6 Numerische Integration (Quadratur)

Größe: px
Ab Seite anzeigen:

Download "6 Numerische Integration (Quadratur)"

Transkript

1 6 Numerisce Integrtion (Qudrtur) In diesem Kpitel get es um die pproximtive Berecnung des Wertes eines bestimmten Integrls Anwendungen sind zb die Berecnung von Oberfläcen, Volumin, Wrsceinlickeiten, ber etw uc die Metode der finiten Elemente zur numeriscen Lösung von prtiellen Differentilgleicungen Gegeben seien die Funktion f(x) und ds Intervll [,b] Gesuct ist ds Integrl b f(x) dx (61) y f(x) I b x 61 Die Trpezmetode Idee: Approximtion des Integrlwertes I durc den Trpezwert Stelle der Funktion f ds Interpoltionspolynom vom Grd 1: Ĩ, d integriere n := b, Ĩ = T := (f() + f(b)) y y = f(x) f() Ĩ f(b) b x 61

2 61 Die Trpezmetode Verfeinerung: := b n ; x j := + j, f j = f(x j ), j = 0,1,,n n : Anzl Teilintervlle, : Scrittlänge y y = f(x) f 0 f 1 f f n f n x 0 = x 1 x x n x n = b x Trpeznäerung: T := [f 0 + f 1 ] + [f 1 + f ] + + [f n + f n ] [ 1 Ĩ = T() = f 0 + f f n + 1 ] f n Es gilt: Flls f (x) M für x [,b], dnn ist I T() M 8 (b ) Dies ist lso ein Verfren der Ordnung Prktisce Durcfürung mit fortgesetzter Scrittlbierung: 0 := b, 1 := 0, := 1, Berecne sukzessive T 0 := T( 0 ), T 1 := T( 1 ), 6

3 61 Die Trpezmetode Effiziente Berecnung von T 0,T 1,T,, d one die Funktion f n einer Stelle mermls uszuwerten: s 0 = 1 f() + 1 f(b) T 0 = 0 s 0 s 1 = s 0 + f( + 1 ) T 1 = 1 s 1 s = s 1 + f( + ) + f( + ) T = s s = s + f( + ) + f( + ) + f( + 5 ) + f( + 7 ) T = s Algoritmus: (Trpezmetode), b, 0 := b s 0 = 1 (f() + f(b)), t 0 = s 0 0, N 0 = 1; TOL Für n = 0,1,, n+1 = n, N n s n+1 = s n + f( + (j 1) n+1 ), j=1 T n+1 = n+1 s n+1, N n+1 = N n Abbruckriterium: T n+1 T n T n+1 TOL + TOL Beispiel: 0 xe x (x + 1) dx = e = T 0 = 09785, T 1 = 05084, T = T = 05876, T 4 = 05907, T 5 = T 6 = 05914, T 7 = 05919, Die Konvergenz ist liner und dmit im Allgemeinen rect lngsm 6

4 6 Die Simpson sce Formel 6 Die Simpson sce Formel y B C A y = f(x) f f c f b c = +b b x Grundidee: Lege durc A, B, C eine Prbel und integriere diese (Interpoltionspolynom vom Grd ) Sei P (x) ds Interpoltionspolynom, dnn gilt: P () = f, P (b) = f b, P (c) = f c Mit der Substitution x = + (t + 1), dx = dt; := b erlten wir, S := b P (x) dx = P ( + (t + 1)) dt }{{} =:Q (t) Wir mcen den folgenden Anstz für Q (t): Q (t) = αt + βt + γ Wir wissen, dss folgendes gilt: Q () = α β + γ P () = f, Q (0) = γ, Q (1) = P (c) = f c α + β + γ P (b) = f b 64

5 6 Die Simpson sce Formel Drus scliessen wir, dss α β + γ = f γ = f c α + β + γ = f b gelten muss Drus folgt bzw α = (f b f c + f )/ β = (f b f )/ γ = f c Q (t) = α = α t t dt + β 1 + βt 1 + γt 1 t t dt + γ 1 dt = α + γ Dmit erlten wir für den sogennnten Simpsonwert S: S = (α + 6γ) = (f b f c + f + 6f c ) Verfeinerung: = (f + 4f c + f b ) := b n, x j := + j, j = 0,1,,n, f j := f(x j ) Simpson-Näerung: S() := [f 0 + 4f 1 + f ] + [f + 4f + f 4 ] + + [f n + 4f n + f n ] Ĩ = S() = [f 0 + 4f 1 + f + 4f + f f n + 4f n + f n ] Es gilt: Flls: f (4) (x) M für x [,b], dnn ist I S() M 180 (b )4 Dies ist lso ein Verfren der Ordnung 4 Prktisce Durcfürung mit fortgesetzter Scrittlbierung: 0 := b, 1 := 0, := 1, Berecne sukzessive S 1 = S( 1 ), S = S( ), 65

6 6 Ds Romberg-Verfren Algoritmus: (Simpson-Metode), b, 0 = b ; TOL Berecne die Trpeznäerungen mit der Trpez-Metode und bilde T 0 = T( 0 ), T 1 = T( 1 ), T = T( ), S 1 = 4T 1 T 0 Abbruckriterium:, S = 4T T 1 S n+1 S n S n+1 TOL + TOL, S = 4T T, Begründung für S j+1 = (4T j T j )/: T 1 = T( ) = [ 1 f 0 + f f ] 1 T = T( ) = [ 1 f 0 + f 01 + f 1 + f f ] 4 S = S( ) = [f 0 + 4f 01 + f 1 + 4f 1 + f ] Beispiel: 0 xe x dx = (x + 1) S 1 = , S = 05899, S = 05910, S 4 = , 6 Ds Romberg-Verfren Für die Trpeznäerungen T() gilt folgende symptotisce Entwicklung: T() = I + c 1 + c 4 + c 6 + (6) 66

7 6 Ds Romberg-Verfren Bemerkungen: Asymptotisce Entwicklung eisst: Zu jedem j N existiert eine Konstnte K j > 0, so dss gilt: T() [I + c c j j ] K j j für > 0 genügend klein f(x) ist ier ls beliebig oft differenzierbr vorusgesetzt Idee: Benutze die Existenz einer symptotiscen Entwicklung der Form (6) für die T() zur Elimintion der unbeknnten Felerterme und so zur Konstruktion von Verfren öerer Ordnung (entsprict der sukzessiven Eröung des Grdes des Interpoltionspolynoms): Drus folgt T() = I + c 1 + c T( ) = I c c T( ) T() = I + ( 4) c 4 + 4T ( ) T() = I 1 4 c 4 + O( 6 ) Wir definieren S ( ) 4T ( := ) T() = T ( ) 4 T() 1 4 S ( ) ist lso ein Verfren der Ordnung 4 und stellt gerde die Simpson-Metode dr Auf die gleice Weise lässt sic uc der 4 -Term eliminieren us S ( ) und S ( 4), usw: S( ) = I 1 4 c S( 4 ) = I c S( 4 ) S( ) = 15 I + O(6 ) Allgemein lässt sic dieses Vorgeen in Form des Rombergscems relisieren Sei 0 := b, 1 := 0, := 1,, und bezeicne T j := T( j ) die Trpeznäerung zur Scrittlänge j Wir bilden ds Scem (zeilenweiser Aufbu): 67

8 6 Ds Romberg-Verfren Feler: O( ) O( 4 ) O( 6 ) 4 R 0,0 R 1,0 R,0 R 1,1 R,1 R, nc den Regeln: R j,0 := T j, j = 0, 1, R j,k := R j,k 4 k R j,k 1 4 k, k = 1,,,j j = 1,, Es gilt: Flls in (6) lle c k 0 sind, dnn konvergiert jede Splte des Rombergscems gegen I, und zwr scneller ls die vorergeende Zudem konvergiert (unter einer zusätzlicen ntürlicen Vorussetzung über die K j ) jede Digonle scneller ls jede Splte Bemerkungen: Mn wird lso für eine vorgegebene Tolernz T OL ds Scem bbrecen, flls gilt, dss R j,j R j,j R j,j TOL + TOL, und R j,j ls Approximtion für I nemen Flls f(x) nict beliebig oft differenzierbr ist, drf mn ds Scem nict beliebig weit fortsetzen In diesem Fll würde ds Scem nict konvergieren Auc der in jeder Splte des Scems sukzessiv öere Grd des Interpoltionspolynoms (bei gleicbständigen Stützstellen) verbietet ein zu grosses Scem In der Prxis muss mn der uc eine obere Scrnke für die Anzl Elimintionsscritte vorgeben Ds Rombergverfren ist einfc durczufüren, benötigt ber ziemlic viele Funktionsuswertungen 68

9 64 Guss sce Qudrturformeln Beispiel: 09 0 xe x (x + 1) dx = e = T( j ), j = 0, 1, S( j ), j = 1,, Bemerkung: Mit fünf Funktionsuswertungen (Trpezwerten) mit mximl drei rictigen Ziffern erält mn durc die (billige) Romberg-Elimintion eine Approximtion mit ct rictigen Ziffern 64 Guss sce Qudrturformeln Eine llgemeine Formel zur Approximtion des Integrlwertes I (61) (Qudrturformel) ist von der Form: Q n = n w j f j (n-punkt-qudrturformel), j=1 wobei die folgenden Bezeicnungen verwendet werden: Einteilung von [,b]: = x 1 < x < < x n = b Funktionswerte: f 1 = f(x 1 ),, f n = f(x n ) Gewicte: w 1,, w n Bei den biser betrcteten Qudrturformeln sind wir von vorgegeben x j usgegngen und ben die zugeörigen w j bestimmt, so dss Q n = I Im folgenden wollen wir sowol die x j ls uc die w j so wälen, dss die resultierende Qudrturformel Q n mximlen Genuigkeitsgrd besitzt Wir betrcten one Einscränkung der Allgemeineit ds Intervll [,1], d f(x) dx Begründung: Durc die Substitution t = b x + + b 69

10 64 Guss sce Qudrturformeln get ds Integrl über in b b g(t) dt ( b g x + + b ) dx, ist lso mit f(x) := b g(b x + +b ) von obiger Form Eine Qudrturformel knn beurteilt werden nc dem Grd der Polynome, die sie exkt integriert Trpezmetode: T = Q = f() + f(1) f(x) = 0 x + 1 : f(x) dx = 1 D T = 1 ist, folgt drus, dss die Trpezmetode mindestens Polynome ersten Grdes exkt integriert Simpson-Metode: S = Q = 1 [f() + 4f(0) + f(1)] f(x) = 0 x + 1 x + x + : f(x) dx = 1 + D S = 1 + ist, folgt drus, dss die Simpson-Metode mindestens kubisce Polynome exkt integriert Es gilt: Der Genuigkeitsgrd einer Qudrturformel Q n ist öcstens (n 1) Es existiert genu eine Qudrturformel Q n mit x j [,1], welce den mximlen Genuigkeitsgrd (n 1) besitzt Die x j sind die Nullstellen des n-ten Legendre-Polynoms P n (x) und die Gewicte sind gegeben durc: w j = n ( ) x xk dx > 0, j = 1,,,n k=1 k j x j x k Die Legendre-Polynome erfüllen die Rekursionsformel P 0 (x) = 1, P 1 (x) = x, P k+1 (x) = k + 1 k + 1 xp k(x) k k + 1 P k(x), k Diese Integrtionsmetoden mit mximlem Genuigkeitsgrd eissen Guss- Qudrturformeln 70

11 64 Guss sce Qudrturformeln Bemerkungen: Die Gusspunkte x j und die Gewicte w j können ntürlic für jedes n ein für lleml berecnet werden (genügend genu!) Die us Tbellen entnommenen Werte können dnn ls Dten in einem Progrmm vorgegeben werden (Es gibt ber uc eine einfce Metode, um die x j und w j numerisc zu erzeugen) Die von null versciedenen Stützstellen x j liegen prweise symmetrisc zum Nullpunkt Die Gewicte sind für diese Pre gleic Deslb muss mn nur die nict negtiven x j mit den zugeörigen w j ngeben Flls der Integrnd f(x) n beliebigen Stellen verfügbr ist, sind die Guss- Qudrturformeln im llgemeinen viel effizienter ls beispielsweise ds Romberg- Verfren Beispiel: 0 te t (t + 1) dt = e = Die Substitution: t = 1 x + 1 = 1 (x + 1) ergibt (x + 1)e (x+1)/ (x + ) dx Guss-Qudrturformel mit n Punkten: n = : , n = : , n = 4 : , n = 5 : , n = 6 : , n = 7 : Bemerkungen: Für gleicviele Stellen wie n = 6 bruct mn mit dem Rombergverfren 17 Funktionsuswertungen (5 Elemente in der ersten Splte) plus 4 Elimintionsscritte Allerdings muss mn bei der Guss-Qudrtur für die Felerscätzung den Aufwnd ziemlic vergrössern Der Wert der Guss-Qudrturformel mit n Knoten x j entsprict dem Integrl von bis 1 über ds Integrtionspolynom P n (x) durc die Stützpunkte (x j,f(x j )) Ein oer Polynomgrd ist jedoc kein Problem, d nict gleicbständige Stützstellen benutzt werden 71

Numerische Integration

Numerische Integration Numerische Integrtion Bei vielen Problemen des nturwissenschftlichen Rechnens treten Integrle uf, die nicht in expliziter Form drgestellt werden können, sei es, dß kein geschlossener Ausdruck für eine

Mehr

Numerische Integration durch Extrapolation

Numerische Integration durch Extrapolation Numerische Integrtion durch Extrpoltion Pblo Thiel Romberg-Verfhren Idee: Im Gegenstz zur numerischen Integrtion mit Hilfe der einfchen bzw. zusmmengesetzten Trpez-, Simpson-, 3/8- oder zum Beispiel der

Mehr

Vorlesungsvertretung Analysis II, H. P. Kiani, SoSe 2014 Ergänzungen/Erläuterungen zu den Folien von Prof. Iske

Vorlesungsvertretung Analysis II, H. P. Kiani, SoSe 2014 Ergänzungen/Erläuterungen zu den Folien von Prof. Iske Fchbereich Mthemtik der Universität Hmburg Dr. H. P. Kini Vorlesungsvertretung Anlysis II, H. P. Kini, SoSe 4 Ergänzungen/Erläuterungen zu den Folien von Prof. Iske Qudrtur von f(x) uf [, 3] Mittelpunksregel,

Mehr

12 Numerische Quadratur

12 Numerische Quadratur Numerische Qudrtur Ausgngssitution: Zu berechnen sei ein bestimmtes Integrl I = I[f] = mit einem numerischen Algorithmus. f(x) dx Verwenden Numerische Qudrtur (Qudrturformel) der Form mit I[f] I n [f]

Mehr

In diesem Kapitel stellen wir einige wichtige Verfahren zur näherungsweisen Berechnung bestimmter Integrale b

In diesem Kapitel stellen wir einige wichtige Verfahren zur näherungsweisen Berechnung bestimmter Integrale b Kpitel Numerische Integrtion In diesem Kpitel stellen wir einige wichtige Verfhren zur näherungsweisen Berechnung bestimmter Integrle f(x)dx vor. Integrtionsufgbe: Zu gegebenem integrierbrem f : [, b]

Mehr

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen)

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen) VII. Folgen und Reihen von Funktionen (Vertuschung von Grenzprozessen) Definition. Sei {f n } eine Folge von Funktionen, die uf einer Menge E definiert sind. Die Folgen der Funktionswerte {f n (x)} seien

Mehr

Kapitel 4 Numerische Integration

Kapitel 4 Numerische Integration Kpitel 4 Numerische Integrtion Einführung und Motivtion Newton-Cotes-Formeln Zusmmengesetzte Integrtionsformeln Adptive Verfhren Romberg Verfhren Fzit Numerische Mthemtik II Herbsttrimester 01 1 Problemstellung:

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

f(ξ k )(x k x k 1 ) k=1

f(ξ k )(x k x k 1 ) k=1 Integrlrechnung Definition des bestimmten Integrls Die Integrtion ist die Umkehropertion zur Differentition. Grundufgbe der Integrlrechnung ist die Bestimmung von Flächen. Will mn beispielsweise den Inhlt

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

I(f) (x i+1 x i ) f(x i ). i=0

I(f) (x i+1 x i ) f(x i ). i=0 8 Numerisce Integrtion Die Berecnung bestimmter Integrle knn in der Prxis meist nur näerungsweise mit Hilfe von sog. Qudrturformeln erfolgen. Dzu mct mn für eine Funktion f C[, b] den Anstz I(f = f(x dx

Mehr

7.9A. Nullstellensuche nach Newton

7.9A. Nullstellensuche nach Newton 7.9A. Nullstellensuche nch Newton Wir hben früher bemerkt, dß zur Auffindung von Nullstellen einer gegebenen Funktion oft nur Näherungsverfhren helfen. Eine lte, ber wirkungsvolle Methode ist ds Newton-Verfhren

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k Integrlrechnung Definition 1 (Treppenfunktion, Zerlegung eines Intervlls): Sei [, b] R ein Intervll. Eine Funktion g : [, b] R heißt Treppenfunktion, flls es eine Zerlegung := { =: 0 < 1

Mehr

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik 2008-06- Klssenrbeit 5 Klsse 0c Mtemtik Lösung Version 2008-06-4 Cindy t 3000 geerbt. ) Den Betrg will sie so nlegen, dss sie in 20 Jren doppelt so viel Geld t. Berecne, zu welcem Zinsstz sie ds Geld nlegen

Mehr

Thema 7 Konvergenzkriterien (uneigentliche Integrale)

Thema 7 Konvergenzkriterien (uneigentliche Integrale) Them 7 Konvergenzkriterien (uneigentliche Integrle) In diesem Kpitel betrchten wir unendliche Reihen n= n, wobei ( n ) eine Folge von reellen Zhlen ist. Die Reihe konvergiert gegen s (oder s ist die Summe

Mehr

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren.

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren. .. Orthogonle Bsen und Schmistsche Orthogonlisierungsverfhren. Definition.. Eine Bsis B = { b, b,..., b n } heit orthogonl, wenn die Vektoren b i, i =,,..., n, prweise orthogonl sind, d.h. bi b j = fur

Mehr

Höhere Mathematik für Ingenieure , Uhr

Höhere Mathematik für Ingenieure , Uhr Studiengng: Mtrikelnummer: 3 5 6 Z Punkte Note Prüfungsklusur zum Modul Höhere Mthemtik für Ingenieure 0. 7. 05, 8.00 -.00 Uhr Zugelssene Hilfsmittel: A-Blätter eigene, hndschriftliche Ausrbeitungen ber

Mehr

Rotationskörper

Rotationskörper .17.5 ottionskörper Im folgenden efssen wir uns mit Körpern, die ddurc entsteen, dss eine eene Kurve oder ein eenes Kurvenstück um eine Acse rotiert, die in der gleicen Eene liegt. Einige spezielle Typen

Mehr

Numerische Mathematik

Numerische Mathematik Numerische Mthemtik Bernd Simeon Skriptum zur Vorlesung im Sommersemester 2009 TU München, Zentrum Mthemtik. Numerische Qudrtur 2. Symmetrisches Eigenwertproblem 3. Integrtion gewöhnlicher Differentilgleichungen

Mehr

Taylorreihen - Uneigentlische Integrale

Taylorreihen - Uneigentlische Integrale Anlysis II für M, LG und Ph, WS 2006/07, Übung 2, Lösungsskizze Gruppenübung Tylorreihen - Uneigentlische Integrle G 5 Berechnen Sie die Tylorreihe mit der Entwicklungsmitte 0 von f (x) = log(x + ), f

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor)

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor) Kurvenintegrle Christin Mosch, Theoretische Chemie, Universität Ulm, christin.mosch@uni-ulm.de 7. Juli 26 (Korrigierte 2. Version Kurvenintegrle. Art (d.h. f ist Zhl, kein Vektor Bei Kurvenintegrlen. Art

Mehr

FernUniversität Gesamthochschule in Hagen

FernUniversität Gesamthochschule in Hagen FernUniversität Gesmthochschule in Hgen FACHBEREICH MATHEMATIK LEHRGEBIET KOMPLEXE ANALYSIS Prof. Dr. Andrei Dum Proseminr 9 - Anlysis Numerische Integrtion Ulrich Telle Mtrikel-Nr. 474 Köln, den 7. Dezember

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Vorbereitung für ds Probestudium n der LMU München 3. bis 7. September von W. Frks und O. Forster Integrle ls Flächeninhlte. Motivtion Flächeninhlte von Rechtecken sind

Mehr

Parameterabhängige uneigentliche Integrale.

Parameterabhängige uneigentliche Integrale. Kpitel 9: Integrtion Prmeterbhängige uneigentliche Integrle. F(x) := Beispiel: Die Gmm-Funktion: Γ(x) := Definition: Ds uneigentliche Integrl für x I. e t t x 1 dt. für x I heißt gleichmäßig konvergent,

Mehr

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL 98 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

8 Integralrechnung. 8.1 Das Riemann-Integral

8 Integralrechnung. 8.1 Das Riemann-Integral 8 Integrlrechnung Der Integrlbegriff ist wie der Ableitungsbegriff motiviert durch die physiklische Beschreibung von Bewegungsbläufen (Geschwindigkeit, Beschleunigung). Er ist u.. uch von Bedeutung bei

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

10 Das Riemannsche Integral

10 Das Riemannsche Integral 10 Ds Riemnnsche Integrl 50 10 Ds Riemnnsche Integrl Ziel dieses Prgrphen ist es, den Inhlt einer Fläche, die vom Grphen einer Funktion berndet wird, exkt zu definieren. f(b) f() = t 0 t1 t2 t3 t4 t5 t

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c.

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c. SBP Mthe Grundkurs 2 # 0 by Clifford Wolf # 0 Antwort Diese Lernkrten sind sorgfältig erstellt worden, erheben ber weder Anspruch uf Richtigkeit noch uf Vollständigkeit. Ds Lernen mit Lernkrten funktioniert

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme.

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme. Großüung cwerke cwerke d Ssteme von gerden Stäen, die geenkig (und reiungsfrei) in sog. Knoten(punkten) miteinnder verunden d und nur durc Einzekräfte in den Knotenpunkten estet werden. In cwerken git

Mehr

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen. Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,

Mehr

VI. Das Riemann-Stieltjes Integral.

VI. Das Riemann-Stieltjes Integral. VI. Ds Riemnn-Stieltjes Integrl. Es stellt sich herus, dss der hier entwickelte Integrlbegriff strk von der Ordnungsstruktur von R bhängt. Definition. Sei [, b] ein Intervll in R. Unter einer Prtition

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

5 Numerische Integration

5 Numerische Integration Numerik I. Version: 9.05.08 0 5 Numerische Integrtion 5. Einführung und ein Beispiel Eine trurige Ttsche ist, dss die meisten Funktionen keine explizite Stmmfunktion [ntiderivtive] besitzen. Deshlb sind

Mehr

6. Integration 6.1 Das Riemann-Integral

6. Integration 6.1 Das Riemann-Integral 6. Integrtion 6. Ds Riemnn-Integrl 6. Integrtion 6. Ds Riemnn-Integrl Mthemtik für Chemiker 6. Integrtion 6. Ds Riemnn-Integrl Flächenberechnung: Problemstellung und Lösungsidee Sei f : [, b] [0, ) eine

Mehr

29 Uneigentliche Riemann-Integrale

29 Uneigentliche Riemann-Integrale 29 Uneigentlihe Riemnn-Integrle 29.2 Uneigentlihe Riemnn-Integrle bei einer kritishen Integrtionsgrenze 29.3 Zusmmenhng des uneigentlihen mit dem eigentlihen Riemnn-Integrl 29.5 Cuhy-Kriterium für uneigentlihe

Mehr

Infinitesimalrechnung, Mengenlehre und logische Verknüpfungen

Infinitesimalrechnung, Mengenlehre und logische Verknüpfungen Vorlesung 16 Infinitesimlrechnung, Mengenlehre und logische Verknüpfungen 16.1 Huptstz der Differentil- und Integrlrechnung Wir verknüpfen nun Differentil- mit Integrlrechnung. Definition 16.1.1. Eine

Mehr

Mathematik. Ingo Blechschmidt. 22. Januar 2007

Mathematik. Ingo Blechschmidt. 22. Januar 2007 Mthemtik Ingo Blechschmidt 22. Jnur 2007 Inhltsverzeichnis I Mthemtik 2 1 Anlysis 2 1.1 Stetigkeit und Differenzierbrkeit........... 2 1.1.1 Stetigkeit..................... 2 1.1.2 Differenzierbrkeit................

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

Funktionenfolgen. Kapitel 6

Funktionenfolgen. Kapitel 6 Kpitel 6 Funktionenfolgen Bemerkung 6.1 Motivtion. Dieser Abschnitt betrchtet die Konvergenz von Folgen von uf einem gemeinsmen Intervll definierten Funktionen. Dies ist eine wichtige Grundlge, um eine

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

2.5 Messbare Mengen und Funktionen

2.5 Messbare Mengen und Funktionen 1 2.5 Messbre Mengen und Funktionen Definition Eine beschränkte Menge M R n heißt messbr, flls die chrkteristische Funktion χ M integrierbr ist. Die Zhl vol n (M) := χ M dµ n nennt mn ds Volumen von M.

Mehr

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) =

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) = Es seien U R n offen und ψ : U R n stetig differenzierbr. Weiter sei f : U R zweiml stetig differenzierbr. Kennzeichnen Sie whre Aussgen mit W und flsche Aussgen mit F. F Flls dψ(x) ein Isomorphismus für

Mehr

Mathematik I ITB. Integralrechnung. Prof. Dr. Karin Melzer

Mathematik I ITB. Integralrechnung. Prof. Dr. Karin Melzer Integrlrechnung 20.05.09 Ds unbestimmte Integrl/Stmmfunktion Ds bestimmte Integrl/Flächenberechnung Integrl ls Umkehrung der Ableitung Idee: kehre den Prozess des Dierenzierens um. f sei eine reelle Funktion

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

$Id: integral.tex,v /05/15 13:14:04 hk Exp $ $Id: uneigentlich.tex,v /05/15 13:21:33 hk Exp $

$Id: integral.tex,v /05/15 13:14:04 hk Exp $ $Id: uneigentlich.tex,v /05/15 13:21:33 hk Exp $ Mthemtik für Ingenieure II, SS 9 Freitg 15.5 $Id: integrl.te,v 1.1 9/5/15 13:14:4 hk Ep $ $Id: uneigentlich.te,v 1. 9/5/15 13:1:33 hk Ep $ Integrlrechnung.5 Sonstige Integrtionstechniken Wir kommen nun

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Definition 3.33 (Oberintegral und Unterintegral). Es sei f : [a,b] R eine beschränkte Funktion. Weiter sei

Definition 3.33 (Oberintegral und Unterintegral). Es sei f : [a,b] R eine beschränkte Funktion. Weiter sei 8. Integrierbre Funktionen Definition 3.3 (Treppenfunktionen). Eine Funktion t : [,b] R heißt Treppenfunktion, flls es endlih viele Punkte x < x 1 < < x n mit x = und x n = b gibt, so dss f uf jedem der

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmnn SS Höhere Mthemtik II für die Fchrichtung Informtik Lösungsvorschläge zum 8. Übungsbltt Aufgbe 9 erechnen

Mehr

5.1 Charakterisierung relativ kompakter und kompakter

5.1 Charakterisierung relativ kompakter und kompakter Kpitel 5 Kompkte Mengen 5.1 Chrkterisierung reltiv kompkter und kompkter Mengen X sei im weiteren ein Bnchrum. Definition 5.1. Eine Menge K X heißt kompkt, wenn us jeder offenen Überdeckung von K eine

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

t 1 t cos(t) sin(t) haben als Spur jeweils den Einheitshalbkreis in der oberen Halbebene.

t 1 t cos(t) sin(t) haben als Spur jeweils den Einheitshalbkreis in der oberen Halbebene. Kpitel Kurvenintegrle Kurven Sei I = [, b] R ein Intervll Eine Weg ist eine Abbildung dieses Intervlls in den R d, d, : I R d Dbei nennt mn () den Anfngspunkt, (b) den Endpunkt und ds Bild ([, b]) die

Mehr

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik Numerisce Simulation von Differential-Gleicungen der Himmelsmecanik Teilnemer: Max Dubiel (Andreas-Oberscule) Frank Essenberger (Herder-Oberscule) Constantin Krüger (Andreas-Oberscule) Gabriel Preuß (Heinric-Hertz-Oberscule)

Mehr

Numerik und wissenschaftliches Rechnen

Numerik und wissenschaftliches Rechnen Dr. Alexnder Veit Institut für Mthemtik Universität Zürich Numerik und wissenschftliches Rechnen Alexnder Veit Frühlingssemester 2013 Version: 11. April 2013 1 Inhltsverzeichnis 1 Computerrithmetik 4 1.1

Mehr

Einführung und Beispiele

Einführung und Beispiele Kpitel 8 Prtielle Differentilgleichungen/Rndwertprobleme Prof. R. Leithner, E. Znder Einführung in numerische Methoden für Ingenieure 8/2 Einführung und Beispiele Prof. R. Leithner, E. Znder Einführung

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt 2 Linere Opertoren Im Folgenden seien X,Y, Z stets normierte Räumen über dem selben Körper K = C oder K = R. 2.1. Definition. () Eine Abbildung T : X Y heißt liner, flls T(αx + βy) = αtx + βty x,y X, α,

Mehr

Aufgabe 2.1. Aufgabe 2.2. Aufgabe 2.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik I

Aufgabe 2.1. Aufgabe 2.2. Aufgabe 2.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik I Institut für Angewndte und Eperimentelle Mecni Tecnisce Mecni I ZÜ. Aufgbe. F 4 O F F F In den Knten einer gleicseitigen Prmide wiren 4 Kräfte gemäß nebensteender Sie. Für die Beträge der Kräfte gilt:

Mehr

Notizen zur Vorlesung Analysis 3

Notizen zur Vorlesung Analysis 3 Notizen zur Vorlesung Anlysis 3 Henrik chumcher TUHH, 26. Jnur 207 2 Integrtion über Oberflächen 2. Oberflächenintegrl einer Funktion Definition 2.37 (Metrische Fundmentlform) ei R 2 ein reguläres Gebiet

Mehr

Prisma und Pyramide 10

Prisma und Pyramide 10 Prism und Pyrmide 10 C10-01 1 5 1 Körper 1 Scnittbogen 1 Körper Scnittbogen Körper Scnittbogen Körper Scnittbogen 6 Scnittbogen Scnittbogen 5 M c = + ( ) = 10 + 5 = 15 11, c c c c Individuelle Individuelle

Mehr

1 Folgen von Funktionen

1 Folgen von Funktionen Folgen von Funktionen Wir etrchten Folgen von reell-wertigen Funktionen f n U R mit Definitionsereicht U R und interessieren uns für ntürliche Konvergenzegriffe. Genuer setzen wir uns mit folgenden Frgen

Mehr

Klausur-Übungen Mehrdimensionale Analysis 1 - Analysis 2, Lösungen

Klausur-Übungen Mehrdimensionale Analysis 1 - Analysis 2, Lösungen Tutor: Mrtin Friesen, mrtin.friesen@gmx.de Klusur-Übungen Merdimensionle Anlysis 1 - Anlysis, Lösungen 1. Sei M R n eine bgesclossene Teilmenge, welce ein nict leeres Inneres besitzt. Ferner sei α : [0,

Mehr

Der Hauptsatz der Differential und Integralrechnung

Der Hauptsatz der Differential und Integralrechnung Kpitel 4 Der Huptstz der Differentil und Integrlrechnung Bemerkung 4. Motivtion. Die Integrtionstheorie wurde im letzten Kpitel recht weit entwickelt. Nun wird ein Werkzeug bereitgestellt, mit welchem

Mehr

Komplexe Kurvenintegrale

Komplexe Kurvenintegrale Komplexe Kurvenintegrle nlog zu Kurvenintegrlen: Sei : [, b] D R n ein stükweiser C Weg, f : D R und F : D R n gegeben. Dnn htten wir in Anlysis II/III die beiden Kurvenintegrle. und 2. Art f (x)ds = b

Mehr

Monte-Carlo-Integration

Monte-Carlo-Integration Monte-Crlo-Integrtion von Dietmr Herrmnn, Anzing Kurzfssung: An Hnd eines einfchen Beispiels wird gezeigt, dß jedes Integrl ls Erwrtungswert einer reellen Zufllsgröße ufgefßt werden knn. een einer symptotischen

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

9 Das Riemannsche Integral

9 Das Riemannsche Integral 1 9 Ds Riemnnsche Integrl 9.1 Definition und Beispiele Sei I = [, ] R mit

Mehr

Ausbildungsberuf KonstruktionsmechanikerIn

Ausbildungsberuf KonstruktionsmechanikerIn KM 07U Projekt Einfce Pyrmide mit qudrtiscer Grundfläce Ausbildungsberuf KonstruktionsmecnikerIn Einstzgebiet/e: Metllbu Sciffbu Scweißen Projekt Gerde Pyrmide mit qudrtiscer Grundfläce Anm.: Blecstärke

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

10 Anwendungen der Integralrechnung

10 Anwendungen der Integralrechnung 9 nwendungen der Integrlrechnung Der Inhlt von 9 wren die verschiedenen Verfhren zur Berechnung eines Integrls Der Inhlt von sind die verschiedenen Bedeutungen, die ein Integrl hen knn Die Integrlrechnung

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a:

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a: Fläcen im Raum Grap und Scnittkurven Im ganzen Artikel bezeicnet D eine Teilmenge des R 2 und eine skalarwertige Funktion in zwei Veränderlicen. Der Grap f : D R 2 R : (x, y) z = f(x, y) G = { (x, y, z)

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

4.6 Integralrechnung III. Inhaltsverzeichnis

4.6 Integralrechnung III. Inhaltsverzeichnis 4.6 Integrlrechnung III Inhltsverzeichnis 1 Integrlrechnung 10.03.2010 Theorie und Übungen 2 1 Exponentilfunktionen Aus der Differentilrechnung wissen wir, dss gilt: f(x)=e x f (x)=e x Stz 1 Für die ntürliche

Mehr

Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun?

Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun? Was aben Bescleunigungs-Apps mit der Quadratur des Kreises zu tun? Teilnemer: Jonatan Geuter Leonard Hackel Paul Hagemann Maximilian Kuc Amber Lucas Tobias Tieme Tobias Tiesse Niko Wolf Gruppenleiter:

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 10 SATZ DES PYTHAGORAS. Hypotenuse

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 10 SATZ DES PYTHAGORAS. Hypotenuse Mtemtik: Mg. Scmid Wolfgng Arbeitsbltt 10. Semester ARBEITSBLATT 10 SATZ DES PYTHAGORAS Definition: Ktete Ktete Hypotenuse Jene beiden Seiten, die den recten Winkel bilden (,b) nennt mn Kteten, die dritte

Mehr

Geometrische Mehrgitterverfahren. Annabell Schlüter

Geometrische Mehrgitterverfahren. Annabell Schlüter Geometrisce Mergitterverfaren Annabell Sclüter 13.07.2010 Inaltsverzeicnis 1 Einleitung 2 2 Das Mergitterverfaren für lineare Probleme 3 2.1 Dämpfungseigenscaften des Jacobiverfarens............ 3 2.2

Mehr

c a+ bzw. f(x) dx. c a bzw. 1 =

c a+ bzw. f(x) dx. c a bzw. 1 = 3. Uneigentliche Integrle Die Funktion f sei uf dem rechts oenen Intervll x < b erklrt und uf jedem bgeschlossenen Teilintervll [, c], c < b, stuckweise stetig, b R { }. Dnn der Integrlbegri erweitert

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

2 Berechnung von Flächeninhalten unter Kurvenstücken

2 Berechnung von Flächeninhalten unter Kurvenstücken Übungsmteril 1 Berechnung von Flächeninhlten unter Kurvenstücken.1 Annäherung durch Rechtecke Um die Fläche zu berechnen, die zwischen dem Funktionsgrphen einer Funktion und der -Achse eingeschlossen wird,

Mehr

7 Bewegung von Punkten

7 Bewegung von Punkten 81 7 Bewegung von Punkten 7.1 Übersicht Bewegung von Punkten Differenzierbrkeit. Wo liegt die Ableitung Tylorreihe, Vektordreieck Physiklische Bezeichnungen Abstnd zu einer Kurve Geschwindigkeit Bogenlänge

Mehr

Mathematik-Tutorium: Handwerkszeug und Kochrezepte für Maschinenbauer

Mathematik-Tutorium: Handwerkszeug und Kochrezepte für Maschinenbauer Vektorrechnung Differentilrechnung Integrlrechnung Mthemtik-Tutorium: Hndwerkszeug und Kochrezepte für Mschinenbuer Johnnes Wiedersich 7. Dezember 007 http://www.e13.physik.tu-muenchen.de/wiedersich/ Vektorrechnung

Mehr

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable.

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable. Sttistik I für Sttistiker, Mthemtiker und Informtiker Lösungen zu Bltt 11 Gerhrd Tutz, Jn Ulbricht, Jn Gertheiss WS 7/8 Theorie: Stetige Zufllsvriblen Begriff Stetigkeit: Eine Vrible oder ein Merkml X

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Heuristische Strategien

Heuristische Strategien Heuristisce Strtegien Jürgen Zumdick I. Entwicklung euristiscer Strtegien durc Reflexion über Problemlösungsscritte Problem: Gegeben ist ein Qudrt der Seitenlänge. Vom Mittelpunkt jeder Seite wird eine

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

Vorlesung Mathematik 1 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 1 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mthemtik 1 für Ingenieure (Sommersemester 2016) Kpitel 10: Integrlrechnung einer Veränderlichen Prof. Miles Simon Nch Folienvorlge von Prof. Dr. Volker Kibel Otto-von-Guericke Universität Mgdeburg.

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

Numerisches Integrieren

Numerisches Integrieren Numerisches Itegriere Ac I der Prxis werde Itegrle i der Regel umerisch, lso pproximtiv, bestimmt. Dzu solle hier verschiedee Algorithme betrchtet werde ( Rechteck, Mitterechteck, Trpez, Simpso, Romberg

Mehr

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS Musterlösung der Präsenzufgben zu Mthemtik I für ET/IT und ITS WS / Bltt 6. Bestimmen Sie zu vorgegebenem Volumen V > die Dose (Zylinder mit der kleinsten Oberfläche und ds Gls (Zylinder ohne Deckel mit

Mehr