Karteikarten, Analysis 2, Sätze und Definitionen nach der Vorlesung von PD Hanke

Größe: px
Ab Seite anzeigen:

Download "Karteikarten, Analysis 2, Sätze und Definitionen nach der Vorlesung von PD Hanke"

Transkript

1 Karteikarten, Analysis 2, Sätze und en nach der Vorlesung von PD Hanke Felix Müller, Diese Karteikärtchen sollten alle en und Sätze der Vorlesung Analysis 2 bei Herrn PD Hanke enthalten. Falls ihr Fehler finden solltet, dann wäre es nett, wenn ihr mit ein kurzes Mail mit dem Fehler schickt. Viel Spaß beim Lernen! 1

2 NICHT VERGESSEN: DUPLEX-DRUCKMODUS + SEITEANPASSUNG UNTER DATEI - DRUCKEN - KEINE WÄHLEN!!

3 punktweise Folgenkonvergenz gleichmäßige Folgenkonvergenz Satz 21.1 Folge stetiger Funktionen, die gleichmäßig gegen eine Funktion konvergiert für Stetigkeit gilt... Supremumsnorm Satz 21.2 gleichmäßige Folgenkonvergenz mit der Supremumsnorm Konvergenzkriterium von Weierstraß Satz 21.3 Konvergenz einer Potenzreihe Konvergenzradius der Potenzreihe Satz 21.4 Satz 21.5 Integration und Limesbildung Funktionenfolge konvergiert gleichmäßig gegen Funktion lim Differentation und Limesbildung Funtionenfolge konvergiert gleichmäßig gegen Funktion; Folge der Ableitungen konvergiert gleichmäßig lim

4 Sei K eine Menge & f n : K C, n N, Funktionen. Die Folge (f n ) konvergiert gleichmäßig gegen eine Funktion f : K C, falls ε > N = N(ε) : f n (x) f(x) < ε x K und n N Sei K eine Menge & f n : K C, n N, Funktionen. Die Folge (f n ) konvergiert punktweise gegen eine Funktion f : K C, falls x K und ε > N = N(x, ε) : f n (x) f(x) < ε n N Bemerkung:Konvergiert eine Funktionenfolge gleichmäßig, so konvergiert sie auch punktweise Sei K eine Menge und f : K C eine Funktion. Dann setzt man f K := sup{ f(x) : x K} Sei K C und f n : K C, n N eine Folge stetiger Funktionen, die gleichmäßig gegen die Funktion f : K C konvergiere. Dann ist auch f stetig Bemerkung: Es gilt f K R + { }. Die Funktion f ist beschränkt f K <, d.h. f K R +. Sind Missverständnisse ausgeschlossen, schreibt man oft kurz f statt f K anders ausgedrückt: Der Limes einer gleichmäßig konvergenten Folge stetiger Funktionen ist wieder stetig. Seien f n : K C, n N, Funktionen. Es gelte f n K <. Dann konvergiert die Reihe f n absolut und gleichmäßig auf K gegen eine Funktion F : K C. Eine Folge f n : K C, n N von Funktionen konvergiert genau dann gleichmäßig auf K gegen f : K C, wenn lim n f n f K = Sei f(z) = c n(z a) n eine Potenzreihe. Dann heißt R := sup{ z a : c n (z a) n konvergiert} Konvergenzradius der Potenzreihe Sei (c n) n N eine Folge komplexer Zahlen, a C. Die Potenzreihe f(z) = c n(z a) n konvergiere für ein z 1 C, z 1 a. Sei r eine reelle Zahl mit < r < z 1 a und K(a, r) := {z C : z a r}. Dann konvergiert die Potenzreihe absolut und gleichmäßig auf K(a, r). Die formal differenzierte Potenzreihe g(z) = nc n(z a) n 1 n=1 konvergiert ebenfalls absolut und gleichmäßig auf K(a, r). Seien f n : [a, b] R stetig differenzierbare Funktionen (n N), die punktweise gegen die Funtkion f : [a, b] R konvergieren. Die Folge der Ableitungen f n : [a, b] R konvergiere gleichmäßig. Dann ist f differenzierbar und es gilt f (x) = lim n f n(x) x [a, b]. Sei f n : [a, b] R, n N eine Folge stetiger Funktionen. Die Folge konvergiere auf [a, b] gleichmäßig gegen die Funktion f : [a, b] R. Dann gilt b a f(x)dx = lim n b a f n (x)dx. Bemerkung: Dieser Satz besagt, dass man bei gleichmäßiger Konvergenz Integration und Limesbildung vertauschen darf.

5 Corollar 21.1 Corollar 21.2 Corollar zu Satz 21.5 Differentation und Limesbildung Corollar zu Satz 21.5 Differentation und Limesbildung Satz 22.1 Corollar zu Satz 21.1 Taylorsche Formel Corollar zur Taylorschen Formel Satz 21.2 Corollar zu Satz 21.2 Lagrange Form des Restglieds Corollar zum Langrangschen Restglied Satz 22.3 Taylorreihe von f mit Entwicklungspunkt von a Zusammenhang Taylor-Reihe Potenzreihe Satz 22.4 Potenzreihen exp, sin, cos Logarithmus-Reihe

6 Die Potenzreihe f(x) = c n (x a) n konvergiere im Intervall I :=]a r, a + r[, (r > ). Dann ist f : I R beliebig oft differenzierbar und es gilt c n = 1 n! f (n) (a) n N. Sei f(x) = c n(x a) n eine Potenzreihe mit dem Konvergenzradius r >, (c n, a R). Dann gilt x ]a r, a + r[ f (x) = nc n (x a) n 1. n=1 Bemerkung: Eine Potenzreihe darf gliedweise differenziert werden. Sei f : I R eine (n + 1)-mal stetig differenzierbare Funktion und a I. Dann gilt x I: Sei f : I R eine (n + 1)-mal stetig differenzierbare Funktion mit f (n+1) (x) = x I. Dann ist f ein Polynom vom Grad n. f(x) = f(a) + f (a) 1! (x a) + f (a) 2! (x a) wobei f (n) (a) n! (x a) n + R n+1 (x) R n+1 (x) = 1 n! x a (x t) n f (n+q) (t)dt. Seif : I R eine n-mal stetig differenzierbare Funktion und a I. Dann gilt x I f(x) = n k= f (k) (a) (x a) k + ϕ(x)(x a) n, k! wobei ϕ eine Funktion mit lim k a ϕ(x) = ist. Sei f : I R eine (n + 1)-mal stetig differenzierbare Funktion und a, x I ξ (a, x) : f(x) = n k= f (k) (a) (x a) k + f (n+1) (ξ) k! (n + 1)! (x a)n+1. Sei a R und f(x) = c n (x a) n eine Potenzreihe mit einem positiven Konvergenzradius r ], [. Dann ist diese Taylor-Reihe der Funktion f :]a r, a + r[ R mit Entwicklungspunkt a gleich dieser Potenzreihe (und konvergiert somit gegen f). Sei f : I R eine beliebig oft differenzierbare Funktion und a I. Dann heißt f (k) (a) T [f, a](x) := (x a) k k! k= die Taylor-reihe von f mit Entwicklungspunkt a. Bemerkungen: 1. Der Konvergenzradius der Taylorreihe ist nicht notwendig >. 2. Falls die Taylor-Reihe von f konvergiert, konvergiert sie nicht notwenig gegen f. 3. Die Taylor-Reihe konvergiert genau für diejenigen x I gegen f(x), für die das Restglied aus Satz 22.1 konvergiert. Für 1 < x +1 gilt log(1 + x) = x x2 2 + x = n=1 Bemerkung: Für beliebiges a > und < x 2a gilt ( 1) n 1 log x = log a + (x a) n. na n=1 n Dies folgt aus log x = log(a+(x a)) = log a(1+ x a a ( 1) n 1 x n. n ) = log a+log(1+ x a a ). sin(x) = exp(x) = cos(x) = x n n! ( 1) k x 2k+1 (2k + 1)! ( 1) k x2k (2k)!

7 Satz 22.5 Satz 22.6 Abelscher Grenzwertsatz Arcus-Tangens-Reihe Satz 22.7 Zusatz zu Satz 22.7 Binomische Reihe Wann konvergiert bzw. divergiert die Binomische Reihe? periodische Funktionen trigonometrische Polynome Sinus & Cosinus in komplexer Schreibweise Fourier-Koeffizienten Fourier-Reihe Fourier-Reihe mit trigonometrischen Polynomen Skalarprodukt für periodische Funktionen

8 Für x 1 gilt arctan(x) = x x3 3 + x5 5 ±... = ( 1) n x2n+1 2n + 1. Sei c n eine konvergente Reihe reeller Zahlen. Dann konvergiert die Potenzreihe f(x) := c n x n gleichmäßig auf dem Intervall [, 1], stellt also dort eine stetige Funktion dar. Bemerkung: Es gilt dann lim x 1 cnxn = cn. Dies erklärt den Namen Grenzwertsatz. i Für α konvergiert die binomische Reihe (1 + x) α = ( α n) x n absolut und gleichmäßig im Intervall [ 1, +1]. ii Für 1 < α < konvergiert die binomische Reihe für x = +1 und divergiert für x = 1. iii Für α 1 divergiert die binomische Reihe sowohl für x = +1, als auch für x = 1. Sei α R. Dann gilt für x < 1 (1 + x) α = ( ) α x n. n ( α n α k + 1 Bemerkung: Dabei ist =. n) k k=1 Für α N bricht die Reihe ab, denn in diesem Fall ist ( α n) =. Spezielle periodische Funktionen sind die trigonometrischen Polynome. Eine Funktion f : R R heißt trigonometrisches Polynom der Ordnung n, falls sie sich schreiben lässt als f(x) = a 2 + n k=1 (a k cos(kx) + b k sin(kx)) mit a k = 1 2π π f(x) cos(kx)dx für k =, 1,..., n b k = 1 2π π f(x) sin(kx)dx für k = 1,..., n Eine auf ganz R definierte reell- oder komplexwertige Funktion f heißt periodisch mit der Periode L >, falls f(x + L) = f(x) x R. Es gilt dann natürlich auch f(x + nl) = f(x) x R n Z. Durch eine Variablen-Transformation kann man Funktionen mit der Periode L auf solche mit der Persiode 2π zurückführen: Hat f die Periode L, so hat die Funktion F, definiert durch F (x) := f ( L 2π x) die Periode 2π. Aus der Funktion F kann man f durch die Formel f(x) = F ( 2π L x) wieder zurückgewinnen. Sei f : R C eine periodische, über das Intervall [, 2π] integrierbare Funktion. Dann heißen die Zahlen 2π c k := 1 f(x)e ikx dx, k Z, 2π die Fourier-Koeffizienten von f, und die Reihe F[f](x) := c k e ikx Fourier-Reihe von f. k= cos(x) = eix + e ix 2 sin(x) = eix e ix 2i Die Fourier-Reihe lässt sich auch in der Form f, g = 1 2π 2π f(x)gxdx fürf, g V. a 2 + (a k cos(kx) + b k sin(kx)) k=1 schreiben, wobei a = 1 2π π f(x)dx a k = 1 2π π f(x) cos(kx)dx für k =, 1,..., n b k = 1 2π π f(x) sin(kx)dx für k = 1,..., n

9 Satz 23.1 Besselsche Ungleichung Konvergenz im quadratischen Mittel Corollar zu en Satz 23.2 Die Fourier-Reihe von f ist genau dann im quadratischen Mittel konvergent, wenn... f in [, 2π] Riemann-integrierbar, Fourierreihe konvergiert im quadratischen Mittel gegen f Vollständigkeitsrelation? Satz 23.3 f stetig differenzierbar & stückweise stetig differenzierbar & Unterteilungen Konvergenz?

10 Seien f : R C und f n : R C, n N, periodische, über das Intervall [, 2π] Riemann-integrierbare Funktionen. Man sagt, die Folge (f n) konvergiere im quadratischen Mittel gegen f, falls lim f fn 2 = n d.h. wenn das quadratische Mittel der Abweichung zwischen f und f n, nämlich 1 2π f(x) f n(x) 2 dx 2π für n gegen konvergiert. Sei f : R C eine periodische, über das Intervall [, 2π] Riemann-integrierbare Funktion mit den Fourier-Koeffizienten c k. Dann gilt k= c k 2 1 2π 2π f(x) 2 dx. Sei f : R C eine periodische Funktion, so dass f [, 2π] Riemann-integrierbar ist. Dann konvergiert die Fourier-Reihe von f im quadratischen Mittel gegen f. Sind c k die Fourier-Koeffizienten von f, so gilt die Vollständigkeitsrelation k= c k 2 = 1 2π 2π f(x) 2 dx. Die Fourier-Reihe von f ist genau dann im quadratischen Mittel konvergent, wenn k= c k 2 = f 2 2, d.h. wenn die Besselsche Ungleichung zu einer Gleichung wird. Das Bestehen dieser Gleichung bezeichnet man auch als Vollständigkeitsrelation. Es sei f : R C eine stetige periodische Funktion, die stückweise stetig differenzierbar ist, d.h. Unterteilung = t < t 1 <... < t r = 2π von [, 2π], sodass f[t k 1, t k ] für k = 1,..., r stetig differenzierbar ist. Dann konvergiert die Fourier-Reihe von f gleichmäßig gegen f.

Aufgaben zur Analysis I aus dem Wiederholungskurs

Aufgaben zur Analysis I aus dem Wiederholungskurs Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

cos(kx) sin(nx)dx =?

cos(kx) sin(nx)dx =? 3.5 Fourierreihen 3.5.1 Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π]

Mehr

Folgen und Reihen von Funktionen

Folgen und Reihen von Funktionen Folgen und Reihen von Funktionen Sehr häufig treten in der Mathematik Folgen bzw. Reihen von Funktionen auf. Ist etwa (f n ) eine Folge von Funktionen, dann können wir uns für ein festes x fragen, ob die

Mehr

9 Folgen und Reihen von Funktionen

9 Folgen und Reihen von Funktionen 9 Folgen und Reihen von Funktionen In diesem Abschnitt betrachten wir verschiedene Arten der Konvergenz einer Funktionenfolge Besonders interessiert uns die Frage, ob sich Eigenschaften der einzelnen Glieder

Mehr

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

10 Potenz- und Fourierreihen

10 Potenz- und Fourierreihen 10 Potenz- und Fourierreihen 10.1 Konvergenzbegriffe für Funktionenfolgen Im letzten Kapitel soll es noch einmal um eindimensionale Analysis gehen. Speziell werden wir uns mit Folgen und Reihen reeller

Mehr

1 Reihen von Zahlen. Inhalt:

1 Reihen von Zahlen. Inhalt: 5 Kapitel 3 Reihen Reihen von Zahlen Inhalt: Konvergenz und Divergenz von Reihen reeller oder komplexer Zahlen, geometrische Reihe, harmonische Reihe, alternierende Reihen. Cauchy-Kriterium, absolute Konvergenz,

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C Kapitel 5. Die trigonometrischen Funktionen 5.1. Die komplexen Zahlen 5.. Folgen und Reihen in C 5.10. Definition. Eine Folge (c n n N komplexer Zahlen heißt konvergent gegen c C, falls zu jedem ε > 0

Mehr

Übungen Ingenieurmathematik

Übungen Ingenieurmathematik Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),

Mehr

Höhere Mathematik II. (Vorlesungskript)

Höhere Mathematik II. (Vorlesungskript) Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Universität der Bundeswehr München Höhere Mathematik II (Vorlesungskript) Univ. Prof. Dr. sc. math. Kurt Marti 2 2 L

Mehr

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert Reihenentwicklungen Herbert Paukert 1 REIHENENTWICKLUNGEN Eine kurze Einführung Herbert Paukert [1] Reihen mit konstanten Gliedern [2] Potenzreihen [3] Reihenentwicklung von Funktionen Reihenentwicklungen

Mehr

Analysis II. Günther Hörmann & David Langer. Fakultät für Mathematik der Universität Wien

Analysis II. Günther Hörmann & David Langer. Fakultät für Mathematik der Universität Wien Bitte beachten (wurde in meinen damaligen VO klar kommuniziert): Der gesamte Analysis-Zyklus ist stark an die (25-28 verfügbaren Ausgaben der) Bücher von Forster angelehnt, mit Zusätzen aus Heuser und

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt.

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt. Potenzreihen Potenzreihen sind Funtionenreihen mit einer besonderen Gestalt. Definition. Ist (a ) eine Folge reeller (bzw. omplexer) Zahlen und x 0 R (bzw. z 0 C), dann heißt die Reihe a (x x 0 ) (bzw.

Mehr

Satz von Taylor Taylorreihen

Satz von Taylor Taylorreihen Satz von Taylor Taylorreihen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Tangente als Näherung Weil sich anschaulich die Tangente anschmiegt, ist die Tangentenfunktion

Mehr

Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang; Fourier-

Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang; Fourier- Kapitel 26 Fourier-Reihen 26.1 Einführung (Spektrum; harmonische Analyse; Periode einer Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang;

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Taylor-Entwicklung der Exponentialfunktion.

Taylor-Entwicklung der Exponentialfunktion. Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die

Mehr

2. Teilklausur. Analysis 1

2. Teilklausur. Analysis 1 Universität Konstanz FB Mathematik & Statistik Prof. Dr. M. Junk Dipl.-Phys. Martin Rheinländer 2. Teilklausur Analysis 4. Februar 2006 4. Iteration Name: Vorname: Matr. Nr.: Hauptfach: Nebenfach: Übungsgruppen-Nr.:

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

Lösungsvorschläge zum 14. Übungsblatt.

Lösungsvorschläge zum 14. Übungsblatt. Übung zur Analysis III WS / Lösungsvorschläge zum 4. Übungsblatt. Aufgabe 54 Sei a R\{}. Ziel ist die Berechnung des Reihenwertes k a + k. Definiere dazu f : [ π, π] R, x coshax. Wir entwickeln f in eine

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Komplexe Zahlen Definition komplexer Zahlen in der Gaußschen Zahlenebene, algebraische Form, trigonometrische Form, exponentielle

Mehr

KAPITEL 9. Funktionenreihen

KAPITEL 9. Funktionenreihen KAPITEL 9 Funktionenreihen 9. TaylorReihen............................ 28 9.2 Potenzreihen............................ 223 9.3 Grenzfunktionen von Funktionenfolgen bzw. reihen........ 230 9.4 Anwendungen............................

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

konvergent falls Sei eine allgemeine ("gutmütige") Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in

konvergent falls Sei eine allgemeine (gutmütige) Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in C5 Funktionen: Reihenentwicklungen C5.1 Taylorreihen Brook Taylor (1685-1731) (Analysis-Vorlesung: Konvergenz von Reihen und Folgen) Grundlegende Frage: Wann / unter welchen Voraussetzungen lässt sich

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt

Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt Beispiel. Gegeben sei die Folge (a n ) n N mit a n := n 2 + 5n + 1 n Es gilt ( ( ) (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n + 1 + n, woraus folgt a n = (n2 + 5n + 1) n 2 n2 + 5n + 1 + n = 5n + 1 n2

Mehr

Fourier-Reihen. Thomas Peters Thomas Mathe-Seiten 1. Dezember 2004

Fourier-Reihen. Thomas Peters Thomas Mathe-Seiten  1. Dezember 2004 Fourier-Reihen Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de. Dezember 4 Dieser Artikel gibt eine elementare Einführung in die Theorie der Fourier-Reihen. Er beginnt mit einer kurzen Analyse des

Mehr

Kapitel 7. Exponentialfunktion

Kapitel 7. Exponentialfunktion Kapitel 7. Exponentialfunktion 7.1. Potenzreihen In Kap. 5 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

2

2 Analysis-Skript Kapitel 6 Taylorreihen und Vertauschungen von Grenzprozessen Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik (L A TEX-Umsetzung von Michael Kroll und Anja Weiler) Erstellungsdatum:

Mehr

Die Taylorreihe einer Funktion

Die Taylorreihe einer Funktion Kapitel 6 Die Taylorreihe einer Funktion Dieser Abschnitt beschäftigt sich mit Taylorreihen, Taylorpolynomen und der Restgliedabschätzung für Taylorpolynome. Die Taylorreihe einer reellen Funktion ist

Mehr

Wintersemester 2015/2016, Universität Rostock Abgabetermin: spätestens , 09:30 Uhr

Wintersemester 2015/2016, Universität Rostock Abgabetermin: spätestens , 09:30 Uhr Serie Abgabetermin: spätestens 2.0.205, 09:30 Uhr Aufgabe.: 4+5 P a Überprüfen Sie für beliebige Aussagen A, B und C die Äquivalenzen: i A B A B ii A B A C A B C b Für beliebige Aussagen A und B sei A

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Tutorübung 5. Analysis 2 für Lehramt TU Dortmund, Sommersemester 2014

Tutorübung 5. Analysis 2 für Lehramt TU Dortmund, Sommersemester 2014 Tutorübung 5 Analysis 2 für Lehramt TU Dortmund, Sommersemester 24 Aufgabe T Bestimme die Taylorreihen von (a) cos(x) um a. (b) ln(x) um a. (c) um a 2. +x Bestimme in allen Fällen das Taylorpolynom T n,a

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

Lösungen der Übungsaufgaben von Kapitel 4

Lösungen der Übungsaufgaben von Kapitel 4 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 4 zu 4.1 4.1.1 Eine Funktion f : R R sei als Nullfunktion für x 0 und als x x für x 0 definiert.

Mehr

n 1, n N \ {1}, 0 falls x = 0,

n 1, n N \ {1}, 0 falls x = 0, IV.1. Stetige Funktionen 77 IV. Stetigkeit IV.1. Stetige Funktionen Stetige Funktionen R R sind vielen sicher schon aus der Schule bekannt. Dort erwirbt man sich die naive Vorstellung, dass eine stetige

Mehr

Taylorentwicklung von Funktionen einer Veränderlichen

Taylorentwicklung von Funktionen einer Veränderlichen Taylorentwicklung von Funktionen einer Veränderlichen 17. Januar 2013 KAPITEL 1. MATHEMATISCHE GRUNDLAGEN 1 Kapitel 1 Mathematische Grundlagen 1.1 Stetigkeit, Differenzierbarkeit und C n -Funktionen Der

Mehr

Lösung der Prüfung Sommer 2009

Lösung der Prüfung Sommer 2009 Prof. D. Salamon Analysis I/II D-MATH, D-PHYS, D-CHAB ETH Zürich. Juni 9 Lösung der Prüfung Sommer 9. Berechnen Sie folgende Grenzwerte: (a) (b) Hinweis: Regel von de l Hospital. ( ( )) lim n n cos n lim

Mehr

4.7 Der Taylorsche Satz

4.7 Der Taylorsche Satz 288 4 Differenziation 4.7 Der Taylorsche Satz Die Differenzierbarkeit, also die Existenz der ersten Ableitung einer Funktion, erlaubt bekanntlich, diese Funktion lokal durch eine affine Funktion näherungsweise

Mehr

KAPITEL 9. Funktionenreihen. 9.1 Taylor-Reihen Potenzreihen Methoden der Reihenentwicklung Anwendungen...

KAPITEL 9. Funktionenreihen. 9.1 Taylor-Reihen Potenzreihen Methoden der Reihenentwicklung Anwendungen... KAPITEL 9 Funtionenreihen 9. Taylor-Reihen.................................... 74 9.2 Potenzreihen..................................... 77 9.3 Methoden der Reihenentwiclung.......................... 90

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

Analysis I, WS 14/15 Verzeichnis der wichtigsten Definitionen und Sätze

Analysis I, WS 14/15 Verzeichnis der wichtigsten Definitionen und Sätze Analysis I, WS 14/15 Verzeichnis der wichtigsten Definitionen und Sätze Prof. Dr. Lorenz Schwachhöfer Inhaltsverzeichnis 1 Mathematische Grundlagen 2 2 Folgen und Reihen 7 3 Stetigkeit 15 4 Differenzierbarkeit

Mehr

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten Folgerung 3.33 Es sei f : T C in einem Punkt x T Hölder stetig, d.h. es gibt ein C > und ein < α 1 so, dass f(x) f(x ) C x x α für alle x T. Dann gilt lim N S N f(x ) = f(x ). Folgerung 3.34 Es f : T C

Mehr

11. Übungsblatt zur Mathematik I für Maschinenbau

11. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 200/ 2.0.-28.0. Aufgabe G (Grenzwertberechnung)

Mehr

Fachbereich Mathematik Hochschule Regensburg. Kurz-Skriptum zu Fourierreihen. Prof. Dr. Michael Fröhlich

Fachbereich Mathematik Hochschule Regensburg. Kurz-Skriptum zu Fourierreihen. Prof. Dr. Michael Fröhlich Fachbereich Mathematik Hochschule Regensburg Kurz-Skriptum zu Fourierreihen Prof. Dr. Michael Fröhlich Inhaltsverzeichnis p-periodische Funktionen und trigonometrische Reihen 4. p-periodische Funktionen................................

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

Funktionenfolgen und Funktionenreihen

Funktionenfolgen und Funktionenreihen 8 Funktionenfolgen und Funktionenreihen Sei E C eine Menge. Eine Funktionenfolge auf E ist eine Folge {f n } n= von Funktionen f n : E C, und eine Funktionenreihe auf E ist eine Reihe der Gestalt u n (x)

Mehr

f(t) = a 2 + darstellen lasst Periodische Funktionen.

f(t) = a 2 + darstellen lasst Periodische Funktionen. 7. Fourier-Reihen Viele Prozesse der Ingenieur- und Naturwissenschaften verlaufen periodisch oder annahernd periodisch, wie die Schwingungen einer Saite, Spannungs- und Stromverlaufe in Wechselstromkreisen

Mehr

7.2.1 Zweite partielle Ableitungen

7.2.1 Zweite partielle Ableitungen 72 72 Höhere Ableitungen 72 Höhere Ableitungen Vektorwertige Funktionen sind genau dann differenzierbar, wenn ihre Koordinatenfunktionen differenzierbar sind Es ist also keine wesentliche Einschränkung,

Mehr

Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester

Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester Christian Nawroth, Erstellt mit L A TEX 23. Mai 2002 Inhaltsverzeichnis 1 Vollständige Induktion 2 1.1 Das Prinzip der Vollstandigen Induktion................

Mehr

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $ $Id: stetig.tex,v 1.11 2012/06/26 15:40:18 hk Exp $ 9 Stetigkeit 9.1 Eigenschaften stetiger Funktionen Am Ende der letzten Sitzung hatten wir eine der Grundeigenschaften stetiger Funktionen nachgewiesen,

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Mathematik III. (für Informatiker) Oliver Ernst. Wintersemester 2014/15. Professur Numerische Mathematik

Mathematik III. (für Informatiker) Oliver Ernst. Wintersemester 2014/15. Professur Numerische Mathematik Mathematik III (für Informatiker) Oliver Ernst Professur Numerische Mathematik Wintersemester 2014/15 Inhalt 10 Differentialgleichungen 11 Potenz- und Fourier-Reihen Oliver Ernst (Numerische Mathematik)

Mehr

Aufgaben zu Kapitel 30

Aufgaben zu Kapitel 30 Aufgaben zu Kapitel 3 1 Aufgaben zu Kapitel 3 Verständnisfragen Aufgabe 3.1 Gegeben ist die Funktion { x,

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2016/17. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2016/17. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 016/17 7. Fourier-Methoden 7.1. Periodische Funktionen In der Physik und in der Technik spielen periodische Funktionen eine

Mehr

5 Potenzreihenansatz und spezielle Funktionen

5 Potenzreihenansatz und spezielle Funktionen 5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten

Mehr

Analysis I. Vorlesung 16. Funktionenfolgen

Analysis I. Vorlesung 16. Funktionenfolgen Prof. Dr. H. Brenner Osnabrück WS 2014/2015 Analysis I Vorlesung 16 Funktionenfolgen Eine (vertikal gestauchte) Darstellung der ersten acht polynomialen Approximationen der reellen Exponentialfunktion

Mehr

1 Übungszettel. Höhere Mathematik 2 SS Z dx. Übung 1.1. Berechnen Sie. x 2 für a > 0. h HINWEIS: x 2 + a 2 = a 2 x

1 Übungszettel. Höhere Mathematik 2 SS Z dx. Übung 1.1. Berechnen Sie. x 2 für a > 0. h HINWEIS: x 2 + a 2 = a 2 x Höhere Mathematik SS 0 Übungszettel Übung.. Berechnen Sie dx x für a > 0. + a + i. h HINWEIS: x + a = a x a Übung.. Berechnen Sie sin (x) dx. HINWEIS: Sie können artielle Integration verwenden oder den

Mehr

Fourier-Reihen: Definitionen und Beispiele

Fourier-Reihen: Definitionen und Beispiele Fourier-Reihen: Definitionen und Beispiele Die Fourieranalysis beschäftigt sich mit dem Problem Funktionen in Kosinus und Sinus zu entwickeln. Diese Darstellungen sind in der Mathematik sowie in der Physik

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : Ê Ê systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Höhere Mathematik 1 Übung 9

Höhere Mathematik 1 Übung 9 Aufgaben, die in der Präsenzübung nicht besprochen wurden, können in der darauf folgenden übung beim jeweiligen übungsleiter bzw. bei der jeweiligen übungsleiterin abgegeben werden. Diese Abgabe ist freiwillig

Mehr

Analysis 2. Ao.Univ.-Prof. Dr. Herbert Wallner. SS 2009 TU Graz

Analysis 2. Ao.Univ.-Prof. Dr. Herbert Wallner. SS 2009 TU Graz Analysis 2 Ao.Univ.-Prof. Dr. Herbert Wallner SS 2009 TU Graz Contents 1 Folgen und Reihen von Funktionen 1 1.1 Motivation und Einführung.......................... 1 1.2 Gleichmäßige Konvergenz von Funktionenfolgen...............

Mehr

Lösung der Übungsaufgaben vom SS 2011

Lösung der Übungsaufgaben vom SS 2011 Inhaltsverzeichnis Lösung der Übungsaufgaben vom SS Aufgabe Nr. Seite Aufgabe Nr. Seite 3 3 3 3 3 33 3 4 3 34 4 5 3 35 5 6 4 36 6 7 4 37 8 8 4 38?? 9 5 39 3 5 4 34 6 7 3 8 4 9 5 6 7 8 9 3 3 3 4 4 5 5 6

Mehr

Analysis I Kurzskript

Analysis I Kurzskript Analysis I Kurzskript 25. Januar 2013 Inhaltsverzeichnis 1 Die Sprache der Mathematik 5 1.1 Mathematische Aussagen................................ 5 1.2 Aussagenlogik.......................................

Mehr

Analysis I. 11. Beispielklausur mit Lösungen

Analysis I. 11. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 11. Beispielklausur mit en Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Ein angeordneter Körper. ) Eine Folge in

Mehr

Mathematik für Chemiker Aufgabenblatt 1 Abgabe bis vor Beginn der Vorlesung im Fach 123 (grüner Kasten auf Ebene D1)

Mathematik für Chemiker Aufgabenblatt 1 Abgabe bis vor Beginn der Vorlesung im Fach 123 (grüner Kasten auf Ebene D1) Hansen / Päschke 19.10.2016 Aufgabenblatt 1 Abgabe bis 26.10.2016 vor Beginn der Vorlesung im Fach 123 (grüner Kasten auf Ebene D1) Aufgabe 1 Vereinfache folgende Ausdrücke: (a) z n+1 z 2n 2 z 2 (b) (

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

Höhere Mathematik II

Höhere Mathematik II Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Universität der Bundeswehr München Höhere Mathematik II (Beilagen) Univ. Prof. Dr. sc. math. Kurt Marti 2 2 L A TEX-Satz

Mehr

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29 Dynamische Systeme und Zeitreihenanalyse Komplexe Zahlen Kapitel 3 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.0/29 Motivation Für die

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

Beispielaufgaben rund um Taylor

Beispielaufgaben rund um Taylor Beispielaufgaben rund um Taylor Mirko Getzin Universität Bielefeld Fakultät für Mathematik 19. Februar 014 Keine Gewähr auf vollständige Richtigkeit und perfekter Präzision aller (mathematischen) Aussagen.

Mehr

5.6 Das Gibbs-Phänomen

5.6 Das Gibbs-Phänomen 94 5 Fouriertheorie 5.6 Das Gibbs-Phänomen Die Fourierreihe einer stückweise glatten Funktion f konvergiert punktweise gegen f, und auf kompakten Stetigkeitsintervallen sogar gleichmäßig. In Sprungstellen

Mehr

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b. Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und

Mehr

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22.1 Sinus und Cosinus 22.3 Definition von 22.6 Sinus und Cosinus als eindeutige Lösungen eines Differentialgleichungssystems 22.7 Tangens

Mehr

Mathematik für Anwender I. Beispielklausur I mit Lösungen

Mathematik für Anwender I. Beispielklausur I mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur I mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,

Mehr

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel Zuerst wollen wir die Gamma-Funktion definieren, die eine Verallgemeinerung von n! ist. Dazu benötigen wir einige Resultate. Lemma.

Mehr

Beispiel zu Umkehrfunktionen des Sinus

Beispiel zu Umkehrfunktionen des Sinus Beispiel zu Umkehrfunktionen des Sinus Die Funktion f : [ π, π ] [, ], x sin(x) besitzt die Umkehrfunktion f Arcsin (Hauptzweig des Arcussinus). Wir betrachten die beiden Funktionen g : [ 3 π, 5 π] [,

Mehr

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) 1 Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) Kapitel 7: Konvergenz und Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

PRÜFUNG AUS ANALYSIS F. INF.

PRÜFUNG AUS ANALYSIS F. INF. Zuname: Vorname: Matrikelnummer: PRÜFUNG AUS ANALYSIS F. INF. (GITTENBERGER) Wien, am 2. Juli 2013 (Ab hier freilassen!) Arbeitszeit: 100 Minuten 1) 2) 3) 4) 5) 1)(8 P.) Sei f : R 2 R mit f(x, y) = e x

Mehr