Kapitel 6 Chemische Spannungsquellen

Größe: px
Ab Seite anzeigen:

Download "Kapitel 6 Chemische Spannungsquellen"

Transkript

1 TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 6 Chemische Spannungsquellen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn Ausgabe: März 2009 Luigi Galvani Arzt, Anatom und Biophysiker

2 TG TECHNOLOGISCHE GRUNDLAGEN 5 CHEMISCHE SPANNUNGSQUELLEN Inhaltsverzeichnis 6.1 Ersatzschaltbild und Belastung Ersatzschaltbild der Spannungsquelle Leerlauf einer Spannungsquelle Belastung einer Spannungsquelle Kurzschluss einer Spannungsquelle Belastungskennlinie einer Spannungsquelle 6.2 Serieschaltung von Spannungsquellen 6.3 Parallelschaltung von Spannungsquellen 6.4 Chemischer Vorgang bei Spannungsquellen Tabelle der Normalspannungen 6.5 Batterien und Akkumulatoren Primärelemente Sekundärelemente Entwicklungen in der Akkumulator-Technik 6.6 Batterien- und Akkumulatoren-Vergleichstabelle Auswahlkriterien für Batterien und Akkumulatoren 6.7 Galvanisieren 6.8 Netzersatzanlagen 6.9 Brennstoffzellen

3 TG TECHNOLOGISCHE GRUNDLAGEN Seite 3 1 ERSATZSCHALTBILD UND BELASTUNGSFÄLLE 6 Chemische Spannungsquellen 6.1 Ersatzschaltbild und Belastung Ersatzschaltbild der Spannungsquelle Gleichspannungsquellen sind Energiequellen, deren Spannungsbetrag zeitlich konstant ist. Typische Gleichspannungsquellen sind z. B. Batterien, Akkumulatoren und Netzgeräte. Nebenstehen ist die Ersatzschaltung einer Spannungsquelle dargestellt. Das vorgeschaltete Netz zu einem Verbraucher kann auch in dieser Form dargestellt werden. U Klemmenspannung [V ] Kl U Leerlaufspannung [V ] 0 E Elektromotorische Kraft [V ] U Äussere Spannung [V ] a I Strom [A] R i Innenwiderstand der Quelle [Ω] Als ideale Spannungsquelle 0 U wird eine Spannungsquelle bezeichnet, die unabhängig von der nachgeschalteten Last stets dieselbe Spannung abgibt. Klemmen- und Quellenspannung wären somit immer identisch, der Energievorrat der Quelle wird als unendlich angenommen. Da dies in der Praxis aber unmöglich zu erreichen ist, werden in technischen Berechnungen zumeist reale Spannungsquellen eingesetzt. Diese bestehen aus einer idealen Spannungsquelle, zu der ein in Reihe geschalteter Widerstand, der Innenwiderstand, angenommen wird.

4 TG TECHNOLOGISCHE GRUNDLAGEN Seite 4 1 ERSATZSCHALTBILD UND BELASTUNGSFÄLLE Leerlauf einer Spannungsquelle Leerlauf Die Leerlaufspannung nennt man auch: - Urspannung - Quellenspannung - Leerlaufspannung - Elektro-Motorische-Kraft ( E =EMK) U Klemmenspannung [V ] Kl U Leerlaufspannung [V ] 0 E Elektromotorische Kraft [V ] U Äussere Spannung [V ] a I Strom [A] R i Innenwiderstand der Quelle [Ω] Merke:

5 TG TECHNOLOGISCHE GRUNDLAGEN Seite 5 1 ERSATZSCHALTBILD UND BELASTUNGSFÄLLE Belastung einer Spannungsquelle Mit dem inneren Widerstand der Quelle kann bei Berechnungen der Einfluss von nachgeschalteten Lasten auf die tatsächlich anliegende Klemmenspannung der Quelle nachvollzogen werden. Je stärker die Quelle belastet wird, desto tiefer sinkt die an den Klemmen anliegende Spannung. In der Praxis kann der Innenwiderstand einer Spannungsquelle variieren, beispielsweise ist der Innenwiderstand einer neuen Batterie viel geringer als derjenige einer verbrauchten. Belastung U Klemmenspannung [V ] Kl U Leerlaufspannung [V ] 0 E Elektromotorische Kraft [V ] U Äussere Spannung [V ] a I Strom [A] R i Innenwiderstand der Quelle [Ω] R Äusserer Widerstand [Ω] a P a Leistung am äusseren Widerstand [W ]

6 TG TECHNOLOGISCHE GRUNDLAGEN Seite 6 1 ERSATZSCHALTBILD UND BELASTUNGSFÄLLE Kurzschluss einer Spannungsquelle Kurzschluss U Klemmenspannung [V ] Kl U Leerlaufspannung [V ] 0 E Elektromotorische Kraft [V ] U Äussere Spannung [V ] a I Strom [A] I Kurzschlussstrom [A] K R i Innenwiderstand der Quelle [Ω] R Äusserer Widerstand [Ω] a P a Leistung am äusseren Widerstand [W ] Der maximale Strom ist also umso größer, desto kleiner der Innenwiderstand der Quelle ist. Aus den hier aufgeführten Gründen ist es daher anzustreben, den Innenwiderstand für technische, zu halten. Jedenfalls sollte er viel klei- Spannungsquellen so klein wie möglich, am besten ner als der des Verbrauchers sein. R i = 0Ω

7 TG TECHNOLOGISCHE GRUNDLAGEN Seite 7 1 ERSATZSCHALTBILD UND BELASTUNGSFÄLLE Belastungskennlinie einer Spannungsquelle Die von einer realen Spannungsquelle abgegebene Leistung berechnet sich aus dem Produkt des Stromes und der Klemmenspannung. Im Leerlauf beträgt diese Leistung Null, da kein Strom durch den Verbraucher fließt. Auch im Kurzschlussfall wird keine Leistung abgegeben, da zwar ein hoher Strom fließt, die Klemmenspannung aber gleich Null ist. Der Strom wird in diesem Fall allein durch den Innenwiderstand begrenzt, der die maximale von der Quelle lieferbare Leistung umsetzen muss. Maximale Leistungsübertragung bzw. maximale Leistung am Verbraucher ist bei:

8 TG TECHNOLOGISCHE GRUNDLAGEN Seite 8 2 SERIESCHALTUNG VON SPANNUNGSQUELLEN 6.2 Serieschaltung von Spannungsquellen Bei Reihenschaltung mehrerer Spannungsquellen ergibt sich die Gesamtspannung aus der Summe der Leerlaufspannungen der einzelnen Spannungsquelle. Ebenso ist der Gesamtquellwiderstand gleich der Summe der einzelnen Innenwiderstände. Der Strom ist für alle Quellen in der Frequenz, Phase und Amplitude identisch.

9 TG TECHNOLOGISCHE GRUNDLAGEN Seite 9 2 SERIESCHALTUNG VON SPANNUNGSQUELLEN

10 TG TECHNOLOGISCHE GRUNDLAGEN Seite 10 3 PARALLELSCHALTUNG VON SPANNUNGSQUELLEN 6.3 Parallelschaltung von Spannungsquellen Wird mehr Strom vom Verbraucher benötigt, als eine einzelne Quelle liefern kann, sodass eine Parallelschaltung von Spannungsquellen erforderlich wird, so ist dies nur bedingt mit realen Quellen möglich. Dazu müssen bei Bedarf Quellenwiderstände durch externe in die Leitungen geschaltete Widerstände nachgebildet werden. Diese müssen so groß sein, dass durch ihre Spannungsverluste die Spannung am Verbraucher kleiner wird als die kleinste der Leerlaufspannungen. Zusätzlich ist darauf zu achten, dass alle parallelgeschalteten Spannungsquellen bezüglich der Spannung: Den gleichen Betrag haben Das gleiche Vorzeichen (Polung) aufweisen Erdfrei sind oder am gleichen Pol geerdet sind. Bei mehr als einem Erdpunkt können geringe Differenzströme fließen (siehe Brummschleife) Wechselspannungsquellen die gleiche Phase haben Werden diese Punkte nicht beachtet führt dies zu einem meist unerwünschten Stromfluss zwischen den Quellen. Je nach Stromhöhe und/oder Ausführung der Spannungsquelle kann dies zur Zerstörung einzelner Teilquellen führen. Diese Kriterien können auch mit entsprechenden elektronischen Schutzschaltungen, die die Spannungen der einzelnen Spannungsquellen überwachen und regeln, erfüllt werden.

11 TG TECHNOLOGISCHE GRUNDLAGEN Seite 11 3 PARALLELSCHALTUNG VON SPANNUNGSQUELLEN

12 TG TECHNOLOGISCHE GRUNDLAGEN Seite 12 4 CHEMISCHER VORGANG 6.4 Chemischer Vorgang bei Spannungsquellen

13 TG TECHNOLOGISCHE GRUNDLAGEN Seite 13 4 CHEMISCHER VORGANG Tabelle der Normalspannungen Standardpotentiale bei 25 C; 101,3 kpa; ph=0; Ionenaktivtäten= 1 Element im Redox- Paar, dessen Oxidationsstufe sich ändert Oxidierte Form Elektronenzahl Reduzierte Form Chemisches Zeichen Standartpotential Fluor F F 2 + 2e 2 F +2,87 V Schwefel S 2 S 2O 8 + 2e 2 2 SO 4 +2,00 V Sauerstoff O H 2O H 3O + + 2e 4 H 2O +1,78 V Gold Au Au + + e Au +1,69 V Gold Au Au e Au +1,42 V Gold Au Au e Au + +1,40 V Chlor Cl Cl 2 + 2e 2Cl +1,36 V Sauerstoff O O H 3O + + 4e 6 H 2O +1,23 V Platin Pt Pt e Pt +1,20 V Brom Br Br 2 + 2e 2Br +1,07 V Quecksilber Hg Hg e Hg +0,85 V Silber Ag Ag+ + e Ag +0,81 V Eisen Fe Fe 3+ + e Fe 2+ +0,77 V Iod J J 2 + 2e 2J +0,53 V Kohle (Braunstein, MnO 2 +0,74 Manganoxid) Kupfer Cu Cu + + e Cu +0,52 V Eisen Fe [Fe(CN) 6] 3 + e [Fe(CN) 6] 4 +0,361 V Kupfer Cu Cu e Cu +0,34 V Kupfer Cu Cu 2+ + e Cu + +0,16 V Zinn Sn Sn e Sn 2+ +0,15 V Wasserstoff (H 2) H 2H + + 2e H 2 0 Eisen Fe Fe e Fe 0,04 V Blei Pb Pb e Pb 0,13 V Zinn Sn Sn e Sn 0,14 V Nickel Ni Ni e Ni 0,23 V Cadmium Cd Cd e Cd 0,40 V Eisen Fe Fe e Fe 0,41 V Schwefel S S + 2e S 2 0,48 V Nickel Ni NiO H 2O + 2e Ni(OH) OH 0,49 V Zink Zn Zn e Zn 0,76 V Wasser H 2O 2 H 2O + 2e H OH 0,83 V Chrom Cr Cr e Cr 0,91 V Niob Nb Nb e Nb 1,099 V Vanadium V V e V 1,17 V Mangan Mn Mn e Mn 1,18 V Titan Ti Ti e Ti 1,21 V Aluminium Al Al e Al 1,66 V Titan Ti Ti e Ti 1,77 V Beryllium Be Be e Be 1,85 V Magnesium Mg Mg e Mg 2,38 V Natrium Na Na + + e Na 2,71 V Calcium Ca Ca e Ca 2,76 V Barium Ba Ba e Ba 2,90 V Kalium K K + + e K 2,92 V Lithium Li Li + + e Li 3,05 V Außerdem enthält die elektrochemische Spannungsreihe eine Abstufung der Metalle ( sehr edles Metall, edles Metall, weniger edles Metall, unedles Metall, sehr unedles Metall ) nach ihrem Bestreben, sich in Säuren oxidieren zu lassen. Die Standardpotentiale der edlen Metalle haben ein positives Vorzeichen, die der unedlen dagegen ein negatives.

14 TG TECHNOLOGISCHE GRUNDLAGEN Seite 14 5 PRIMÄRELEMENTE 6.5 Batterien und Akkumulatoren Bei den chemischen Spannungsquellen unterscheidet man zwischen Primärelemente Georges Leclanché 1839 in Parmain geboren

15 TG TECHNOLOGISCHE GRUNDLAGEN Seite 15 5 PRIMÄRELEMENTE Typen von Primärelementen Bezeichnung Aufbau Ladeverfahren Anwendung Umwelt Zink-Kohle - Zink + Braunstein E Amoniumchlorid Nennspannung 1,5V Transportable Geräte Zink-Chlorid - Zink-Chlorid + Braunstein E Amoniumchlorid Nennspannung 1,5V Zink-Luft - Zink + Zink-Oxid E Alkali-Oxid oder Hydroxid Ruhespannung 1,35 bis 1,4 V Hörgerätebatterie Alkali-Mangan (Alkali-Braunstein-Zink) Nennspannung 1,5V Nickel-Oxyhydroxid Nennspannung 1,5V Lithium-Thionylchlorid Li SOCl 2 Nennspannung 3,4V Leerlaufspannung 3,7V Energiezähler Heizkostenventilen Lithium-Mangandioxid Nennspannung 2,9V Li MnO 2 Leerlaufspannung 3,5 3,0V Lithium-Schwefeldioxid Nennspannung 2,7V Li SO 2 Leerlaufspannung 3,0V Militärischer Bereich Kameras, Uhren und als Backup-Batterie für Speicherschaltkreise Lithium- Kohlenstoffmonofluorid Li (CF n) Nennspannung 3,1 2,5V Leerlaufspannung 3,2 3,0V Anwendungen bei denen Leistung wichtiger als Kosten Lithium-Iod Li I 2 Nennspannung 2,795V Leerlaufspannung 2,8V Herzschrittmacher Lithium-Eisensulfid Li FeS 2 Nennspannung 1,5V Leerlaufspannung 1,8V Fotobereich Lithium-Luft Li O 2 Nennspannung 2V Leerlaufspannung 3,4V Quecksilberoxid-Zink Nennspannung 1,35V Silberoxid-Zink Nennspannung 1,55V Natrium-Nickelchlorid (Zebra-Batterie) Nennspannung 1,5V E Elektrolyt, + Kathode, - Anode

16 TG TECHNOLOGISCHE GRUNDLAGEN Seite 16 6 SEKUNDÄRELEMENTE Sekundärelemente

17 TG TECHNOLOGISCHE GRUNDLAGEN Seite 17 6 SEKUNDÄRELEMENTE Typen von Sekundärelementen Bezeichnung Aufbau Ladeverfahren Anwendung Umwelt Blei-Akku Bleioxid und Blei mit Schwefelsäure (H 2SO 4) Anode Bleioxid (PbO 2). Kathode metallisches Blei I/U-Ladeverfahren Nennspannung 2V Leerlaufspannung 2,08V Selbstrentladung 2% pro Tag hohe Strombelastbarkeit giftig NiCd Oxy-Nickelhydroxid und Cadmium mit Kaliumhydrid (KOH). Anode Oxy- Nickelhydroxid (2NiOOH) Kathode Cadmium Konstantstrom oder Reflex-Ladeverfahren Memoryeffekt Nennspannung 1,2V Geräte des täglichen Bedarfs giftig, aber recyclebar NiMH Nickel und eine Metalllegierung Konstantstrom, kein Memoryeffekt Nennspannung 1,2V Geräte des täglichen Bedarfs giftig, aber recyclebar Li-Ion I/U-Ladeverfahren Lithium-Ionen, Lithium- Polymere, Lithium-Metall Nennspannung 3V Selbstentladung 1% pro Monat Geräte des täglichen Bedarfs giftig

18 TG TECHNOLOGISCHE GRUNDLAGEN Seite 18 6 SEKUNDÄRELEMENTE

19 TG TECHNOLOGISCHE GRUNDLAGEN Seite 19 6 SEKUNDÄRELEMENTE Entwicklungen in der Akkumulator-Technik Neuere Entwicklungen der Akkumulatoren-Technologie verringern die bisherigen Nachteile von Batterie-betriebenen Elektrofahrzeugen nachhaltig. Neuere Lithium-Titanat-Akkumulatoren von Altairnano weisen nach Hersteller-Angaben folgende Eigenschaften auf: Eine Kapazität, die bei einem normalen PKW für eine Reichweite bis zu 400 km pro Akkuladung ausreicht. Resistenz gegen Kälte und Wärme: Betriebstemperatur von -50 C bis +75 C bei noch ca. 90 % Kapazität bei extremen Temperaturen. Auch wird keinerlei Kühlung o. ä. bei der Ladung benötigt. Im Gegensatz zu herkömmlichen Lithium-Ionen-Batterien können die Batterien durch das geänderte Material weder Feuer fangen noch explodieren. Dadurch spart man ein Sicherheitssystem, wie es z. B. beim Elektrosportwagen Tesla Roadster zum Einsatz kommen muss. Eine lange Lebensdauer der Batterien von mehr als 20 Jahren bzw. einer maximalen Zyklenzahl von bis , das entspräche theoretisch gefahrenen Kilometern bei einer Reichweite von 400 km pro Akkuladung. In der Praxis würde man die Batterien jedoch häufiger aufladen, womit die Batterien schneller verschleißen. Es soll möglich werden, die Akkumulatoren in einem Fahrzeug für eine Reichweite von 400 km in weniger als 10 Minuten aufzuladen. Für eine derart schnelle Wiederaufladung ist allerdings eine besondere Ladestation erforderlich. Diese Akkumulatoren werden seit September 2005 in kleinen Stückzahlen an die Firma Phoenix Motorcars in Reno (Nevada, USA), die Fahrzeuge mit Platz für 5 Personen und einer Ladefläche herstellt, die von diesen Batterien angetrieben werden. Ab 2008 soll ein entsprechend angetriebenes Sportfahrzeug (Sport Utility Vehicle, kurz: SUV) produziert werden.

20 TG TECHNOLOGISCHE GRUNDLAGEN Seite 20 7 PRIMÄR- UND SEKUNDÄRELEMENTE 6.6 Batterien- und Akkumulatoren-Vergleichstabelle Generell sind fast alle Batterien auch als Akkus erhältlich, die dann in der Regel etwas weniger Leistung erbringen. Bei den meisten Anwendungen ist dies weniger von Bedeutung, das heißt, der Leistungsverlust steht gegenüber der Kostenersparnis zurück. USA ANSI IEC Europa, JIS (International) Bezeichnung Duracel Visualisierung Ø, Länge Abmessung Kapatität [mah] Spannungen [V] AAAA E96 LR61 Mini 1 8,3 x 42, ,5 UM-5 (AM-5) N R1 LR1 Lady MN ,5 x 29, ,5 1,2 1 UM-4 (AM-4) AAA R03 LR03 Micro MN ,5 x 44, ,5 1,2 1 UM-3 (AM-3) AA R6 LR6 Mignon MN ,5 x 50, ,5 1,2 1 1/4AA Mignon 5 14,5 x 14,0 1/3AA Mignon 6 14,5 x 17,0 1/2AA Mignon 7 14,5 x 25,1 2/3AA Mignon 8 14,5 x 33,5 A 9 17,0 x 44, /2A 10 17,0 x 22, /3A 11 17,0 x 33,4 1,5 1,2 1 1,5 1,2 1 1,5 1,2 1 1,5 1,2 1 1,5 1,2 1 1,5 1,2 1 1,5 1,2 1 UM-2 (AM-2) C R14 LR14 Baby MN ,2 x 50, ,5 1,2 1 UM-1 (AM-1) D R20 LR20 Mono MN ,2 x 61, ,5 1,2 1 F x ,2 1 2R10 Duplex x ,0 6F22 (6AM-6) PP3 6R61 9 Volt Block MN ,5 x 17,5 x 48, ,0 Lithium CR2 17 Photobatterie 27,0 x 15, ,0 1 L, AM bedeutet grössere Leistung 1 Akkumulatoren

21 TG TECHNOLOGISCHE GRUNDLAGEN Seite 21 7 PRIMÄR- UND SEKUNDÄRELEMENTE Auswahlkriterien für Batterien und Akkumulatoren 1 Bemessungsspannung 2 Bemessungskapazität (entnehmbare Ladekapazität) 3 Energiedichte 4 Spannungskonstanz (während der Entladung) 5 Überlastverträglichkeit 6 Zuverlässigkeit 7 Lebensdauer 8 Lecksicherheit 9 Lagerfähigkeit (Selbstentladung) 10 Umweltverträglichkeit 11 Grösse und Gewicht 12 Anschlussmöglichkeit 13 Temperaturbedingungen 14 Preis

22 TG TECHNOLOGISCHE GRUNDLAGEN Seite 22 8 GALVANISIEREN 6.7 Galvanisieren Das Gesetz von Faraday: Die abgeschiedene Stoffmenge verhält sich proportional zu Strom und Zeit. Zudem ist der elektrochemische Beiwert eines Materials, das elektrochemische Äquivalent, zu berücksichtigen; dieses ist wiederum abhängig von Atom- und Molekulargewicht swie der Wertigkeit eines Ions. m abgeschiedene Stoffmenge [ g ], [ mg ] I Strom [ A ] t Zeit [ s ] [ g / Ah] c elektrochemisches Äquivalent [ mg / As] η Stromausbeute [ ]

23 TG TECHNOLOGISCHE GRUNDLAGEN Seite 23 8 GALVANISIEREN

24 TG TECHNOLOGISCHE GRUNDLAGEN Seite 24 9 NETZERSATZANLAGEN 6.8 Netzersatzanlagen

25 TG TECHNOLOGISCHE GRUNDLAGEN Seite NETZERSATZANLAGEN 6.9 Brennstoffzellen In einer Brennstoffzelle wird die bei der Oxidation eines Brennstoffes freiwerdende chemische Energie direkt in elektrische Energie umgewandelt. Dabei kann mehr Energie in nutzbare Arbeit umgewandelt werden als mit einem Verbrennungsmotor, bei dem Energie als Abwärme verlorengeht.

Kapitel 6 Chemische Spannungsquellen

Kapitel 6 Chemische Spannungsquellen TG TECHNOLOGISCHE GRUNDLAGEN LÖSUNGSSATZ Kapitel 6 Chemische Spannungsquellen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe: März 2009 Luigi

Mehr

Wasserstoff. Helium. Bor. Kohlenstoff. Standort: Name: Ordnungszahl: Standort: Name: Ordnungszahl: 18. Gruppe. Standort: Ordnungszahl: Name:

Wasserstoff. Helium. Bor. Kohlenstoff. Standort: Name: Ordnungszahl: Standort: Name: Ordnungszahl: 18. Gruppe. Standort: Ordnungszahl: Name: H Wasserstoff 1 1. Gruppe 1. Periode He Helium 2 18. Gruppe 1. Periode B Bor 5 13. Gruppe C Kohlenstoff 6 14. Gruppe N Stickstoff 7 15. Gruppe O Sauerstoff 8 16. Gruppe Ne Neon 10 18. Gruppe Na Natrium

Mehr

Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen. Didaktikpool

Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen. Didaktikpool Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen Didaktikpool Periodensystem der Elemente für blinde und hochgradig sehgeschädigte Laptop-Benutzer Reinhard Apelt 2008 Technische

Mehr

-1 (außer in Verbindung mit Sauerstoff: variabel) Sauerstoff -2 (außer in Peroxiden: -1)

-1 (außer in Verbindung mit Sauerstoff: variabel) Sauerstoff -2 (außer in Peroxiden: -1) 1) DEFINITIONEN DIE REDOXREAKTION Eine Redoxreaktion = Reaktion mit Elektronenübertragung sie teilt sich in Oxidation = Elektronenabgabe Reduktion = Elektronenaufnahme z.b.: Mg Mg 2 + 2 e z.b.: Cl 2 +

Mehr

Aluminium. Eisen. Gold. Lithium. Platin. Neodym

Aluminium. Eisen. Gold. Lithium. Platin. Neodym Fe Eisen Al Aluminium Li Lithium Au Gold Pt Platin Nd Neodym Zn Zink Sn Zinn Ni Nickel Cr Chrom Mo Molybdän V Vanadium Co Cobalt In Indium Ta Tantal Mg Magnesium Ti Titan Os Osmium Pb Blei Ag Silber

Mehr

6.1 Elektrodenpotenzial und elektromotorische Kraft

6.1 Elektrodenpotenzial und elektromotorische Kraft 6.1 Elektrodenpotenzial und elektromotorische Kraft Zinkstab Kupferstab Cu 2+ Lösung Cu 2+ Lösung Zn + 2e Cu Cu 2+ + 2e Cu 2+ Eine Elektrode ist ein metallisch leitender Gegenstand, der zur Zu oder Ableitung

Mehr

Die Standard Reduktions-Halbzellenpotentiale. Die Standard Reduktions. Wird die Halbzellenreaktion Zn 2+ /Zn gegen die Standard-Wassersoffelektrode

Die Standard Reduktions-Halbzellenpotentiale. Die Standard Reduktions. Wird die Halbzellenreaktion Zn 2+ /Zn gegen die Standard-Wassersoffelektrode Die Standard Reduktions Die Standard Reduktions-Halbzellenpotentiale Wird die Halbzellenreaktion Zn 2+ /Zn gegen die Standard-Wassersoffelektrode in einer galvanischen Zelle geschaltet, ergibt sich eine

Mehr

MgO. Mg Mg e ½ O e O 2. 3 Mg 3 Mg e N e 2 N 3

MgO. Mg Mg e ½ O e O 2. 3 Mg 3 Mg e N e 2 N 3 Redox-Reaktionen Mg + ½ O 2 MgO 3 Mg + N 2 Mg 3 N 2 Mg Mg 2+ + 2 e ½ O 2 + 2 e O 2 3 Mg 3 Mg 2+ + 6 e N 2 + 6 e 2 N 3 Redox-Reaktionen Oxidation und Reduktion Eine Oxidation ist ein Elektronenverlust Na

Mehr

+ O. Die Valenzelektronen der Natriumatome werden an das Sauerstoffatom abgegeben.

+ O. Die Valenzelektronen der Natriumatome werden an das Sauerstoffatom abgegeben. A Oxidation und Reduktion UrsprÄngliche Bedeutung der Begriffe UrsprÅnglich wurden Reaktionen, bei denen sich Stoffe mit Sauerstoff verbinden, als Oxidationen bezeichnet. Entsprechend waren Reaktionen,

Mehr

Reduktion und Oxidation. Oxidationszahlen (OZ)

Reduktion und Oxidation. Oxidationszahlen (OZ) Redox-Reaktionen Reduktion und Oxidation Oxidationszahlen (OZ) REDOX Reaktionen / - Gleichungen Das elektrochemische Potential Die Spannungsreihe der Chemischen Elemente Die Nernstsche Gleichung Definitionen

Mehr

Entsäuern und Entgiften mit Body Detox neueste wissenschaftliche Erkenntnisse

Entsäuern und Entgiften mit Body Detox neueste wissenschaftliche Erkenntnisse Entsäuern und Entgiften mit Body Detox neueste wissenschaftliche Erkenntnisse Dr.Dr.med. Rainer Zierer Diplom Bio-Chemiker, Betriebsarzt und praktischer Arzt, München Physiko-chemische Schwermetallprovokation

Mehr

1. GRUNDLAGEN DER CHEMIE Stoffe 2

1. GRUNDLAGEN DER CHEMIE Stoffe 2 1. GRUNDLAGEN DER CHEMIE 2 1.1 Stoffe 2 1.2 Gemenge 2 1.2.1 Chemische Verbindungen 2 1.2.2 Elemente und Atome 3 1.2.3 Periodensystem 4 1.2.4 Molekühle 5 1.3 Bindungsarten 5 1.3.1 Atombindung 6 1.3.2 Polarisierte

Mehr

7. Chemische Spannungsquellen

7. Chemische Spannungsquellen Unter einer chemischen Spannungsquellen versteht man entweder Batterien oder Akkumulatoren (kurz Akkus genannt). Batterien sind Spannungsquellen mit einer begrenzten Menge an gespeicherter Ladung. Ist

Mehr

6.3 Stromerzeugung mit galvanischen Zellen. Aufbauprinzip + Kontakte Abdichtung

6.3 Stromerzeugung mit galvanischen Zellen. Aufbauprinzip + Kontakte Abdichtung 6.3 Stromerzeugung mit galvanischen Zellen Aufbauprinzip + Kontakte Abdichtung Elektrolyt Anode Stromkollektor Kathode Behälter Separator (Diaphragma) Anode: Kathode: Elektrolyt: Separator: Oxidation eines

Mehr

Feedback Leitprogramm

Feedback Leitprogramm Feedback Leitprogramm Zeit/ Länge/ Dauer Verständlichkeit Abwechslung Art des Unterrichts Lerneffekt Zeiteinteilung/ Freiheit Übungsaufgaben/ Lösungen Kapiteltests Versuche/ Betreuung Gesamteindruck Einstieg:

Mehr

Batterien. Überblick über die verschiedenen Typen und allgemeinen Funktionsweisen. ... wie es im Lexikon steht:

Batterien. Überblick über die verschiedenen Typen und allgemeinen Funktionsweisen. ... wie es im Lexikon steht: Batterien Überblick über die verschiedenen Typen und allgemeinen Funktionsweisen... wie es im Lexikon steht: Batterie, die; -, -n [.. i-en] Stromquelle, deren erhöhte Leistung durch die Vereinigung

Mehr

4. Redox- und Elektrochemie

4. Redox- und Elektrochemie 4. Redox und Elektrochemie 4. Redox und Elektrochemie 4.1 Oxidationszahlen Eine Oxidation ist ein Vorgang, wo ein Teilchen Elektronen abgibt. Eine Reduktion ist ein Vorgang, wo ein Teilchen ein Elektron

Mehr

Übungen zum Kapitel I, Grundlagen chemischer Gleichungen

Übungen zum Kapitel I, Grundlagen chemischer Gleichungen Übungen zum Kapitel I, Grundlagen chemischer Gleichungen Übersicht der Übungen: Übung Nr. 1 (Bedeutungen und Ausgleichen von Gleichungen) Übung Nr. 2 (Bedeutungen und Ausgleichen von Gleichungen) Übung

Mehr

Praktikumsrelevante Themen

Praktikumsrelevante Themen Praktikumsrelevante Themen RedoxReaktionen Aufstellen von Redoxgleichungen Elektrochemie Quantitative Beschreibung von RedoxGleichgewichten Redoxtitrationen 1 Frühe Vorstellungen von Oxidation und Reduktion

Mehr

Calcium. Calcium fest. Ordnungszahl. Siedepunkt. Siedepunkt Atommasse Dichte. Kohlenstoff. Carbon fest. Ordnungszahl 3642!

Calcium. Calcium fest. Ordnungszahl. Siedepunkt. Siedepunkt Atommasse Dichte. Kohlenstoff. Carbon fest. Ordnungszahl 3642! Al Aluminium Aluminium fest 13 660.32 2519 2.375 5000 74.92160 B Bor Cl Boron fest 5 10.811 2.08 3.515 2076 3927 16,200 Co 58.933195 18,350 Chlorine gasförmig 17 35.453 1.5625-101.5-34.04 206 7.75 Cu 1907

Mehr

1.11 Welcher Stoff ist es?

1.11 Welcher Stoff ist es? L *** 1.11 Welcher Stoff ist es? Didaktisch-methodische Hinweise Im Arbeitsblatt wird der Versuch des Lösens von vier verschiedenen Salzen in Wasser in einem Labor beschrieben. Aus Zahlenangaben müssen

Mehr

kann elektrische Energie durch Umwandlung in chemische Energie speichern und diese durch Rückumwandlung wieder abgeben Laden Entladen

kann elektrische Energie durch Umwandlung in chemische Energie speichern und diese durch Rückumwandlung wieder abgeben Laden Entladen 1 BATTERIEN-ABCABC Batterien-ABC 2 Akkumulator (Akku) kann elektrische Energie durch Umwandlung in chemische Energie speichern und diese durch Rückumwandlung wieder abgeben elektrische Energie Laden Entladen

Mehr

AFu-Kurs nach DJ4UF. Technik Klasse E 03 Ohmsches Gesetz, Leistung & Arbeit. Amateurfunkgruppe der TU Berlin. Stand

AFu-Kurs nach DJ4UF. Technik Klasse E 03 Ohmsches Gesetz, Leistung & Arbeit. Amateurfunkgruppe der TU Berlin.  Stand Technik Klasse E 03 Ohmsches, & Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 27.10.2015 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. Amateurfunkgruppe

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #19 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #19 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 007 VL #9 am 30.05.007 Vladimir Dyakonov Leistungsbeträge 00 W menschlicher Grundumsatz 00 kw PKW-Leistung

Mehr

7. Chemische Reaktionen

7. Chemische Reaktionen 7. Chemische Reaktionen 7.1 Thermodynamik chemischer Reaktionen 7.2 Säure Base Gleichgewichte 7. Chemische Reaktionen 7.1 Thermodynamik chemischer Reaktionen 7.2 Säure Base Gleichgewichte 7.3 Redox - Reaktionen

Mehr

Redoxreaktionen. Redoxreaktionen: Reaktionen bei denen Elektronen zwischen den Komponenten übertragen werden

Redoxreaktionen. Redoxreaktionen: Reaktionen bei denen Elektronen zwischen den Komponenten übertragen werden Nach Lavoisier: : Redoxreaktionen Redoxreaktionen: Reaktionen bei denen Elektronen zwischen den Komponenten übertragen werden Aufnahme von Sauerstoff zb.: Verbrennen von Magnesium : Abgabe von Sauerstoff

Mehr

Grundlagen der Chemie Elektrochemie

Grundlagen der Chemie Elektrochemie Elektrochemie Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Elektrischer Strom Ein elektrischer Strom ist ein

Mehr

Repetitionen Chemie und Werkstoffkunde

Repetitionen Chemie und Werkstoffkunde BEARBEITUNGSTECHNIK REPETITONEN Kapitel 2 Repetitionen Chemie und Werkstoffkunde Thema 6 Oxidation und Reduktion Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654

Mehr

Kleine Formelsammlung Chemie

Kleine Formelsammlung Chemie Karl Schwister Kleine Forelsalung Cheie ISBN-1: 3-446-41545-9 ISBN-13: 978-3-446-41545-4 Leseprobe Weitere Inforationen oder Bestellungen unter http://www.hanser.de/978-3-446-41545-4 sowie i Buchhandel.

Mehr

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente E 5 1. Aufgaben 1. Die Spannungs-Strom-Kennlinie UKl = f( I) einer Spannungsquelle ist zu ermitteln. Aus der grafischen Darstellung dieser Kennlinie sind Innenwiderstand i, Urspannung U o und Kurzschlussstrom

Mehr

Redoxreaktionen 2. Elektronenübertragungsreaktionen

Redoxreaktionen 2. Elektronenübertragungsreaktionen Redoxreaktionen 2 Elektronenübertragungsreaktionen 1 Redoxpotential 1 Die Stärke von Reduktions- und Oxidationsmitteln ist abhängig von Änderung der freien Enthalpie G durch Elektronenabgabe bzw. aufnahme

Mehr

Elektrochemie. C 11 EuG Inhalt

Elektrochemie. C 11 EuG Inhalt 1 C 11 EuG Inhalt Elektrochemie 1 Stromerzeugung 1.1 Vorüberlegung: Zink-Kupfer-Lokal-Element a) xidation von Metallen mit Nichtmetallen b) xidation von Nichtmetallanionen mit Nichtmetallen c) xidation

Mehr

ELEKTRISCHE SPANNUNGSQUELLEN

ELEKTRISCHE SPANNUNGSQUELLEN Physikalisches Grundpraktikum I Versuch: (Versuch durchgeführt am 17.10.2000) ELEKTRISCHE SPANNUNGSQUELLEN Denk Adelheid 9955832 Ernst Dana Eva 9955579 Linz, am 22.10.2000 1 I. PHYSIKALISCHE GRUNDLAGEN

Mehr

Laboratorium für Grundlagen Elektrotechnik

Laboratorium für Grundlagen Elektrotechnik niversity of Applied Sciences Cologne Fakultät 07: nformations-, Medien- & Elektrotechnik nstitut für Elektrische Energietechnik Laboratorium für Grundlagen Elektrotechnik Versuch 1 1.1 Aufnahme von Widerstandskennlinien

Mehr

SS Thomas Schrader. der Universität Duisburg-Essen. (Teil 8: Redoxprozesse, Elektrochemie)

SS Thomas Schrader. der Universität Duisburg-Essen. (Teil 8: Redoxprozesse, Elektrochemie) Chemie für Biologen SS 2010 Thomas Schrader Institut t für Organische Chemie der Universität Duisburg-Essen (Teil 8: Redoxprozesse, Elektrochemie) Oxidation und Reduktion Redoxreaktionen: Ein Atom oder

Mehr

Elektronenpaarbindung (oder Atombindung) Nichtmetallatom + Nichtmetallatom Metallatom + Nichtmetallatom 7. Welche Bindungsart besteht jeweils?

Elektronenpaarbindung (oder Atombindung) Nichtmetallatom + Nichtmetallatom Metallatom + Nichtmetallatom 7. Welche Bindungsart besteht jeweils? LÖSUNGEN Probetest 1 Kap. 03 Theorie Name: 1. C = Kohlenstoff Ag = Silber Br = Brom Schwefel = S Lithium = Li Uran = U 2. Aluminium - Finde die richtigen Zahlen mit Hilfe deines PSE: Massenzahl: 27 Ordnungszahl:

Mehr

VORANSICHT III. Wie funktioniert eigentlich eine Batterie? Physik trifft Chemie eine fachübergreifende Einheit! Der Beitrag im Überblick

VORANSICHT III. Wie funktioniert eigentlich eine Batterie? Physik trifft Chemie eine fachübergreifende Einheit! Der Beitrag im Überblick 26. Wie funktioniert eigentlich eine Batterie? 1 von 12 Wie funktioniert eigentlich eine Batterie? Axel Donges, Isny im Allgäu Batterien und Akkumulatoren ( Akkus ) sind Energiespeicher. In ihnen ist chemische

Mehr

Universität des Saarlandes - Fachrichtung Anorganische Chemie Chemisches Einführungspraktikum. Elektrochemie

Universität des Saarlandes - Fachrichtung Anorganische Chemie Chemisches Einführungspraktikum. Elektrochemie Universität des Saarlandes Fachrichtung Anorganische Chemie Chemisches Einführungspraktikum Elektrochemie Elektrochemie bezeichnet mehrere verschiedene Teilgebiete innerhalb der Chemie. Sie ist zum einen

Mehr

Intermetallische Systeme, ( Legierungen ) Metalle

Intermetallische Systeme, ( Legierungen ) Metalle Eigenschaften Metalle plastisch verformbar meist hohe Dichte ( Ausnahme: Leichtmetalle ) gute elektrische Leitfähigkeit gute Wärmeleitung optisch nicht transparent metallischer Glanz Intermetallische Systeme,

Mehr

Spannungs- und Stromquellen

Spannungs- und Stromquellen Elektrotechnik Grundlagen Spannungs- und Stromquellen Andreas Zbinden Gewerblich- Industrielle Berufsschule Bern Inhaltsverzeichnis 1 Ideale Quellen 2 2 Reale Quellen 2 3 Quellenersatzschaltbilder 4 4

Mehr

a.) Wie groß ist die Reaktionsenthalpie für die Diamantbildung aus Graphit? b.) Welche Kohlenstoffform ist unter Standardbedingungen die stabilere?

a.) Wie groß ist die Reaktionsenthalpie für die Diamantbildung aus Graphit? b.) Welche Kohlenstoffform ist unter Standardbedingungen die stabilere? Chemie Prüfungsvorbereitung 1. Aufgabe Folgende Reaktionen sind mit ihrer Enthalpie vorgegeben C (Graphit) + O 2 CO 2 R = 393,43 KJ C (Diamant) + O 2 CO 2 R = 395,33 KJ CO 2 O 2 + C (Diamant) R = +395,33

Mehr

Übungsaufgaben Elektrotechnik

Übungsaufgaben Elektrotechnik Flugzeug- Elektrik und Elektronik Prof. Dr. Ing. Günter Schmitz Aufgabe 1 Übungsaufgaben Elektrotechnik Gegeben sei eine Zusammenschaltung einiger Widerstände gemäß Bild. Bestimmen Sie den Gesamtwiderstand

Mehr

1. Galvanische Elemente Sie wandeln chemische in elektrische Energie um. Da dieser Prozess nicht umkehrbar ist, spricht man von Primärelementen.

1. Galvanische Elemente Sie wandeln chemische in elektrische Energie um. Da dieser Prozess nicht umkehrbar ist, spricht man von Primärelementen. Elektrik Lehrwerkstätten und Berufsschule Zeughausstrasse 56 für Mechanik und Elektronik Tel. 052 267 55 42 CH8400 Winterthur Fax 052 267 50 64 Halter für Galvanikversuche PA9410 Inkl.Versuchsanleitung:

Mehr

Chemie Zusammenfassung JII.2 #1

Chemie Zusammenfassung JII.2 #1 Chemie Zusammenfassung JII.2 #1 Oxidation/Reduktion/Oxidationsmittel/Reduktionsmittel/Redoxpaar In einer elektrochemischen Reaktion gehen Elektronen von einem Stoff zu einem anderen über. Wenn ein Stoff

Mehr

Die Autobatterie. der Bleiakkumulator

Die Autobatterie. der Bleiakkumulator Die Autobatterie der Bleiakkumulator Übersicht Definition Geschichte Aufbau Elektrochemische Vorgänge Begriffserklärungen Autobatterie David Klein 2 Übersicht Definition Geschichte Aufbau Elektrochemische

Mehr

ÜBERSICHT UND VERGLEICH VON PRIMÄR- UND SEKUNDÄRBATTERIEN

ÜBERSICHT UND VERGLEICH VON PRIMÄR- UND SEKUNDÄRBATTERIEN ÜBERSICHT UND VERGLEICH VON PRIMÄR- UND SEKUNDÄRBATTERIEN Akkus und n können Sie im Internet unter www.accu3000.de oder telefonisch unter der Rufnummer 02405-420640 bestellen. Für fast alle Geräte und

Mehr

von Alexander Wenk 2005, Alexander Wenk, 5079 Zeihen

von Alexander Wenk 2005, Alexander Wenk, 5079 Zeihen Repetition Elektrotechnik für Elektroniker im 4. Lehrjahr von Aleander Wenk 05, Aleander Wenk, 5079 Zeihen Inhaltsverzeichnis Temperaturabhängigkeit von Widerständen 1 Berechnung der Widerstandsänderung

Mehr

Reduktion und Oxidation Redoxreaktionen

Reduktion und Oxidation Redoxreaktionen Reduktion und Oxidation Redoxreaktionen Stahlkonstruktionen die weltberühmt wurden: Eiffelturm Blaues Wunder in Dresden (die grüne Farbe der Brücke wandelte sich durch das Sonnenlicht in Blau um) OXIDATION

Mehr

Universität des Saarlandes - Fachrichtung Anorganische Chemie C h e m i s c h e s E i n f ü h r u n g s p r a k t i k u m.

Universität des Saarlandes - Fachrichtung Anorganische Chemie C h e m i s c h e s E i n f ü h r u n g s p r a k t i k u m. Universität des Saarlandes - Fachrichtung Anorganische Chemie C h e m i s c h e s E i n f ü h r u n g s p r a k t i k u m Elektrochemie Elektrochemie bezeichnet mehrere verschiedene Teilgebiete innerhalb

Mehr

Kapitel 22: Elektrochemie II - Transportable Energie: Batterien, Akkus und Knopfzellen

Kapitel 22: Elektrochemie II - Transportable Energie: Batterien, Akkus und Knopfzellen 1 Eine 4,5 Volt Batterie besteht aus drei hintereinander geschalteten 1,5V Batterien 2 Inhalt...1 Inhalt... 2 Allgemeines zu galvanischen Elementen...3 1. Primärelemente... 3 Geschichte der Entwicklung

Mehr

Redoxgleichungen. 1. Einrichten von Reaktionsgleichungen

Redoxgleichungen. 1. Einrichten von Reaktionsgleichungen Redoxgleichungen 1. Einrichten von Reaktionsgleichungen Reaktionsgleichungen in der Chemie beschreiben den Verlauf einer Reaktion. Ebenso, wie bei einer Reaktion keine Masse verloren gehen kann von einem

Mehr

Film der Einheit Metalle

Film der Einheit Metalle Film der Einheit Metalle Edle und unedle Metalle Produktionszahlen Metalle im Periodensystem der Elemente Herstellung einiger Metalle (Eisen, Aluminium, Kupfer) Kristallgitter und Bindungen in Metallen

Mehr

Gesundheit ist messbar!

Gesundheit ist messbar! Gesundheit ist messbar! Oligoscan Analyse-System Weltneuheit Was ist der Oligoscan, was kann er und wofür ist er gut? Was wird gemessen? Der Oligoscan misst die elektromagnetischen Signale, die von jedem

Mehr

Was ich über Batterien wissen sollte

Was ich über Batterien wissen sollte Was ich über Batterien wissen sollte Ein Kurzlehrgang über den Aufbau von Batterien in 13 Lektionen H. A. Kiehne und GRS Batterien Stiftung Gemeinsames Rücknahmesystem Batterien Heidenkampsweg 44 20097

Mehr

PRÜFBERICHT 925043-675912

PRÜFBERICHT 925043-675912 Tel.: +49 (843) 79, Fax: +49 (843) 724 [@ANALYNR_START=67592] [@BARCODE= R] Dr.Blasy-Dr.Busse Moosstr. 6A, 82279 Eching ZV ZUR WASSERVERSORGUNG ACHENGRUPPE Herr Jürs RATHAUSPLATZ 8 8347 KIRCHANSCHÖRING

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 Einführung in die Elektronik Leiter und Nichtleiter. Metallische Leiter und Nichtleiter. Alle Werkstoffe, die in der Elektrotechnik verwendet werden

Mehr

1.6. Die Ionenbindung

1.6. Die Ionenbindung 1.6. Die Ionenbindung 1.6.1. Die Edelgasregel Die Edelgase gehen kaum Verbindungen ein und zeigen in ihrer Periode jeweils die höchsten Ionisierungsenergien. Ihre Elektronenkonfiguration mit jeweils Außenelektronen

Mehr

Galvanische Zellen II

Galvanische Zellen II 1. Was versteht man unter einer Oxidation? Unter einer Oxidation versteht man Elektronenabgabe. Diese findet an der Anode der galvanischen Zelle statt. Bei der Oxidation wird die Oxidationszahl des jeweiligen

Mehr

Anorganische-Chemie. Dr. Stefan Wuttke Butenandstr. 11, Haus E, E

Anorganische-Chemie. Dr. Stefan Wuttke Butenandstr. 11, Haus E, E Dr. Stefan Wuttke Butenandstr. 11, Haus E, E 3.039 stefan.wuttke@cup.uni-muenchen.de www.wuttkegroup.de Anorganische-Chemie Grundpraktikum für Biologen 2016 Elektrochemie Stefan Wuttke # 2 Aus den Anfängen

Mehr

Oxidation und Reduktion

Oxidation und Reduktion I. Definitionen Alte Definition nach Lavoisier: Oxidation: Aufnahme von Sauerstoff Reduktion: Abgabe von Sauerstoff Moderne, elektronische Deutung: 2 Mg(f) + O 2 (g) 2 MgO(f) Teilschritte: a) Mg(f) b)

Mehr

Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen

Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen Chemie für Biologen Vorlesung im WS 2004/05 V2, Mi 10-12, S04 T01 A02 Paul Rademacher Institut für rganische Chemie der Universität Duisburg-Essen (Teil 6: 17.11.2004) MILESS: Chemie für Biologen 102 Reduktion

Mehr

Schalter. 2.3 Spannungsquellen. 2.3.1 Kondensatoren 112 KAPITEL 2. STROMFLUSS DURCH LEITER; EL. WIDERSTAND

Schalter. 2.3 Spannungsquellen. 2.3.1 Kondensatoren 112 KAPITEL 2. STROMFLUSS DURCH LEITER; EL. WIDERSTAND 112 KAPTEL 2. STROMFLSS DRCH LETER; EL. WDERSTAND 2.3 Spannungsquellen n diesem Abschnitt wollen wir näher besprechen, welche Arten von Spannungsquellen real verwendet werden können. 2.3.1 Kondensatoren

Mehr

Abbildung 3: Kondensatoren und Beschriftung auf Leiterplatte C1 ist also der erste, C2 der zweite Kondensator in der Bauteilliste usw.

Abbildung 3: Kondensatoren und Beschriftung auf Leiterplatte C1 ist also der erste, C2 der zweite Kondensator in der Bauteilliste usw. Abbildung 3: Kondensatoren und Beschriftung auf Leiterplatte C1 ist also der erste, C2 der zweite Kondensator in der Bauteilliste usw. Beginnt ein Bauteilname mit einem anderen Kürzel als C kann man mit

Mehr

Kristallgitter von Metallen

Kristallgitter von Metallen R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 I. Elektronik 10. Wiederholung wichtiger Grundsachverhalte aus der Elektrik 10.1 Leiter und Nichtleiter. 10.1.1 Metallische Leiter und Nichtleiter.

Mehr

ELEKTROCHEMIE. Elektrischer Strom: Fluß von elektrischer Ladung. elektrolytische (Ionen) Zwei Haupthemen der Elektrochemie.

ELEKTROCHEMIE. Elektrischer Strom: Fluß von elektrischer Ladung. elektrolytische (Ionen) Zwei Haupthemen der Elektrochemie. ELEKTROCHEMIE Elektrischer Strom: Fluß von elektrischer Ladung Elektrische Leitung: metallische (Elektronen) elektrolytische (Ionen) Zwei Haupthemen der Elektrochemie Galvanische Zellen Elektrolyse Die

Mehr

Examensfragen zur Elektrochemie

Examensfragen zur Elektrochemie 1 Examensfragen zur Elektrochemie 1. Standardpotentiale a. Was versteht man unter Standardpotential? Standardpotential E 0 ist die Spannung eines Redoxpaars in Bezug auf die Standardwasserstoffelektrode

Mehr

Einführung. Galvanische Zelle. Korrosion + - Univ.-Prof. Dr. Max J. Setzer Vorlesung - Korrosion Seite 1

Einführung. Galvanische Zelle. Korrosion + - Univ.-Prof. Dr. Max J. Setzer Vorlesung - Korrosion Seite 1 Univ.-Prof. Dr. Max J. Setzer Vorlesung - Korrosion Seite 1 Einführung MWG 8 / Die Korrosion ist ein Redox-Prozess Bei der Änderung der Oxidationsstufe entstehen Ionen geladene Teilchen. Der Oxidationsprozess

Mehr

Oxidation und Reduktion

Oxidation und Reduktion Seminar RedoxReaktionen 1 Oxidation und Reduktion Definitionen: Oxidation: Abgabe von Elektronen Die Oxidationszahl des oxidierten Teilchens wird größer. Bsp: Na Na + + e Reduktion: Aufnahme von Elektronen

Mehr

Elektrolyse. Zelle.. Bei der Elektrolyse handelt es sich im Prinzip um eine Umkehrung der in einer galvanischen Zelle Z ablaufenden Redox-Reaktion

Elektrolyse. Zelle.. Bei der Elektrolyse handelt es sich im Prinzip um eine Umkehrung der in einer galvanischen Zelle Z ablaufenden Redox-Reaktion (Graphit) Cl - Abgabe von Elektronen: Oxidation Anode Diaphragma H + Elektrolyse Wird in einer elektrochemischen Zelle eine nicht-spontane Reaktion durch eine äußere Stromquelle erzwungen Elektrolyse-Zelle

Mehr

Lithium (-Ionen) -Polymer Akkus

Lithium (-Ionen) -Polymer Akkus Geschichte und Aufbau Aufstellung der sogenannten Voltaschen Spannungsreihe (1794) Batterien gehören zu den elektrochemischen Stromquellen. Eigentlich ist Batterie der Oberbegriff für mehrere in Serie

Mehr

Text Anhang 1. Grenzwerte für die Annahme von Abfällen

Text Anhang 1. Grenzwerte für die Annahme von Abfällen Kurztitel Deponieverordnung 2008 Kundmachungsorgan BGBl. II Nr. 39/2008 zuletzt geändert durch BGBl. II Nr. 104/2014 /Artikel/Anlage Anl. 1 Inkrafttretensdatum 01.06.2014 Text Anhang 1 Allgemeines e für

Mehr

Moderne und zukünftige elektrische Energiespeicher im Überblick

Moderne und zukünftige elektrische Energiespeicher im Überblick Moderne und zukünftige elektrische Energiespeicher im Überblick 11. Solartagung Rheinland-Pfalz, Umwelt-Campus Birkenfeld Jonas Keil 09.12.2015 Energiespeichertechnik an der Technischen Universität München

Mehr

Anorganisch-chemisches Praktikum für Human- und Molekularbiologen

Anorganisch-chemisches Praktikum für Human- und Molekularbiologen Anorganischchemisches Praktikum für Human und Molekularbiologen 3. Praktikumstag Andreas Rammo Allgemeine und Anorganische Chemie Universität des Saarlandes EMail: a.rammo@mx.unisaarland.de RedoxReaktionen

Mehr

Grenzwerte für die Annahme von Abfällen

Grenzwerte für die Annahme von Abfällen BGBl. II - Ausgegeben am 30. Jänner 2008 - Nr. 39 1 von 11 Allgemeines e für die Annahme von Abfällen Anhang 1 Für die Untersuchung und Beurteilung, ob die e gegebenenfalls nach Maßgabe des 8 eingehalten

Mehr

Wie kommen Metalle vor? CaO, MgO, Al 2 O 3, CaCO 3, CaSO 4 vs. Cu 2 S, HgS, PbS. Welche Kombinationen führen zu hohen Oxidationsstufen?

Wie kommen Metalle vor? CaO, MgO, Al 2 O 3, CaCO 3, CaSO 4 vs. Cu 2 S, HgS, PbS. Welche Kombinationen führen zu hohen Oxidationsstufen? HSAB-Prinzip Wie kommen Metalle vor? CaO, MgO, Al 2 O 3, CaCO 3, CaSO 4 vs. Cu 2 S, HgS, PbS Welche Kombinationen führen zu hohen Oxidationsstufen? XeO 6 4, ClO 4, MnO 4, MnS 4, ClS 4 Warum entsteht der

Mehr

Das Formelpuzzle Kopiervorlage

Das Formelpuzzle Kopiervorlage Das Formelpuzzle Kopiervorlage Die Vorlage wird foliert, die einzelnen Bausteine werden ausgeschnitten. Durch einfaches Aneinanderlegen von Kationen und Anionen können die Formeln von Säuren, Basen und

Mehr

Modul: Allgemeine Chemie

Modul: Allgemeine Chemie Modul: Allgemeine Chemie 8. Wichtige Reaktionstypen Säure Base Reaktionen Konzepte, Gleichgewichtskonstanten Säure-Base Titrationen; Indikatoren Pufferlösungen Redoxreaktionen Oxidationszahlen, Redoxgleichungen

Mehr

Periodensystem der Elemente - PSE

Periodensystem der Elemente - PSE Periodensystem der Elemente - PSE Historische Entwicklung Möglichkeiten der Reindarstellung seit 18. Jhdt. wissenschaftliche Beschreibung der Elemente 1817 Johann Wolfgang Döbereiner: ähnliche Elemente

Mehr

Batterien und Akkumulatoren, Entsorgung und Umweltbestimmungen

Batterien und Akkumulatoren, Entsorgung und Umweltbestimmungen Batterien und Akkumulatoren, Entsorgung und Umweltbestimmungen Geschichte... 2 Begriffe... 2 Zink-Braunstein Elemente... 3 Leclanché Element... 4 Zinkchlorid... 5 Alkali-Mangan... 6 Bauformen... 7 Grundsätzlicher

Mehr

Thema: Chemische Bindungen Wasserstoffbrückenbindungen

Thema: Chemische Bindungen Wasserstoffbrückenbindungen Wiederholung der letzten Vorlesungsstunde: Thema: Chemische Bindungen Wasserstoffbrückenbindungen Wasserstoffbrückenbindungen, polare H-X-Bindungen, Wasser, Eigenschaften des Wassers, andere Vbg. mit H-Brücken

Mehr

Klausur 1 Basiswissen I. Chemie. Klasse 11c. Erwartungshorizont

Klausur 1 Basiswissen I. Chemie. Klasse 11c. Erwartungshorizont Paula Fürst Schule (Gemeinschaftsschule) Berlin Klausur 1 Basiswissen I Chemie Klasse 11c Erwartungshorizont Vor und Nachname: Zeitvorgabe: 80 min Liebe Schülerin, lieber Schüler, tragen Sie bitte auf

Mehr

NTB Druckdatum: ELA I

NTB Druckdatum: ELA I GLEICHSTROMLEHRE Einführende Grundlagen - Teil 1 Elektrische Ladung Elektrische Stromdichte N elektrische Ladung Stromstärke Anzahl Elektronen Elementarladung elektrische Stromdichte Querschnittsfläche

Mehr

Chemische und Mikrobiologische Untersuchung von mittels YVE-310-Filterkanne aufbereitetem Leitungswasser

Chemische und Mikrobiologische Untersuchung von mittels YVE-310-Filterkanne aufbereitetem Leitungswasser REPORT Chemische und Mikrobiologische Untersuchung von mittels YVE-310-Filterkanne aufbereitetem Leitungswasser DI Otmar Plank Verteiler: 1-3 Fa. YVE & BIO GmbH, Bremen 4 Otmar Plank 5 HET August 2014

Mehr

Kochsalz-Kristalle (Halit) Wichtige Stoffgruppen Atomverband Stoffgruppe Metall Metall: Metallische Stoffe Salzartige Stoffe Metall Nichtmetall:

Kochsalz-Kristalle (Halit) Wichtige Stoffgruppen Atomverband Stoffgruppe Metall Metall: Metallische Stoffe Salzartige Stoffe Metall Nichtmetall: Kochsalz-Kristalle (Halit) 1 Wichtige Stoffgruppen Atomverband Metall Metall: Metall Nichtmetall: Stoffgruppe Metallische Stoffe (Gitter) - Metalle - Legierungen (- Cluster) Salzartige Stoffe (Gitter)

Mehr

Lithium Ion Akkumulatoren

Lithium Ion Akkumulatoren Lithium Ion Akkumulatoren Der Lithium-Eisen-Phosphat (LiFePo4) Akkumulator ist eine Weiterentwicklung des Lithium Ionen Akkumulators. Diese Batterien werden längerfristig die Bleibatterien vom Markt verdrängen

Mehr

KATALOG PRIMÄR BATTERIEN

KATALOG PRIMÄR BATTERIEN KATALOG PRIMÄR BATTERIEN Swiss Point AG, wir sind für Sie da! Die Swiss Point AG steht als Schweizer Unternehmen seit über 15 Jahren im Dienste der mobilen Energie und versorgt die Industrie, Spitäler,

Mehr

Physik/Chemie 4.Klasse: Alle Fragen für den letzten PC Test

Physik/Chemie 4.Klasse: Alle Fragen für den letzten PC Test Physik/Chemie 4.Klasse: Alle Fragen für den letzten PC Test 1 Nenne fünf Bereiche, mit denen sich die Physik beschäftigt. 2 Wie nennt man einen Stoff, der den Strom leiten kann? 3 Wie nennt man einen Stoff,

Mehr

EinFaCh 1. Studienvorbereitung Chemie. Einstieg in Freibergs anschauliches Chemiewissen Teil 1: Redoxreaktionen und Elektrochemie.

EinFaCh 1. Studienvorbereitung Chemie. Einstieg in Freibergs anschauliches Chemiewissen Teil 1: Redoxreaktionen und Elektrochemie. Studienvorbereitung Chemie EinFaCh 1 Einstieg in Freibergs anschauliches Chemiewissen Teil 1: Redoxreaktionen und Elektrochemie www.tu-freiberg.de http://tu-freiberg.de/fakultaet2/einfach Was ist eine

Mehr

REDOX-REAKTIONEN Donator-Akzeptor-Konzept! So geht s: schrittweises Aufstellen von Redoxgleichungen Chemie heute

REDOX-REAKTIONEN Donator-Akzeptor-Konzept! So geht s: schrittweises Aufstellen von Redoxgleichungen Chemie heute REDOXREAKTIONEN In den letzten Wochen haben wir uns mit SäureBaseReaktionen und Redoxreaktionen beschäftigt. Viele Phänomene in uns und um uns herum sind solche Redoxreaktionen. Nun müssen wir unseren

Mehr

Periodensystem. Physik und Chemie. Sprachkompendium und einfache Regeln

Periodensystem. Physik und Chemie. Sprachkompendium und einfache Regeln Periodensystem Physik und Chemie Sprachkompendium und einfache Regeln 1 Begriffe Das (neutrale) Wasserstoffatom kann völlig durchgerechnet werden. Alle anderen Atome nicht; ein dermaßen komplexes System

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Elektrochemie - Merksätze und -regeln. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Elektrochemie - Merksätze und -regeln. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Elektrochemie - Merksätze und -regeln Das komplette Material finden Sie hier: Download bei School-Scout.de Seite 3 von 8 Tabelle:

Mehr

Kevin Ney Niklas Herde

Kevin Ney Niklas Herde Lithium-Batterien Kevin Ney Niklas Herde Lena Musiolik Inhaltsverzeichnis h i Funktionsweise einer Batterie Das Galvanische Element Entwicklung Besonderheiten der Lithium-Ionen-Batterie Lithium als Element

Mehr

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts Basiswissen Chemie Vorkurs des MINTroduce-Projekts Christoph Wölper christoph.woelper@uni-due.de Sprechzeiten (Raum: S07 S00 C24 oder S07 S00 D27) Organisatorisches Kurs-Skript http://www.uni-due.de/ adb297b

Mehr

Industriebatterien (lose oder eingebaut in Gerät) - Mit Möglichkeit der Gebührenbefreiung, ChemRRV Art. 6.1 Abs. 3

Industriebatterien (lose oder eingebaut in Gerät) - Mit Möglichkeit der Gebührenbefreiung, ChemRRV Art. 6.1 Abs. 3 Gebührentarif (VEG, vorgezogene Entsorgungsgebühr) Gültig ab 1. Januar 2017 In Anlehnung an die - Chemikalienrisikoreduktions-Verordnung (ChemRRV), Batterieanhang 2.15 sowie - Verordnung über die Höhe

Mehr

Hinweise für den Schüler. Von den 2 Prüfungsblöcken A und B ist einer auszuwählen.

Hinweise für den Schüler. Von den 2 Prüfungsblöcken A und B ist einer auszuwählen. Abitur 2001 Chemie Gk Seite 1 Hinweise für den Schüler Aufgabenauswahl: Von den 2 Prüfungsblöcken A und B ist einer auszuwählen. Bearbeitungszeit: Die Arbeitszeit beträgt 210 Minuten, zusätzlich stehen

Mehr

Physik 2 Hydrologen et al., SoSe 2013 Lösungen 4. Übung (KW 22/23)

Physik 2 Hydrologen et al., SoSe 2013 Lösungen 4. Übung (KW 22/23) 4. Übung (KW 22/23) Aufgabe 1 (T 5.1 Eisenstück ) Ein Stück Eisen der Masse m und der Temperatur wird in ein sehr großes Wasserbad der Temperatur T 2 < gebracht. Das Eisen nimmt die Temperatur des Wassers

Mehr

SI-Handbuch Naturwissenschaftliche Grundlagen

SI-Handbuch Naturwissenschaftliche Grundlagen .1 Physikalische Eigenschaften 3.2 Wasserdichte 6.3 Viskosität 7.4 h, x-diagramm für feuchte Luft 8 Dieses Kapitel wurde erstellt unter Mitwirkung von: 5. Auflage: Otto Fux, Masch. Ing. SIA, dipl. Sanitärplaner,

Mehr

Das Periodensystem der Elemente Das Periodensystem: Entdeckung der Elemente

Das Periodensystem der Elemente Das Periodensystem: Entdeckung der Elemente Das Periodensystem der Elemente Das Periodensystem: Entdeckung der Elemente 1 Das Periodensystem: Biologisch wichtige Elemente Das Periodensystem: Einteilung nach Reaktionen Bildung von Kationen und Anionen

Mehr