Übungen Analysis I WS 03/04

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Übungen Analysis I WS 03/04"

Transkript

1 Blatt Abgabe: Mittwoch, Aufgabe : Beweisen Sie, daß für jede natürliche Zahl n gilt: n ( ) n (x + y) n = x i y n i, i (b) n ν 2 = ν= i=0 n(n + )(2n + ), 6 (c) 2 3n ist durch 7 teilbar. Aufgabe 2: Berechnen Sie für natürliche Zahlen m und n: n m i, i=0 (b) m n 2 i+j. i=0 j=0 Aufgabe 3: Es seien X, Y, Z Mengen und f : X Y und g : Y Beweisen oder widerlegen Sie: Z Abbildungen. Sei g f injektiv. Dann ist a) f injektiv; a2) g injektiv. (b) Sei g f surjektiv. Dann ist b) f surjektiv; b2) g surjektiv. Aufgabe 4: Es sei X eine nichtleere Menge, und f, g : X X seien Abbildungen mit g f = id X. Zeigen Sie: f ist injektiv und g ist surjektiv. (b) Ist X endlich, so sind f und g bijektiv. (c) Finden Sie Abbildungen f, g : N N mit folgenden Eigenschaften: f ist nicht surjektiv, g ist nicht injektiv und g f = id N. Die Übungsblätter sind im Netz: schuster/analysisi/

2 Blatt 2 Abgabe: Mittwoch, Aufgabe : Sei S(k, n) := n i k. Zeigen Sie durch Induktion über n: i=0 k ( ) k + S(j, n) = (n + ) k+. j j=0 (b) Berechnen Sie S(k, n) für k = 3, 4. Aufgabe 2: Zeigen Sie: für je n reelle Zahlen a, a 2,..., a n gelten die Ungleichungen a a 2 a n a + a a n a + a a n. Aufgabe 3: Für positive reelle Zahlen a, b seien das arithmetische, geometrische und harmonische Mittel definiert durch A(a, b) := a + b 2, G(a, b) := ab, H(a, b) = A( a, b ) = 2ab a + b. Beweisen Sie die Ungleichungen H(a, b) G(a, b) A(a, b). Wann tritt Gleichheit ein? Aufgabe 4: Zeigen Sie, daß 3 irrational ist. (b) Seien k, n N. Zeigen Sie: k n ist entweder eine natürliche Zahl oder irrational. Aufgabe 5: Seien A und B beschränkte Teilmengen von R. Zeigen Sie: sup(a B) = max{sup A, sup B}, inf(a B) = min{inf A, inf B}. (b) Die Menge C := {x x = y + z mit y A und z B} ist beschränkt und es gilt sup C = sup A + sup B, inf C = inf A + inf B. (c) Sei A B. Dann gelten die Ungleichungen sup(a B) min{sup A, sup B}, inf(a B) max{inf A, inf B}. Finden Sie Beispiele, in denen die Gleichheit nicht gilt.

3 Blatt 3 Abgabe: Mittwoch, Aufgabe : Sei n eine natürliche Zahl. Beweisen Sie die Ungleichung (Hinweis: Vergleichen Sie k! mit 2 k.) n k=0 k! < 3. (b) Zeigen Sie: für 0 k n gilt ( ) n k n k k!. (c) Folgern Sie daraus die Ungleichungen ( + n) n n k=0 k! < 3. Aufgabe 2: Zeigen Sie, daß für jede reelle Zahl x 0 und jedes n N mit n 2 gilt: ( + x) n n2 4 x2. Aufgabe 3: Es seien a,..., a n nichtnegative reelle Zahlen mit n a i = n. Zeigen Sie: n a i. i= i= Aufgabe 4: Bestimmen Sie Real- und Imaginärteil folgender komplexer Zahlen: + 2i, (b) 2i + 3 5i, (c) ( ) i k, k Z. + i Aufgabe 5: Es seien a, z C mit a <. Zeigen Sie: z a az < z <.

4 Blatt 4 Abgabe: Mittwoch, Aufgabe : Seien a i, i, nichtnegative reelle Zahlen, und sei S n = n i= a i sowie M n = n i= ( + a i). Zeigen Sie: + S n M n und M n + M n S n für jedes n. (b) Konvergiert die Folge (M n ), so konvergiert auch (S n ). (c) Konvergiert (S n ) mit einem Grenzwert kleiner als, so ist auch (M n ) konvergent. (d) Ist die Voraussetzung S n < in (c) notwendig? Aufgabe 2: Sei a > 0. Die Folge (a n ) sei rekursiv definiert durch a 0 = a sowie a n+ = f(a n ), wobei f(x) = x( + x). Zeigen Sie, daß (a n ) konvergiert. (b) Bestimmen Sie den Grenzwert. Aufgabe 3: Untersuchen Sie die folgenden Folgen auf Konvergenz und bestimmen Sie gegebenenfalls den Grenzwert. a n = 2 n n 2 (d) a n = ( + n (b) a n = 5n3 5n + 5 4n 3 + 3n 2 + ) (c) a n = n ( + n n (e) ) n 2 a n = n n(n + ) (n + k), k N fest (f) a n = n n! Aufgabe 4: Sei (a n ) eine beschränkte Folge, und die Folgen (b n ), (c n ) seien definiert durch b n := sup({a m m n}) sowie c n := inf({a m m n}. Zeigen Sie: Die Folgen (b n ) und (c n ) sind konvergent. (b) Sei b := b n und c := c n. Dann ist b c. (c) (a n ) konvergiert genau dann, wenn b = c ist. Aufgabe 5: Konstruieren Sie eine Nullfolge (x n ) und geeignete Folgen (a n ), (b n ), (c n ) und (d n ), so daß gilt: (x n a n ) ist eine Nullfolge, (x n b n ) konvergiert gegen, (x n c n ) ist unbeschränkt, und (x n d n ) ist beschränkt, aber nicht konvergent.

5 Blatt 5 Abgabe: Mittwoch, Aufgabe : Seien (a n ) und (b n ) zwei Folgen mit a n > b n > 0 für alle n N. Bezeichne s n = a n + b n, d n = a n b n und p n = a n b n. Beweisen Sie: konvergieren zwei der drei Folgen (s n ), (d n ), (p n ), so auch die dritte. Aufgabe 2: Es sei (a n ) eine monotone Folge. Beweisen Sie: jeder Häufungswert von (a n ) ist auch Grenzwert. Aufgabe 3: Für eine reelle Zahl x bezeichne x die eindeutig bestimmte ganze Zahl n mit n x < n +. Die Folge (a n (x)) sei definiert durch a n (x) = nx nx. Beweisen Sie: Ist x Q, so hat (a n (x)) nur endlich viele Häufungswerte. (b) Ist x Q, so ist jede reelle Zahl a mit 0 a Häufungswert der Folge. Aufgabe 4: Sei n a n eine Anordnung von Q. Zeigen Sie, daß jede reelle Zahl Häufungswert der Folge (a n ) ist. Aufgabe 5: Sei f : R R eine Abbildung, so daß für ein C R mit 0 C < gilt: f(x) f(y) C x y für alle x, y R. Für a R sei die Folge (a n ) definiert durch a 0 = a und a n+ = f(a n ). Beweisen Sie: a n+ a n C n a a 0. (b) (a n ) ist eine Cauchy-Folge. (c) Sei z = a n. Dann gilt f(z) = z. (d) z ist unabhängig von a.

6 Blatt 6 Abgabe: Mittwoch, Aufgabe : Untersuchen Sie folgende Reihen auf Konvergenz: ( k + k) (c) k ( ) k(k + )(k + 2) k (b) k + k k k (d) ( k 2k + k 0 ) k Aufgabe 2: Sei (a n ) eine reelle Folge. Beweisen Sie: ( n ) Ist a n = a, so folgt a k = a. Die Umkehrung gilt nicht. n k= (b) Ist a n konvergent und (a n ) monoton, so ist (n a n ) = 0. Konstruieren Sie ein Beispiel einer Folge (a n ), so daß a n konvergiert, aber die Folge (n a n ) divergiert. Aufgabe 3: Sei (a n ) eine monoton wachsende Folge positiver reeller Zahlen. Beweisen Sie: die Reihe ( ) an+ konvergiert genau dann, wenn (a n ) beschränkt ist. a n n Aufgabe 4: Sei (d n ) eine Folge positiver reeller Zahlen und d n =. Was läßt sich über die Konvergenz der folgenden Reihen aussagen? n= (b) dn + d n (c) dn + nd n (d) dn + n 2 d n dn + d 2 n

7 Blatt 7 Abgabe: Mittwoch, Aufgabe : Sei (a n ) eine Folge von Null verschiedener reeller Zahlen. Zeigen Sie: Ist sup a n+ a n <, so konvergiert die Reihe a n. (b) Zeigen Sie: Ist inf a n+ a n >, so divergiert die Reihe a n. (c) Finden Sie ein Beispiel mit sup a n+ a n und a n konvergent. Aufgabe 2: Untersuchen Sie die folgenden Reihen auf Konvergenz. ( n ) n 2 n n + (b) n 2 n n n (n!) 2 (c) a n n, wobei a n = 0 sei, falls die Dezimalschreibweise von n eine 9 enthält, und a n = sonst. Aufgabe 3: Berechnen Sie den Grenzwert der Reihe n n 2 + 2n. (b) Sei q <. Zeigen Sie, daß die Reihe n 0(n + )q n konvergiert und bestimmen Sie den Grenzwert. (c) Bestimmen Sie den Grenzwert der Reihe n 0 π 2 /6 benutzen.). (Sie können dabei ζ(2) = (2n + ) 2

8 Blatt 8 Abgabe: Mittwoch, Aufgabe : Bestimmen Sie die Konvergenzradien der folgenden Potenzreihen: n 0 (b) n 0 (c) n 0 ( 2) n n + xn ( ) 2n x 3n n ( +! + 2! + + ) x n n! (d) n 7 2 (n 2) x n Aufgabe 2: Sei k N + und f(x) = + x + + x k. Finden Sie eine Potenzreihe g(x) = a n x n mit f(x)g(x) = und bestimmen Sie den Konvergenzradius von g. n 0 Aufgabe 3: Seien E D Teilmengen von R und f : D R eine Funktion. Zeigen Sie: Ist x ein Häufungspunkt von E, so ist x auch Häufungspunkt von D. (b) Sei x ein Häufungspunkt von E. Zeigen Sie: Gilt f(x) = a, so auch x x x x (c) Finden Sie ein Beispiel mit x x f(x) x x f(x) x E f(x) = a. Aufgabe 4: In welchen Punkten sind die folgenden Funktionen f : R R stetig? { x x für x 0, f(x) = 0 für x = 0. x + 3 für x <, 2x für x < 0, (b) f(x) = 2x für 0 x <, 4 x für x. { x für x Q, (c) f(x) = x für x R Q.

9 Blatt 9 Abgabe: Mittwoch, Aufgabe : Seien f, g : D R stetige Funktionen. Zeigen Sie, daß dann auch max(f, g), min(f, g) und f stetig sind. Aufgabe 2: Formulieren Sie Definitionen der Aussagen x x f(x) = a für x R, a = ±, (b) x = ±, a R, (c) x = ±, a = ±. Aufgabe 3: Bestimmen Sie die (eventuell uneigentlichen) Grenzwerte (b) (c) sin x x 0 x sin x x ax + b, (d) cx + d, c 0,, (e) x 0 exp( x 2 ), sin x x 0 x 3, (f) log(x). x 0 Aufgabe 4: Zeigen Sie: Die Funktion ϕ: x x bildet R bijektiv auf ], [ + x ab. Geben Sie die Umkehrfunktion ψ : ], [ R an. Zeigen Sie, daß ϕ und ψ stetig sind. (b) Sei f : R R eine Abbildung. Zeigen Sie: f(x) = a y f(x) = x x ϕ(f(x)) =. x x Aufgabe 5: Sei f : [0, ] R eine stetige Funktion, die nur abzählbar viele Werte annimmt. Zeigen Sie: f ist konstant.

10 Blatt 0 Abgabe: Mittwoch, Aufgabe : Untersuchen Sie die folgenden Funktionen auf Differenzierbarkeit: f(x) = x und g(x) = x x ; (b) f(x) = x sin( x ) und g(x) = x2 sin( x ). Aufgabe 2: Bestimmen Sie die maximalen Definitionsbereiche der folgenden Funktionen und berechnen Sie ihre Ableitungen. Geben Sie in jedem Schritt die verwendete Ableitungsregel an. f(x) = x + x 2, (d) f(x) = (x2 + ) (x2 +), (b) f(x) = 5, (e) f(x) = log(log(sin(x))). + x (c) f(x) = x 7 e x2, Aufgabe 3: Bestimmen Sie die Ableitungen der Funktionen arcsin(x), arccos(x) und arctan(x). Aufgabe 4: Seien f, g : [a, b] R differenzierbar. Zeigen Sie, daß es ein c ]a, b[ gibt mit f (c) ( g(b) g ) = g (c) ( f(b) f ).

11 Blatt Abgabe: Mittwoch, Aufgabe : Seien f, g : [a, [ R differenzierbare Funktionen mit g 0. Es gelte g(x) oder f(x) = = g(x). Zeigen Sie: f(x) = 0 = f(x) g(x) = f (x) g (x), falls der rechts stehende Grenzwert existiert. (b) Berechnen Sie die folgenden Grenzwerte: (i) (ii) (log x) b x a für a, b N +, cosh(x + ). exp(x) Aufgabe 2: Bestimmen Sie die Taylorreihen T (f; a) der folgenden Funktionen. Geben Sie zu jeder Reihe den Konvergenzradius an. f(x) = sin 3 (x), a = 0. ) +x (b) f(x) = log( x, a = 0. (c) f(x) = x + x 2x 2, a = 0. (d) f(x) = sin(x), a = π/4. Aufgabe 3: Bestimmen Sie die lokalen Extrema und Wendepunkte der Funktionen f(x) = x sin 2 (x), (b) f(x) = x + x 2.

12 Blatt 2 Abgabe: Mittwoch, Aufgabe : Beweisen Sie: Die Vorzeichen-Funktion sign: R R hat keine Stammfunktion. Aufgabe 2: Seien f, g : [a, b] R mit f g. Zeigen Sie: Ist g integrierbar mit b a g(x)dx = 0, so sind auch f und f integrierbar und es gilt b a f(x)dx = [Hinweis: Zeigen Sie S(f; Z) S( f ; Z).] b a f(x) dx = 0. Aufgabe 3: Finden Sie Stammfunktionen (mit maximalem Definitionsbereich) der folgenden Funktionen 2x 3 6x x (d) x cos 2 (x) (b) x 3 cos(x 4 ) (e) log x (c) x + 2 x 3 x (f) cos(x) Aufgabe 4: Bestimmen Sie den Wert des Integrals π/2 0 cos n (x)dx für n = 2, 4, 6.

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Elemente der Analysis I: Zusammenfassung und Formelsammlung

Elemente der Analysis I: Zusammenfassung und Formelsammlung Elemente der Analysis I: Zusammenfassung und Formelsammlung B. Schuster/ L. Frerick 9. Februar 200 Inhaltsverzeichnis Grundlagen 5. Mengen und Zahlen................................ 5.. Mengen...................................

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22.1 Sinus und Cosinus 22.3 Definition von 22.6 Sinus und Cosinus als eindeutige Lösungen eines Differentialgleichungssystems 22.7 Tangens

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y

Mehr

1. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013

1. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 O. Alaya, R. Bauer K. Sanei Kashani, F. Kissling, B. Krinn, J. Schmid, T. Vassias. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshinweise zu den

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Klausur Analysis II (SS 2005)

Klausur Analysis II (SS 2005) Klausur Analysis II (SS 5) Prof. Dr. J. Franke Abschlußklausur vom. Juli 5 Name, Vorname: Matrikelnummer: Gruppe, Tutor: Pseudonym: ir wünschen Ihnen viel Erfolg! Mit 5 Punkten oder mehr von 5 ist die

Mehr

Formelsammlung. Folgen und Reihen

Formelsammlung. Folgen und Reihen Lehrstuhl für BWL, insb. Mthemtik und Sttistik Dipl.-Mth. Mrie Hielscher Mthemtik für Betriebswirte II Formelsmmlung Folgen und Reihen en Folge n ) n N0 : D R, n n := n) mit D N 0 n-te Prtilsumme von n

Mehr

Vorkurs Mathematik für Ingenieure. Aufgaben und Lösungsvorschläge

Vorkurs Mathematik für Ingenieure. Aufgaben und Lösungsvorschläge Universität Duisburg-Essen, Campus Duisburg herausgegeben von der Fakultät für Ingenieurwissenschaften Vorkurs Mathematik für Ingenieure Aufgaben und Lösungsvorschläge Wintersemester 0/03 von Wolfgang

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004 Höhere Mathεmatik für Informatiker Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2 24 ii Inhaltsverzeichnis I Eindimensionale

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Analysis Vorlesungsskript Enno Lenzmann, Universität Basel 7. November 2013 6 L p -Räume Mit Hilfe der Masstheorie können wir nun die sog. L p -Räume einführen. Diese Räume sind wichtig in vielen

Mehr

Jurgen Muller Analysis I-IV

Jurgen Muller Analysis I-IV Jurgen Muller Analysis I-IV Skriptum zur Vorlesung Wintersemester 5/6 bis Sommersemester 7 Universitat Trier Fachbereich IV Mathematik/Analysis Dank an Elke Gawronski und Judith Wahlen fur die Mithilfe

Mehr

Ein Aufschrieb der Vorlesung Analysis I an der Uni Karlsruhe im Wintersemester 1998/99, gelesen von Priv.-Doz. Dr. G. Herzog.

Ein Aufschrieb der Vorlesung Analysis I an der Uni Karlsruhe im Wintersemester 1998/99, gelesen von Priv.-Doz. Dr. G. Herzog. Anlysis I Ein Aufschrieb der Vorlesung Anlysis I n der Uni Krlsruhe im Wintersemester 1998/99, gelesen von Priv.-Doz. Dr. G. Herzog. GeTEXt von Andres Klöckner (k@ixion.net). Für Kommentre und Berichtigungen

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Mathematik I Internationales Wirtschaftsingenieurwesen

Mathematik I Internationales Wirtschaftsingenieurwesen Mathematik I Internationales Wirtschaftsingenieurwesen Integralrechnung 03.12.08 Das unbestimmte Integral/Stammfunktion Das bestimmte Integral/Flächenberechnung Integral als Umkehrung der Ableitung Idee:

Mehr

Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II. Heinrich Voß

Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II. Heinrich Voß Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II Heinrich Voß Institut für Angewandte Mathematik der Universität Hamburg 99 Inhaltsverzeichnis Folgen und Reihen 2. Einführende

Mehr

Mathematik für Physiker, Informatiker und Ingenieure I Skriptum des WS 2007/08

Mathematik für Physiker, Informatiker und Ingenieure I Skriptum des WS 2007/08 Mathematik für Physiker, Informatiker und Ingenieure I Skriptum des WS 2007/08 Prof. Dr. M. v. Golitschek Institut für Mathematik Universität Würzburg Literatur: Suchen Sie doch hin und wieder die Bibliotheken

Mehr

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum Analysis I III Vorlesungsskriptum WS 2005/06 WS 2006/07 R. Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Inhaltsverzeichnis Kapitel I. Aufbau des Zahlsystems 5 I.1. Die natürlichen Zahlen

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 9..9, 9... Bitte unbedingt beachten: a) Gewertet werden alle acht

Mehr

Mathematik 1 für Maschinenbau Aufgabensammlung Sommersemester 2012. Aufgaben mit Kontrollergebnissen und Lösungshinweisen

Mathematik 1 für Maschinenbau Aufgabensammlung Sommersemester 2012. Aufgaben mit Kontrollergebnissen und Lösungshinweisen Mathematik für Maschinenbau Aufgabensammlung Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg Aufgaben mit Kontrollergebnissen und Lösungshinweisen Vorbemerkung: Die folgenden Angaben dienen

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Übungen Mathematik für Wirtschaftswissenschaftler Aufgabensammlung. Roland Schwänzl

Übungen Mathematik für Wirtschaftswissenschaftler Aufgabensammlung. Roland Schwänzl Übungen Mathematik für Wirtschaftswissenschaftler Aufgabensammlung Roland Schwänzl SS 999 Inhaltsverzeichnis Mengenlehre 5 Ungleichungen 7 Graphen 4 Induktion 5 5 Endliche Summen 9 6 Folgen 7 Differenzengleichungen

Mehr

f : C C, z f(z) = zz komplex differenzierbar? Gibt es ein Gebiet G so dass f G analytisch ist?

f : C C, z f(z) = zz komplex differenzierbar? Gibt es ein Gebiet G so dass f G analytisch ist? Tutor: Martin Friesen, martin.friesen@gmx.de Klausurvorbereitung - Lösungsvorschläge- Funktionentheorie Hier eine kleine Sammlung von Klausurvorbereitungsaufgaben vom Sommersemester 008 aus der Vorlesung

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

Höhere Mathematik. Lernt alle Aufgaben aus den beiden Testklausuren!!!

Höhere Mathematik. Lernt alle Aufgaben aus den beiden Testklausuren!!! Höhere Mathematik Universität Bremen, Wintersemester 213/214 Dozent: Prof.Dr. Michael Hortmann http://michael-hortmann.math.uni-bremen.de Lernt alle Aufgaben aus den beiden Testklausuren!!! Φ = a b = a

Mehr

Lösungen und Lösungshinweise zum Grundkurs Analysis 2

Lösungen und Lösungshinweise zum Grundkurs Analysis 2 Lösungen und Lösungshinweise zum Grundkurs Analysis 2 Vorbemerkung: Bei einem Buchprojekt dauert meist alles etwas länger als geplant. So ging es mir mit dem Erscheinungdatum des zweiten Bandes, der sich

Mehr

Die Weierstraßsche Funktion

Die Weierstraßsche Funktion Die Weierstraßsche Funktion Nicolas Weisskopf 7. September 0 Zusammenfassung In dieser Arbeit führen wir die Weierstraßsche Funktion ein und untersuchen einige ihrer Eigenschaften. Wir zeigen, dass jede

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Einheit 1 Mathematische Methodik 1. Problemlösen 2. Beweistechniken 3. Wichtige Grundbegriffe Methodik des Problemlösens Klärung der Voraussetzungen Welche Begriffe sind zum Verständnis

Mehr

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben an der Fachhochschule Heilbronn im Wintersemester 2002/2003 Dr. Matthias Fischer Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für

Mehr

1 Die reellen Zahlen. 1. Ziele des Mathematikstudiums: Die Studierenden sollen lernen,

1 Die reellen Zahlen. 1. Ziele des Mathematikstudiums: Die Studierenden sollen lernen, 1 Die reellen Zahlen 1. Ziele des Mathematikstudiums: Die Studierenden sollen lernen, präzise und logisch zu denken, komplexe Strukturen schnell und gründlich zu erfassen, Dinge kritisch zu hinterfragen

Mehr

EINFÜHRUNG IN DIE KOMPLEXE ANALYSIS

EINFÜHRUNG IN DIE KOMPLEXE ANALYSIS EINFÜHRUNG IN DIE KOMPLEXE ANALYSIS WERNER MÜLLER Sommersemester 205 Inhaltsverzeichnis 0. Die komplexen Zahlen 3. Holomorphe Funktionen 6 2. Die Cauchy-Riemannschen Differentialgleichungen 9 3. Potenzreihen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK WS 11/12 Einführung in die Informatik II Übungsblatt 2 Univ.-Prof. Dr. Andrey Rybalchenko, M.Sc. Ruslán Ledesma Garza 8.11.2011 Dieses Blatt behandelt

Mehr

Grundlagen der Mathematik II

Grundlagen der Mathematik II Wintersemester 204/205 - Aufgabenblatt I Abgabe: bis Donnerstag, den 6. November 204, 9:00 Uhr Aufgabe : Untersuchen Sie, für welche 2 C die folgende Matrix c diagonalisierbar ist, und bestimmen Sie für

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

Zahlentheorie. Daniel Scholz im Winter 2006 / 2007. Überarbeitete Version vom 7. September 2007.

Zahlentheorie. Daniel Scholz im Winter 2006 / 2007. Überarbeitete Version vom 7. September 2007. Zahlentheorie Daniel Scholz im Winter 2006 / 2007 Überarbeitete Version vom 7. September 2007. Inhaltsverzeichnis 1 Einleitung und Grundlagen 4 1.1 Einleitung............................. 4 1.2 Zahlensysteme..........................

Mehr

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Michael Schaeer 3.04.03 Abstract This seminar is about convex functions and several imortant ineualities. At the beginning the term

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 2 Zufallsgrössen Literatur Kapitel 2 * Statistik in Cartoons: Kapitel 4 * Krengel: 3.1 und 3.2 in 3 und (Honours Program) 10 sowie 11.1, 11.2 und 11.3 in

Mehr

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse Elemente der Anlysis II: Zusmmenfssung der wichtigsten Definitionen und Ergebnisse J. Wengenroth Dies ist die einzige zugelssene Formelsmmlung, die bei der Klusur benutzt werden drf. Es dürfen Unterstreichungen

Mehr

Skript zur Analysis I Wintersemester 2009/10 Prof. Dr. Daniel Grieser

Skript zur Analysis I Wintersemester 2009/10 Prof. Dr. Daniel Grieser Skript zur Analysis I Wintersemester 2009/0 Prof. Dr. Daniel Grieser Carl von Ossietzky Universität Oldenburg Institut für Mathematik 26 Oldenburg E-Mail: daniel.grieser@uni-oldenburg.de Die Homepage zur

Mehr

Analysis 2. Mitschrift von www.kuertz.name

Analysis 2. Mitschrift von www.kuertz.name Anlysis 2 Mitschrift von www.kuertz.nme Hinweis: Dies ist kein offizielles Script, sondern nur eine privte Mitschrift. Die Mitschriften sind teweilse unvollständig, flsch oder inktuell, d sie us dem Zeitrum

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Diskrete Mathematik für Informatiker Markus Lohrey Universität Siegen Wintersemester 2014/2015 Lohrey (Universität Siegen) Diskrete Mathematik Wintersem. 2014/2015 1 / 344 Organisatorisches zur Vorlesung

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Dr. Raimund Horn a Dipl. Chem. Barbara Bliss b Dipl. Phys. Lars Lasogga c a Fritz Haber Institut der Max Planck Gesellschaft

Mehr

Modern Methods in Nonlinear Optimization

Modern Methods in Nonlinear Optimization Modern Methods in Nonlinear Optimization Regularisierung Inverser Probleme Prof. Dr. Bastian von Harrach Technische Universität München, Fakultät für Mathematik - M1 Wintersemester 2010/2011 http://www-m1.ma.tum.de/bin/view/lehrstuhl/harrach_ws1011_modernmethods

Mehr

Wirtschaftsmathe für BW und IM Aufgabensammlung Wintersemester 2013/14

Wirtschaftsmathe für BW und IM Aufgabensammlung Wintersemester 2013/14 Wirtschaftsmathe für BW und IM Aufgabensammlung Wintersemester 2013/14 Prof. Dr. Stefan Etschberger Hochschule Augsburg Prof. Dr. Stefan Etschberger Hochschule Augsburg Wirtschaftsmathe für BW und IM Wintersemester

Mehr

Nicht-archimedische Zahlen

Nicht-archimedische Zahlen Skript zur Vorlesung Nicht-archimedische Zahlen Wintersemester 2012/13 Frankfurt am Main Prof. Dr. Annette Werner Inhaltsverzeichnis 1 Einleitung 1 2 Nicht-archimedische Absolutbeträge 2 3 Bälle und Topologie

Mehr

Differentialrechnung von Funktionen mehrerer Variablen

Differentialrechnung von Funktionen mehrerer Variablen Prof. Dr. J. Dorfmeister Vorkurs Mathematik Intensiv TU München Robert Lang WS 06/07 Differentialrechnung von Funktionen mehrerer Variablen Technische Universität München Wintersemester 2006/2007 1 Funktionen

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Einführung in die Funktionalanalysis

Einführung in die Funktionalanalysis Einführung in die Funktionalanalysis Bernhard Gsell Skriptum zur Vorlesung gelesen von Prof. Wolfgang Woess 21. August 2014 Dies ist die Umsetzung meiner Vorlesungsmitschrift zu Einführung in die Funktionalanalysis,

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010 Induktive Limiten Arpad Pinter, Tobias Wöhrer 30. Jänner 2010 1 Inhaltsverzeichnis 1 Induktiver Limes von Mengen 2 2 Induktiver Limes von Vektorräumen 4 3 Lokalkonvexe topologische Vektorräumen 7 4 Induktiver

Mehr

9. Natürliche Zahlen, rationale Zahlen, reelle Zahlen.

9. Natürliche Zahlen, rationale Zahlen, reelle Zahlen. 9-1 Funktionen 9 Natürliche Zahlen, rationale Zahlen, reelle Zahlen Hier soll ein Überblick gegeben werden, wie die reellen Zahlen ausgehend von den natürlichen Zahlen konstruiert werden Dies erfolgt in

Mehr

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I Bayern FOS BOS Fachabiturprüfung 05 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I.0 Nebenstehende Abbildung zeigt den Graphen G f ' der ersten Ableitungsfunktion einer in ganz 0 definierten

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Folgen. Kapitel 3. 3.1 Zinsrechnung

Folgen. Kapitel 3. 3.1 Zinsrechnung Kapitel 3 Folgen Eine Folge reeller Zahlen ordnet natürlichen Zahlen jeweils eine reelle Zahl zu. Liegen beispielsweise volkswirtschaftliche Daten quartalsweise vor, so kann man diese als Folge interpretieren.

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

uni:fit 2013 Kursprogramm (26. August - 13. September 2013)

uni:fit 2013 Kursprogramm (26. August - 13. September 2013) uni:fit 2013 Kursprogramm (26. August - 13. September 2013) Intensivkurse in Mathematik für Studienanfänger/innen aller Fachrichtungen an der Leibniz Universität Hannover Herzlich willkommen bei uni:fit

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

e d m m = D d (E e (m)) D d E e m f c = f(m) m m m 1 f(m 1 ) = c m m 1 m c = f(m) c m c m b b 0, 1 b r f(b, r) f f(b, r) := y b r 2 n, n = pq ggt (p, q) = 1 p q y n f K f(x + y) = f(x) + f(y) f(x y) =

Mehr

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper 32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

Damian Rösslers Komplexe Analysis. SS 02 getext von Johannes Bader

Damian Rösslers Komplexe Analysis. SS 02 getext von Johannes Bader Damian Rösslers Komplexe Analysis SS 2 getext von Johannes Bader Copyright 22 Johannes Bader baderj@ee.ethz.ch Die Verteilung dieses Dokuments in elektronischer oder gedruckter Form ist nicht gestattet.

Mehr

Analysis I im SS 2011 Kurzskript

Analysis I im SS 2011 Kurzskript Anlysis I im SS 2011 Kurzskript Prof. Dr. C. Löh Sommersemester 2011 Inhltsverzeichnis -2 Literturhinweise 2-1 Einführung 4 0 Grundlgen: Logik und Mengenlehre 5 1 Zählen, Zhlen, ngeordnete Körper 14 2

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

1 Aussagenlogik und Mengenlehre

1 Aussagenlogik und Mengenlehre 1 Aussagenlogik und engenlehre 1.1 engenlehre Definition (Georg Cantor): nter einer enge verstehen wir jede Zusammenfassung von bestimmten wohl unterschiedenen Objekten (m) unserer Anschauung oder unseres

Mehr

Mathematik für ChemikerInnen I

Mathematik für ChemikerInnen I Mathematik für ChemikerInnen I Prof. Dr. Ansgar Jüngel Institut für Mathematik Johannes Gutenberg-Universität Mainz Winter 26 unkorrigiertes Vorlesungsskript Inhaltsverzeichnis Motivation 3 2 Grundbegriffe

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Mathematik Abitur Zusammenfassung Marius Buila

Mathematik Abitur Zusammenfassung Marius Buila Mathematik Abitur Zusammenfassung Marius Buila 1.Analysis 1.1 Grundlagen: Ableitung f (u) ist Steigung in Punkt P (u/f(u)) auf K f(x) = a * x r f (x) = a * r * x r-1 Tangentengleichung: y= f (u) * (x-u)

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg Hauptprüung Fachhochschulreie 3 Baden-Württemberg Augabe 3 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz www.mathe-augaben.com Dezember 3 3. Das Schaubild einer Funktion

Mehr

Mathematik für Elektrotechnik-Ingenieure I - III. Prof. Dr. Volker Michel AG Geomathematik Department Mathematik Fakultät IV Universität Siegen

Mathematik für Elektrotechnik-Ingenieure I - III. Prof. Dr. Volker Michel AG Geomathematik Department Mathematik Fakultät IV Universität Siegen Mathematik für Elektrotechnik-Ingenieure I - III Prof. Dr. Volker Michel AG Geomathematik Department Mathematik Fakultät IV Universität Siegen 4. Juli 4 Inhaltsverzeichnis I 9 Reelle Zahlen. Mengen und

Mehr

Lernmaterial für die Fernuni Hagen effizient und prüfungsnah

Lernmaterial für die Fernuni Hagen effizient und prüfungsnah Lernmaterial für die Fernuni Hagen effizient und prüfungsnah www.schema-f-hagen.de Sie erhalten hier einen Einblick in die Dokumente Aufgaben und Lösungen sowie Erläuterungen Beim Kauf erhalten Sie zudem

Mehr

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler)

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler) 1 Handreichung zur Mathematikvorlesung für Wirtschaftswissenschaftler) Dr.Dr. Christina Schneider 2 Hinweis Das vorliegende Manuskript versteht sich als kurze und kompakte Handreichung zu meiner Vorlesung

Mehr

MαTZε frühstückt. Steffen Ohrendorf et al. http://earvillage.square7.ch. Revision 31 (14.01.2013)

MαTZε frühstückt. Steffen Ohrendorf et al. http://earvillage.square7.ch. Revision 31 (14.01.2013) MαTZε frühstückt Revision 31 (14.01.2013) Steffen Ohrendorf et al. http://earvillage.square7.ch Als Informatiker sollte man immer Linux zu Hause haben. Falls mal Besuch kommt. http://german-bash.org/83851

Mehr

Vorlesung Analysis und Numerische Mathematik (für Informatiker) gehalten von Werner Römisch Winter-Semester 1992/93 bis Sommer-Semester 1994

Vorlesung Analysis und Numerische Mathematik (für Informatiker) gehalten von Werner Römisch Winter-Semester 1992/93 bis Sommer-Semester 1994 Vorlesung Analysis und Numerische Mathematik (für Informatiker) gehalten von Werner Römisch Winter-Semester 1992/93 bis Sommer-Semester 1994 1 Inhaltsverzeichnis 0 Einleitung 4 1 Mengen, Abbildungen, Zahlen

Mehr

Mathematischer Vorkurs. Für die Studiengänge. Bachelor Mathematik Bachelor Wirtschaftsmathematik Lehramt Mathematik Gymnasium und Gesamtschule

Mathematischer Vorkurs. Für die Studiengänge. Bachelor Mathematik Bachelor Wirtschaftsmathematik Lehramt Mathematik Gymnasium und Gesamtschule Mathematischer Vorkurs Für die Studiengänge Bachelor Mathematik Bachelor Wirtschaftsmathematik Lehramt Mathematik Gymnasium und Gesamtschule Dieser Vorkurs ist für andere Studiengänge nur dann geeignet,

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Wintersemester 0/0 Wirtschaftsinformatik Bachelor IW Informatik Bachelor IN Vorlesung Mathematik Mathematik Lösungsvorschläge zum Übungsblatt

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Finanzmathematik 1 11 Folgen und Reihen 1 111 Folgen allgemein 1 112

Mehr

MATHEMATISCHER FITNESSTEST - LÖSUNGEN. (2) Welche Menge stellt die schraerte Fläche dar?

MATHEMATISCHER FITNESSTEST - LÖSUNGEN. (2) Welche Menge stellt die schraerte Fläche dar? MATHEMATISCHER FITNESSTEST - LÖSUNGEN DR. ROGER ROBYR Die Aufgaben sollten alle ohne Unterlagen und ohne programmierbare oder graphikfähige Rechner gelöst werden können. Lösung. ) Gegeben sind die Mengen

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

VORBEREITUNG AUF DAS ABITUR

VORBEREITUNG AUF DAS ABITUR VORBEREITUNG AUF DAS ABITUR 9.5 Sinus- und Kosinusfuntionen 9.5. Bleib fit in Sinus- und Kosinusfuntionen. a) Die. Koordinate eines Puntes P ann diret in den Graphen übertragen werden. r = b) Die. Koordinate

Mehr