jarre Josef Stoer. Springer

Optimierung. Florian Jarre Josef Stoer. Springer 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Florian Jarre Josef Stoer Optimierung Springer Inhaltsverzeichnis

Mehr

Bachelorstudiengang Materialphysik

Bachelorstudiengang Materialphysik Bachelorstudiengang Materialphysik Modulhandbuch Wintersemester 2009/10 Entwurf Hinweis: Eine akademische Stunde (45 min.) wird bei der Workload-Berechnung mit einer Zeitstunde (60 min.) angesetzt. Für

Mehr

Mathematik mit Simulationen lehren und lernen

Mathematik mit Simulationen lehren und lernen Dieter Röß Mathematik mit Simulationen lehren und lernen Plus 2000 Beispiele aus der Physik De Gruyter Mathematics Subject Classification 2010: Primary: 97M20; Secondary: 97M50. Prof. Dr. Dieter Röß Fasanenweg

Mehr

Windows Scripting lernen

Windows Scripting lernen Holger Schwichtenberg, Sven Conrad, Thomas Gärtner, Oliver Scheer Windows Scripting lernen Anfangen, anwenden, verstehen ADDISON-WESLEY An imprint of Pearson Education München Boston San Francisco Harlow,

Mehr

Mathematik III für Ingenieure

Mathematik III für Ingenieure Mathematik III für Ingenieure im Bachelor-Studiengang Maschinenbau Vorlesung Wintersemester 21/211 B. Schuster aktualisert am 27. Januar 211 Inhalt I. Eigenwerte und Eigenvektoren 1 1. Komplexe Matrizen

Mehr

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 9..9, 9... Bitte unbedingt beachten: a) Gewertet werden alle acht

Mehr

Inhaltsverzeichnis 1 Matrizenrechnung 2 Grundgleichungen der Elastizitätstheorie 3 Finite-Element-Methode für Stabwerke

Inhaltsverzeichnis 1 Matrizenrechnung 2 Grundgleichungen der Elastizitätstheorie 3 Finite-Element-Methode für Stabwerke IX Inhaltsverzeichnis 1 Matrizenrechnung... 1 1.1 Matrizen und Vektoren... 1 1.2 Matrizenalgebra... 3 1.2.1 Addition und Subtraktion... 3 1.2.2 Multiplikation... 4 1.2.3 Matrizeninversion... 6 1.3 Gleichungssysteme...

Mehr

Visualisierung I 3. Datentypen und Datenrepräsentation

Visualisierung I 3. Datentypen und Datenrepräsentation Visualisierung I 3. Datentypen und Datenrepräsentation Vorlesung: Mi, 9:00 11:00, INF 368 532 Übung: Do, 14:00 16:00, INF 350 OMZ R U011 JProf. Heike Jänicke http://www.iwr.uni-heidelberg.de/groups/covis/

Mehr

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS Prof. Dr. M. Voigt 2. März 2015 II Inhaltsverzeichnis 5 Grundlagen 1 5.1 Funktionen einer Variablen...................... 1 5.2 spezielle Funktionen.........................

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis. Vorwort zur 7. Auflage 5

Inhaltsverzeichnis. Inhaltsverzeichnis. Vorwort zur 7. Auflage 5 Inhaltsverzeichnis Vorwort zur 7. Auflage 5 1 Potenzrechnung 11 1.1 Darstellung 11 1.1.1 Begriff 11 1.1.2 Vorzeichenregel 11 1.1.3 Addition und Subtraktion von Potenzen 12 1.1.4 Multiplikation von Potenzen

Mehr

A Matrix-Algebra. A.1 Definition und elementare Operationen

A Matrix-Algebra. A.1 Definition und elementare Operationen A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Berechnung von Eigenwerten und Eigenvektoren

Berechnung von Eigenwerten und Eigenvektoren Kapitel 5 Berechnung von Eigenwerten und Eigenvektoren 5.1 Einführung Bemerkung 5.1 Aufgabenstellung. Diese Kapitel behandelt numerische Verfahren zur Lösung des Eigenwertproblems. Gegeben sei A R n n.

Mehr

Finite Elemente in der Baustatik

Finite Elemente in der Baustatik Horst Werkle Finite Elemente in der Baustatik Statik und Dynamik der Stab- und Flachentragwerke 3., aktualisierte und erweiterte Auflage mit 305 Abbildungen und 43 Tabellen vieweg IX Inhaltsverzeichnis

Mehr

Joomla! eigenen Joomla!-Website ^ADDISON-WESLEY. Die Schritt-für-Schritt-Anleitung zur. Stephen Bürge. An imprint of Pearson

Joomla! eigenen Joomla!-Website ^ADDISON-WESLEY. Die Schritt-für-Schritt-Anleitung zur. Stephen Bürge. An imprint of Pearson Stephen Bürge Joomla! Die Schritt-für-Schritt-Anleitung zur eigenen Joomla!-Website ^ADDISON-WESLEY An imprint of Pearson München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Finite Differenzen und Elemente

Finite Differenzen und Elemente Dietrich Marsal Finite Differenzen und Elemente Numerische Lösung von Variationsproblemen und partiellen Differentialgleichungen Mit 64 Abbildungen Springer-Verlag Berlin Heidelberg NewYork London Paris

Mehr

Vorwort. Günter M. Gramlich. Lineare Algebra. Eine Einführung ISBN: 978-3-446-43035-8. Weitere Informationen oder Bestellungen unter

Vorwort. Günter M. Gramlich. Lineare Algebra. Eine Einführung ISBN: 978-3-446-43035-8. Weitere Informationen oder Bestellungen unter Vorwort Günter M. Gramlich Lineare Algebra Eine Einführung ISBN: 978-3-446-43035-8 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-43035-8 sowie im Buchhandel. Carl Hanser

Mehr

SQL Server 2005 Der schnelle Einstieg

SQL Server 2005 Der schnelle Einstieg Klemens Konopasek Ernst Tiemeyer SQL Server 2005 Der schnelle Einstieg Abfragen, Transact-SQL, Entwicklung und Verwaltung An imprint of Pearson Education München Boston San Francisco Harlow, England Don

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Bück Woody. SQL Server 2005. Das Handbuch für Administratoren. ADDISON-WESLEY An imprint of Pearson Education

Bück Woody. SQL Server 2005. Das Handbuch für Administratoren. ADDISON-WESLEY An imprint of Pearson Education Bück Woody SQL Server 2005 Das Handbuch für Administratoren ADDISON-WESLEY An imprint of Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam

Mehr

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten: KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Lineare Algebra und Computer Grafik

Lineare Algebra und Computer Grafik Lineare Algebra und Computer Grafik Vorlesung an der Hochschule Heilbronn (Stand: 7 Mai ) Prof Dr V Stahl Copyright 6 by Volker Stahl All rights reserved Inhaltsverzeichnis Vektoren 4 Vektoren und Skalare

Mehr

ITIL 2011. Überblick. der. Einstieg und Anwendung. Justus Meier, Bodo Zurhausen ^- ADDISON-WESLEY. Martin Bucksteeg, Nadin Ebel, Frank Eggert,

ITIL 2011. Überblick. der. Einstieg und Anwendung. Justus Meier, Bodo Zurhausen ^- ADDISON-WESLEY. Martin Bucksteeg, Nadin Ebel, Frank Eggert, Martin Bucksteeg, Nadin Ebel, Frank Eggert, Justus Meier, Bodo Zurhausen ITIL 2011 - der Überblick Alles Wichtige für Einstieg und Anwendung ^- ADDISON-WESLEY An imprint of Pearson München Boston San Francisco

Mehr

Höhere Mathematik I. 1. Gruppenübung zur Vorlesung Prof. Dr. M. Stroppel. Winter 2007/08

Höhere Mathematik I. 1. Gruppenübung zur Vorlesung Prof. Dr. M. Stroppel. Winter 2007/08 Dr. A. App Dr. M. Pfeil. Gruppenübung zur Vorlesung Prof. Dr. M. Stroppel Höhere Mathematik I Winter 7/8 Aufgabe P. Binomialkoeffizienten Berechnen Sie ohne Taschenrechner: ( ) (a) x = 5 ( ) ( ) ( ) (b)

Mehr

Lineare Algebra für Informatiker TUM Sommersemester 2011 Dozent: Christian Pötzsche

Lineare Algebra für Informatiker TUM Sommersemester 2011 Dozent: Christian Pötzsche Lineare Algebra für Informatiker TUM Sommersemester 20 Dozent: Christian Pötzsche Janosch Maier 3. Juli 20 Herzlichen Dank an Lucas Westermann, Florian Scheibner (https://github. com/lswest/lamitschrift)

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Numerische Behandlung des Eigenwertproblems

Numerische Behandlung des Eigenwertproblems Numerische Behandlung des Eigenwertproblems Zusammenfassung Das Ziel dieses Vortrages ist, zwei gute Methoden für die numerische Bestimmung der Eigenwerte zu zeigen und wie man diese mit Matlab anwenden

Mehr