Nutze: zehn, Körbchen, Augen, ersten beiden, gespreizten, vor/über

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Nutze: zehn, Körbchen, Augen, ersten beiden, gespreizten, vor/über"

Transkript

1 Aufgen zur Theorie des Volleyllspiels Bei den Frgen geht es um die Spielregeln, die tehnishe Ausführung von Grundtehniken und einfhe tktishe Verhltensweisen im Shulvolleyll. Die Frgen und Antworten wurden von Shülerinnen und Shülern, sowie Lehrern ls Hilfe zur Vorereitung uf den Theorietest im Grundkurs Volleyll erreitet. Einige Frgen stmmen us Sportiv, Volleyll, Kopiervorlgen für den Volleyllunterriht, Ernst Klett Shuluhverlg, In welhe Rihtung likt der Spieler Nr. 3 eim Aufshlg der gegnerishen Mnnshft? 2. Wie weit dürfen die hinteren 3 Spieler (Hinterfeldspieler) ns Netz hern? 3. Drf der Bll eim Aufshlg ds Netz erühren? 4. Ws pssiert, wenn der Bll ns Hllendh stößt? 5. Drf der Bll uh mit dem Fuß gespielt werden? 6. Welhen Umfng ht der Bll? (Zustzinformtion) 7. Welhes Gewiht ht der Bll? (Zustzinformtion) 8. Welhen Druk sollte der Bll hen? (Zustzinformtion) 9. Welhe Bedeutung ht die Linie, die in 3 Meter Entfernung vom Netz quer durh ds Spielfeld läuft? ) Gepritshte Bälle dürfen nur hinter die Linie gespielt werden. ) Die Linie teilt ds Spielfeld in Vorder- und Hinterfeld. Hinterfeldspieler, die sih in der Vorderzone efinden, dürfen Angriffsälle nur unterhl der Netzknte shlgen. ) Wer es shfft, einen hrten Shmetterll vor die Linie zu shlgen, muss nh dem Spiel einen usgeen. 10. Der Oerkörper der Spielerin zeigt ds oere Zuspiel in der rihtigen Reihenfolge. Die A. der Beine ist durheinnder gerten. Ordne die Beine dem Oerkörper rihtig zu! 11. Ergänze den folgenden Lükentext! Nutze die Begriffe unten! Beim Pritshen wird der Bll mit den 1... Fingergliedern und llen 2... Fingern Die Finger ilden ein 3..., die Dumen sollen in Rihtung 4... zeigen. Der Bll wird 5... der Stirn gepritsht. Den nfliegenden Bll sollte ih durh die 6... Finger eohten können. Nutze: zehn, Körhen, Augen, ersten eiden, gespreizten, vor/üer

2 12. In der folgenden Aussge efindet sih ein Fehler. Korrigiere Ihn! Ih spiele den Bll im oeren Zuspiel, nhdem ih die Knie, Hüfte und Arme gestrekt he. flshes Wort: dfür rihtig: 13. Welhe der eiden folgenden Aussgen findest Du für ds Pritshen esser? ) Stell Dir vor, der Bll springt von Deinen Fingern zurük, wie von einem Brett. ) Stell Dir vor, Deine Hände sind wie ein Trmpolin, von dem der Bll zurükspringt. Begründe! 14. Welhe der hier ufgeführten Begriffe pssen in die jeweiligen Lüken des Textes der Bewegungseshreiung zum Bgger? Begriffe: weih, gestrekten, vorne oen, Shultern, Fußllen, Unterrmen Ih spiele den Bll mit den 1..., indem ih die 2... Arme 3... gegen den Bll führe, dei uh die 4... nh vorn shiee und die Beine sehr dosiert nh 5... streke. Während des gesmten Bewegungslufes liegt ds Körpergewiht uf den 6... und der Oerkörper ist leiht nh vorne geeugt. 15. Ein Beinhe-Könner git einem Anfänger Tipps für die Aufge von oen. Welhe sind sinnvoll, welhe niht? ) Shlge den Bll mit lngem Arm üer dem Kopf. ) Hlte ds Hndgelenk im Augenlik des Shlges loker. ) Lss dir ei der Aufgenusführung wenig Zeit. d) Hst du den Bll shleht ngeworfen, dnn lss ihn lieer fllen. e) Wirf den Bll so hoh wie möglih n. sinnvoll: niht sinnvoll: 16. Unmittelr vor der Ausführung der Aufge gehen drei Spielern folgende Gednken durh den Kopf: Spieler A: Hoffentlih vershlge ih den Aufshlg niht, wir liegen sowieso shon hinten. Spieler B: Ih werde diesml etws höher nwerfen, dnn he ih mehr Zeit für den Shlg. Spieler C: Der Triner ist estimmt suer, wenn ih den Aufshlg shon wieder vershlge. Bei welhem Spieler ist deiner Meinung nh die Whrsheinlihkeit für einen Aufgefehler m geringsten? Begründe:

3 17. Welher Begriff ist für ds ins Spiel ringen des Blles rihtig? ) Aufge ) Ange ) Aufshlg 18. Ws geshieht, wenn ein Spieler den Bll ei einer Aufge nwirft, jedoh niht shlägt sondern fängt? 19. Wie viel Versuhe ht mn um eine Aufge uszuführen? ) einen, wenn ih den Bll sofort shlge ) elieig viele ) zwei, wenn ih den Bll nh dem ersten Anwerfen uf den Boden fllen lsse 20. Drf der Blokspieler - gleih nh der Bllerührung eim Blok - den Bll noh einml spielen? 21. Wie funktioniert die Zählweise im Volleyll? ) Nur die Mnnshft, die ufshlägt, knn punkten. ) Die Mnnshft, die den Bllwehsel (Spielzug) gewinnt, ekommt einen Punkt. ) Auswärts erzielte Punkte zählen doppelt. 22. Es steht 24:23 für deine Mnnshft. Welhe Antwort ist rihtig? Der Gegner ) knn niht mehr gewinnen. ) ruht noh 2 Punkte, um zu gewinnen. ) ruht noh 3 Punkte, um zu gewinnen. d) muss hoffen, dss die Zeit läuft. 23. Ws ist der Untershied zwishen Vorderfeldspieler und Hinterfeldspieler? ) Ein Hinterfeldspieler drf einen Angriffsshlg, ei dem sih der Bll oerhl der Netzknte efindet, nur us der Hinterzone usführen (er steht oder springt von dort ), ein Vorderfeldspieler von üerll. ) Ein Vorderfeldspieler drf loken, ein Hinterfeldspieler niht ) Ein Vorderfeldspieler drf stellen, ein Hinterfeldspieler niht. d) Ein Hinterfeldspieler drf durh den Liero usgetusht werden, ein Vorderfeldspieler niht. e) Ein Hinterfeldspieler muss in der Awehr kern, ein Vorderfeldspieler niht. 24. Wie entsheidet der Shiedsrihter, wenn für die Aufge niht ngepfiffen wurde, die Aufge er shon usgeführt wurde? ) Wenn sie erfolgreih wr, dnn drf mn nohmls ufgeen. ) Wenn sie niht erfolgreih wr, dnn Wehsel des Aufshlges ) Egl, immer Wiederholung der Aufge, der Shiedsrihter zeigt dei uf seine Pfeife. 25. In welher Reihenfolge muss ein Blokspieler uf einer der eiden Außenpositionen die unten stehenden Anweisungen ehten, dmit sein Blok möglihst effektiv ist? ) Anlufrihtung und nshließend Shlgrm des Angreifers eohten. ) Zur Asprungstelle ewegen. ) Bll eim Blok durh die Hände eohten. d) Auftkt nh unten und kräftiger Asprung. e) Steller und ersten Teil der Flugkurve des gestellten Blles eohten.

4 26. Wie wird die Aufstellung einer Mnnshft vor dem Spiel festgelegt? ) Durh den Spielerihtsogen, der vor dem Spiel n den 2. Shiedsrihter üergeen wird. ) Durh mündlihe Asprhe. ) Es git keine Festlegung vor dem Spiel. 27. Welhes Reht ht der Gewinner der Auslosung? ) die Aufge uszuführen ) die Spielfeldseite zu wählen ) Whl der Annhme des ersten Aufshlges d) entweder ) oder ) oder ) 28. Drf die Aufstellung oder Rottionsreihenfolge nh der Festlegung verändert werden? ) j; ) grundsätzlih nein; ) nein, nur wenn der Triner eine reguläre Auswehslung entrgt. 29. Wie viel Spieler einer Mnnshft müssen sih immer im Spielfeld efinden? ) 4 ) 6 ) Wie wird die Rottionsreihenfolge estimmt? ) im Uhrzeigersinn ) gegen den Uhrzeigersinn ) kreuz und quer 31. Auf welher Position wird der Aufshlg usgeführt? ) 2 ) 6 ) Ws pssiert, wenn ein Feldspieler verletzt oder disqulifiziert wird? ) die Mnnshft spielt zu fünft weiter is zum Stzende ) der Spieler muss regulär usgewehselt werden ) es knn ohne Auswehslung ein neuer Spieler seinen Pltz einnehmen 33. Wie viel Auswehslungen pro Stz sind erlut? ) unegrenzt viele ) 3 ) Wnn gilt der Bll ls innerhl? ) wenn er den Boden des Spielfeldes, einshließlih der Begrenzungslinien, erührt ) ds wird unter den Shiedsrihtern usgelost ) es wird uf die Entsheidung Gottes gewrtet, wenn sie niht fällt, entsheidet der erste Shiedsrihter

5 35. Ws sind die Folgen, wenn eine Mnnshft einen elieigen Fehler egeht? ) Ds Mnnshftsmitglied, welhes den Fehler egeht ekommt eine Verwrnung. ) Es erfolgt keine Bestrfung, nur Wiederholung des Spielzuges. ) Der Spielzug geht für die Mnnshft verloren, in der der Fehler gemht wurde. 36. Ws geshieht, wenn eide Mnnshften zur gleih Zeit einen Fehler gemht hen (Doppelfehler)? ) der Spielzug wird wiederholt ) es erfolgt eine Auslosung, ähnlih wie zu Beginn des Spiels ) der Shiedsrihter entsheidet, welhe Mnnshft sujektiv zuerst den Fehler gemht ht 37. Wie drf der Bll gespielt werden? ) nur mit den Händen ) mit llen Körperteilen oerhl der Gürtellinie ) mit llen Körperteilen 38. Wnn drf der Bll ds Netz erühren? (Netzroller) ) ußer ei der Aufge immer. ) grundsätzlih immer. ) je nh Entsheidung des Netzshiedsrihters. 39. Welhe Spieler dürfen innerhl des Spiels üer ds Netz lngen? ) Blokspieler, eim Blok, wenn keine Behinderung des Gegners uftritt. ) Angriffsspieler nh dem Angriffsshlg. ) jeder Vorderspieler. 40. Drf ds Netz von den Feldspielern erührt werden? ) j. ) j, wenn es zufällig ei einem Spieler pssiert, der niht gerde versuht den Bll zu spielen ) nein 41. Wie viel Aufgenversuhe ht der ufgeende Spieler? ) 1 ) 2 ) Welhe Spieler dürfen einen Angriffsshlg (oerhl der Netzknte) usführen? ) Vorderfeldspieler. ) Hinterfeldspieler, innerhl der Hinterzone; im Vorderfeld nur unterhl der Netzknte. 43. Drf ein ufgeshlgener Bll, wenn er die Netzknte üerquert, gelokt werden? 44. Wnn ist es möglih üer die Netzknte zu greifen, wnn ist es niht erlut? 45. Bis zu welhen Punktzhlen werden die Sätze im Volleyll gespielt?

6 Antworten zu den Theoriefrgen zu 1. Blikrihtung ins eigene Feld, er sollte jedoh uh den Aufshlg eohten, den es könnte ein Bll vom Netz rollen und gleih neen ihm herunterfllen; gleihzeitig sieht er eher von welhem Spieler us dem Hinterfeld zugespielt ekommt. zu 2. Egl wie weit, sie müssen llerdings während der Ausführung des Aufshlges hinter ihrem zugehörigen Vorderfeldspieler stehen. zu 3. J, drf er, er muss jedoh in ds gegnerishe Feld fllen. zu 4. Dies wird ls Fehler für die Mnnshft gewertet, die den Bll zuletzt gespielt ht. Punktgewinn und Aufshlg für die ndere Mnnshft. zu 5. J, der Bll drf mit llen Körperteilen gespielt werden. zu m is 67 m zu g is 280g zu mr is 319 mr zu 9. Antwort zu C; 2 D; 3 B; 4 - A zu ersten eiden; 2 zehn; 3 Körhen; 4 Augen; 5 - vor/üer; 6 - gespreizten zu 12. flsh: nhdem rihtig: während zu 13. ) Beim Pritshen geen die Hndgelenke zunähst elstish nh, ehe dnn der nshließende Impuls nh vorn oen erfolgt. zu Unterrmen; 2 gestrekten; 3 weih; 4 Shultern; 5 - vorne oen; 6 - Fußllen zu 15. sinnvoll: niht sinnvoll:,, d, e zu 16. B ist rihtig, uf Niederlgen oder Vorwürfe zu hten ringt einen Spieler nur weiter unter Druk, stttdessen sollte mn sih uf die exkte Ausführung seiner Tehnik konzentrieren zu 17. ) rihtig; ) uh möglih zu 18. Spielzugverlust, Punkt für die ndere Mnnshft, Aufshlgwehsel zu 19. ) zu 20. J, denn ein Blok zählt niht ls Bllerührung

7 zu 21. Antwort zu 22. Antwort, d nur mit 2 Punkte-Untershied ein Stz gewonnen werden knn zu 23. Antworten: ), ), d) sind rihtig zu 24. Antwort zu 25. e,,, d, zu 26. zu 27. d zu 28. zu 29. zu 30. zu 31, zu 32. zu 33. zu 34. zu 35. zu 36. zu 37. zu 38. zu 39. und zu 40. zu 41. zu 42. und zu 43. nein - ein Blok führt hierei zum Spielzugverlust zu 44. erlut: - ei einem Blok, der Gegner drf dei niht ehindert werden - nh der Ausführung eines Angriffsshlges niht erlut: - ei einem Zuspiel des Gegners zu Stz is 25; 5. Stz is 15; immer Zwei-Punkte-Untershied

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Fragebogen E. Lothar Natter. Effizienzcoaching. Unternehmer und Führungskräfte. Firma: Straße: PLZ: Ort: Telefax: Telefon: www:

Fragebogen E. Lothar Natter. Effizienzcoaching. Unternehmer und Führungskräfte. Firma: Straße: PLZ: Ort: Telefax: Telefon: www: Frgeogen E Lothr Ntter Effizienznlyse für Selstständige, Unternehmer und Führungskräfte Effizienzohing Firm: Strße: PLZ: Ort: Telefon: Telefx: E-Mil: www: Dtum: Shereiter: Untershrift: Pseudonym für die

Mehr

Prüfungsteil Schriftliche Kommunikation (SK)

Prüfungsteil Schriftliche Kommunikation (SK) SK Üerlik und Anforderungen Üerlik und Anforderungen Prüfungsteil Shriftlihe Kommuniktion (SK) Üerlik und Anforderungen Worum geht es? In diesem Prüfungsteil sollst du einen Beitrg zu einem estimmten Them

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2013 Montg 15.4 $Id: dreiek.tex,v 1.5 2013/04/15 09:12:15 hk Exp hk $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B Erkundungen Terme vergleihen Forshungsuftrg : Fläheninhlte von Rehteken uf vershiedene Arten erehnen Die Terme () is (6) eshreien jeweils den Fläheninhlt von einem der drei Rehteke. Ordnet die Terme den

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Shufhprinzip (Folie 137) Automten und formle Sprhen Notizen zu den Folien Im Blok Ds Shufhprinzip für endlihe Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl von

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

Grundwissenkatalog / g8 Geometrie / 7. Jahrgangsstufe

Grundwissenkatalog / g8 Geometrie / 7. Jahrgangsstufe Grundwissenktlog / g8 Geometrie /. Jhrgngsstufe Die folgende ufstellung enthält mthemtishe Grundfertigkeiten, die ein Shüler nh der. Jhrgngsstufe eherrshen sollte. Dieses Wissen wird in den folgenden Jhren

Mehr

Das kleine 9er-Einmaleins mit den 10 Fingern lernen.

Das kleine 9er-Einmaleins mit den 10 Fingern lernen. Ws? Multiplizieren 9er-Finger-Einmleins Wozu? Ds kleine 9er-Einmleins mit den 10 Fingern lernen. 1. Beide Hände mit usgestrekten Fingern zeigen nh oen. 2. Die Dumen zeigen nh ußen (Hndflähen zum Gesiht).

Mehr

BALANCE PSYCHOLOGIE O FITNESS O GESUNDHEIT UNSERE EXPERTIN

BALANCE PSYCHOLOGIE O FITNESS O GESUNDHEIT UNSERE EXPERTIN BALANCE PSYCHOLOGIE O FITNESS O GESUNDHEIT UNSERE EXPERTIN Die Personl Trinerin Cludi Ludeley, 37, triniert in Frnkfurt Kleingruppen und Einzelpersonen. Für BRIGITTE ht sie ds Big-Five -Workout entwikelt.

Mehr

01 Proportion Verhältnis Maßstab

01 Proportion Verhältnis Maßstab 5 Ähnlihkeit und Strhlensätze LS 01.M1 01 Proportion Verhältnis Mßst 1 Lies die folgende Informtion sorgfältig. Mrkiere wihtige egriffe und Formeln. ) Proportionle Zuordnung ei einer proportionlen Zuordnung

Mehr

Die Satzgruppe des Pythagoras

Die Satzgruppe des Pythagoras 7 Die Stzgruppe des Pythgors In Klssenstufe 7 hen wir uns ei den Inhlten zur Geometrie insesondere mit Dreieken und ihren Eigenshften eshäftigt. In diesem Kpitel wirst du erkennen, dss es ei rehtwinkligen

Mehr

Übungssatz 01 FIT IN DEUTSCH 1. Kandidatenblätter/Prüferblätter ISBN: FIT1_ÜS01_Kandidaten-/Prueferblaetter_Oktober_2005

Übungssatz 01 FIT IN DEUTSCH 1. Kandidatenblätter/Prüferblätter ISBN: FIT1_ÜS01_Kandidaten-/Prueferblaetter_Oktober_2005 FIT IN DEUTSCH 1 Üungsstz 01 Kndidtenlätter/Prüferlätter KASTNER AG ds medienhus FIT1_ÜS01_Kndidten-/Prueferletter_Oktoer_2005 ISBN: 3-938744-76-6 Fit in Deutsh.1 Üungsstz 01 Teil 1 Du hörst drei Nhrihten

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 5-04 1 10 mthuh 1 LU reitsheft + weitere ufgen «Grundnforderungen» Symmetrien 301 Zeihne Grossuhsten des lphets, sortiert nh vier Typen: hsensymmetrish punktsymmetrish hsen- und punktsymmetrish weder hsen-

Mehr

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck 10 1 Grundlgen der Shulgeometrie 13 Ds Dreiek In diesem shnitt findet lles in der ffinen Stndrdeene 2 = R 2 sttt Drei Punkte, und, die niht uf einer Gerden liegen, ilden ein Dreiek Die Punkte,, nennt mn

Mehr

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 :

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 : Hns Wlser, [20080409] Eine Visulisierung des Kosinusstzes 1 Worum es geht Es wird eine zum Pythgors-Piktogrmm nloge Figur für niht rehtwinklige Dreieke esprohen. Dei werden ähnlihe gleihshenklige Dreieke

Mehr

1 Aktivität 1 Sehen ohne Ton (Track 1 bis Und eine Schokolade. )

1 Aktivität 1 Sehen ohne Ton (Track 1 bis Und eine Schokolade. ) Shritte 1/2 interntionl Hinweise für die Kursleiter Film 3:»Die Josuhe«Mteril zu Film 3 Die Josuhe : Film 3,. 05:00 Min. Zustzmteril: Mein Beruf,. 01:30 Min., 5 kurze Sttements zum Them 5 Areitslätter

Mehr

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1.

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1. Trigonometrie In diesem Themenereih wenden wir uns den Winkeln im rehtekigen Dreiek zu. Du hst uf deinem Tshenrehner siher shon die Tsten sin, os und tn gesehen. Doh ws edeuten sie? Ds wollen wir herusfinden.

Mehr

Korfball - Spielregeln (gültig ab dem 1. Juli 2006)

Korfball - Spielregeln (gültig ab dem 1. Juli 2006) Korfll - Spielregeln (gültig dem 1. Juli 2006) Definition und Einleitung Korfll ist ein Sport, der mit der Hnd in einem rehtekigen Spielfeld gespielt wird, woei eine Mnnshft, estehend us 4 weilihen und

Mehr

Fragebogen 1 zur Arbeitsmappe Durch Zusatzempfehlung zu mehr Kundenzufriedenheit

Fragebogen 1 zur Arbeitsmappe Durch Zusatzempfehlung zu mehr Kundenzufriedenheit Teilnehmer/Apotheke/Ort (Zus/1) Frgeogen 1 zur Areitsmppe Durh Zustzempfehlung zu mehr Kunenzufrieenheit Bitte kreuzen Sie jeweils ie rihtige(n) Antwort(en) in en Felern is n! 1. Worin esteht ie Beeutung

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

2 Kinobesuch GRAMMATIK. perfekt. Im September LEICHT. wann die Vorstellung beginnt. Schreiben Sie Sätze! Beginnen Sie mit den grün markierten Wörtern!

2 Kinobesuch GRAMMATIK. perfekt. Im September LEICHT. wann die Vorstellung beginnt. Schreiben Sie Sätze! Beginnen Sie mit den grün markierten Wörtern! DEUTSCH GRAMMATIK VERBPOSITION S. 0 Im Septemer LEICHT Shreien Sie Sätze! Beginnen Sie mit den grün mrkierten Wörtern! der Herst / m. Septemer / eginnt ds Oktoerfest / in Münhen / findet sttt die Österreiher

Mehr

Fragenkatalog. Schiedsrichter Vorbereitung Reglementsprüfung. mit Antworten Deutsch. Ausgabe 2017

Fragenkatalog. Schiedsrichter Vorbereitung Reglementsprüfung. mit Antworten Deutsch. Ausgabe 2017 Shiedsrihter Vorereitung Reglementsprüfung Frgenktlog mit Antworten Deutsh Ausge 2017 swiss unihokey Hus des Sports Tlgut-Zentrum 27 CH-3063 Ittigen ei Bern Tel. +41 (0)31 330 24 44 Fx +41 (0)31 330 24

Mehr

Lesen. Fit in Deutsch.2. circa 30 Minuten. Dieser Test hat drei Teile. In diesem Prüfungsteil findest du Anzeigen, Briefe und Artikel aus der Zeitung.

Lesen. Fit in Deutsch.2. circa 30 Minuten. Dieser Test hat drei Teile. In diesem Prüfungsteil findest du Anzeigen, Briefe und Artikel aus der Zeitung. Fit in Deutsh.2 Üungsstz 01 Kndidtenlätter ir 30 Minuten Dieser Test ht drei Teile. In diesem Prüfungsteil findest du Anzeigen, Briefe und Artikel us der Zeitung. Zu jedem Text git es Aufgen. Shreie m

Mehr

Ober- und Untersummen, Riemann Integrale

Ober- und Untersummen, Riemann Integrale Oer- und Untersummen, Riemnn Integrle 1. Ds Prolem des Fläheninhlts Ausgngspunkt für die Entwiklung des Integrlegriffs wren vershiedene Frgestellungen, u.. ds Prolem der Messung des Fläheninhltes eines

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2015 Montg 20.4 $Id: dreiek.tex,v 1.15 2015/04/20 08:57:49 hk Exp $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

a) Behauptung: Es gibt die folgenden drei stabilen Matchings:

a) Behauptung: Es gibt die folgenden drei stabilen Matchings: Musterlösung - ufgenltt 1 ufge 1 ) ehuptung: Es git ie folgenen rei stilen Mthings: ies knn mn ntürlih für ein so kleines eispiel urh etrhten ller möglihen 3! = 6 Mthings eweisen. Mn knn er uh strukturierter

Mehr

Protokoll zur Vorlesung Theoretische Informatik I

Protokoll zur Vorlesung Theoretische Informatik I Protokoll zur Vorlesung Theoretishe Informtik I! " # $ % # & ' ( % ) * + & " & & &, " ' % + - + # + & '. / 0 1 # 0 & 2 & # & 3 4 & 5 # 0 + & 6 & ' + 7 7 3 8 4 & 7 + + + % ( % 6 # 9 & 5 # 0 + & 3 8. : &

Mehr

Umstellen von Formeln und Gleichungen

Umstellen von Formeln und Gleichungen Umstellen von Formeln und Gleihungen. Ds Zusmmenfssen von Termen edeutet grundsätzlih ein Ausklmmern, uh wenn mn den Zwishenshritt niht immer ufshreit. 4 6 = (4 6) =. Steht eine Vrile, nh der ufgelöst

Mehr

Rund um den Satz des Pythagoras

Rund um den Satz des Pythagoras Wolfgng Shlottke Rund um den Stz des Pythgors Lernen n Sttionen und weiterführende ufgben für den Mthemtikunterriht uerverlg GmbH 3 Sroghty Pythgors rükwärts Die Umkehrung des Stzes des Pythgors (1) Du

Mehr

Kurvenintegrale. (Eine reguläre Kurve besitzt also in jedem Punkt einen nicht verschwindenden Tangentenvektor.)

Kurvenintegrale. (Eine reguläre Kurve besitzt also in jedem Punkt einen nicht verschwindenden Tangentenvektor.) Kurvenintegrle Definition: (Kurve) Eine stetige Abbildung : [, b] R n heißt ein Weg im R n. Ds Bild C := ([, b]) heißt Kurve im R n. Die Punkte () bzw. (b) heißen Anfngsbzw. Endpunkt der Kurve. heißt geshlossener

Mehr

Suche in Texten. Naiver Algorithmus. Knuth-Morris-Pratt-Algorithmus. Karp-Rabin-Algorithmus

Suche in Texten. Naiver Algorithmus. Knuth-Morris-Pratt-Algorithmus. Karp-Rabin-Algorithmus Suhe in Texten Niver Algorithmus Knuth-Morris-Prtt-Algorithmus Krp-Rin-Algorithmus M.O.Frnz; Jnur 2008 Algorithmen und Dtenstrukturen - Textsuhe 2-1 Suhe in Texten Niver Algorithmus Knuth-Morris-Prtt-Algorithmus

Mehr

Allgemeines. Mail an muenster.de. Motivation für die Veranstaltung Übung zur Markt und Preistheorie

Allgemeines. Mail an muenster.de. Motivation für die Veranstaltung Übung zur Markt und Preistheorie Allgemeines Nme: Emil: Stefn Shrmm stefn.shrmm@wiwi.uni muenster.de Motivtion für die Vernstltung Üung zur Mrkt und Preistheorie Inhlt der Klusur Vorlesung Skrit und Üung Sehr gut vorzuereiten! Tis zur

Mehr

Die Winkelsumme im Dreieck beträgt 180. Herleitung bzw. experimentelle Begründung in der Schule: Durch Punktspiegelung. Bedeutung+Winkelsumme 1

Die Winkelsumme im Dreieck beträgt 180. Herleitung bzw. experimentelle Begründung in der Schule: Durch Punktspiegelung. Bedeutung+Winkelsumme 1 edeutung+winkelsumme 1 Winkelsumme Kpitel 5: Dreiekslehre 5.1 edeutung der Dreieke Durh Tringultion lssen sih Vieleke in Dreieke zerlegen ( n Ek in n- Dreieke) eweis von Sätzen mittels Sätzen üer Dreieke

Mehr

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch ?37??38? Der Tigershwnz knn ls Stimmungsrometer gesehen werden. Tiger sind wssersheu.?39??40? Ds Gerüll der Tigermännhen soll die Weihen nloken. Die Anzhl der Südhinesishen Tiger eträgt nur mehr ) 2 )

Mehr

Facharbeit über den Beweis der Existenz der Euler schen Gerade in ebenen Dreiecken.

Facharbeit über den Beweis der Existenz der Euler schen Gerade in ebenen Dreiecken. Fhreit üer den Beweis der Eistenz der Euler shen Gerde in eenen Dreieken. Verfßt von Ing. Wlter Höhlhumer im Mi und ergänzt im Juli Eistenz der Euler shen Gerde Eistenz der Euler shen Gerde Eistenz der

Mehr

SPRACHFERIEN KÜNZELSAU 2008

SPRACHFERIEN KÜNZELSAU 2008 SPRACHFERIEN KÜNZELSAU 2008 (Mittelstufe) CODENUMMER: I. Lesen Sie den Text. Entsheiden Sie, welhe der Antworten ( ) psst. Es git jeweils nur eine rihtige Lösung. GEMEINSAM FÚR SPRACHE UND KULTUR Ashenputtel,

Mehr

KOMPETENZHEFT ZUR TRIGONOMETRIE, III

KOMPETENZHEFT ZUR TRIGONOMETRIE, III Mthemtik mht Freu(n)de KOMPETENZHEFT ZUR TRIGONOMETRIE, III 1. Aufgenstellungen Aufge 1.1. Zur Shneelsterehnung wird der Neigungswinkel α des in der nhstehenden Aildung drgestellten Dhes enötigt. Dei gilt:

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

ÜBUNGSSATZ 01 ZERTIFIKAT DEUTSCH FÜR DEN BERUF. Kandidatenblätter STRUKTUREN UND WORTSCHATZ ZEIT: 30 MINUTEN. ZDfB_Ü01_SW_06 120206

ÜBUNGSSATZ 01 ZERTIFIKAT DEUTSCH FÜR DEN BERUF. Kandidatenblätter STRUKTUREN UND WORTSCHATZ ZEIT: 30 MINUTEN. ZDfB_Ü01_SW_06 120206 Felix Brndl Münhen ZDfB_Ü01_SW_06 120206 ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01 Kndidtenlätter ZEIT: 30 MINUTEN Zertifikt Deutsh für den Beruf Üungsstz 01 Aufge 1 Lesen Sie den folgenden Text zuerst

Mehr

Geometrische Figuren und Körper

Geometrische Figuren und Körper STNRUFGEN Geometrishe Figuren und Körper Geometrishe Figuren und Körper Welhe Shreiweisen geen den Winkel β des neenstehenden reieks PQR rihtig wieder? β = Qrp β = rp β = PQR R β = QRP β = pq q p P r Q

Mehr

Dreiecke können einerseits nach den Eigenschaften ihrer Seiten und andererseits nach ihren Winkeln benannt werden. Einteilung nach den Seiten:

Dreiecke können einerseits nach den Eigenschaften ihrer Seiten und andererseits nach ihren Winkeln benannt werden. Einteilung nach den Seiten: gnz klr: Mthemtik 2 - s Ferienheft mit Erfolgsnzeiger 3 Rettungsring Eigenshften von reieken & Viereken Eigenshften von reieken Ein reiek ht immer 3 Ekpunkte, 3 Seiten un 3 Innenwinkel. ie eshriftung eines

Mehr

Lineare Gleichungssysteme mit 3 und mehr Variablen

Lineare Gleichungssysteme mit 3 und mehr Variablen Linere Gleihungssysteme mit un mehr rilen Beispiel 1 mit rilen: 11 Zunähst estimmt mn ie rile, ie mn ls Erste eliminieren will. In iesem Fll soll von hinten nh vorn vorgegngen weren,.h. zuerst soll rile

Mehr

Fragen zu Werte- und Orientierungswissen. Modelltests B1

Fragen zu Werte- und Orientierungswissen. Modelltests B1 Frgen zu Werte- und Orientierungswissen Modelltests B1 WERTE- UND ORIENTIERUNGSWISSEN SPRACHNIVEAU B1 MODELLTEST 1 Sie sehen insgesmt 18 Frgen. Die Frgen 1-9 hen 2 Antwortmöglichkeiten ( und ). Die Frgen

Mehr

Name... Matrikel-Nr... Studiengang...

Name... Matrikel-Nr... Studiengang... Proeklusur zum ersten Teil der Vorlesung Berechenrkeitstheorie WS 2015/16 30. Novemer 2015 Dr. Frnzisk Jhnke, Dr. Dniel Plcín Bereitungszeit: 80 Minuten Nme... Mtrikel-Nr.... Studiengng... 1. So oder so

Mehr

Lösungshinweise/-vorschläge zum Übungsblatt 2: Software-Entwicklung 1 (WS 2015/16)

Lösungshinweise/-vorschläge zum Übungsblatt 2: Software-Entwicklung 1 (WS 2015/16) Dr. Annette Bienius Mthis Weer, M.. Peter Zeller, M.. T Kiserslutern Fhereih Informtik AG oftwretehnik Lösungshinweise/-vorshläge zum Üungsltt 2: oftwre-entwiklung 1 (W 2015/16) Die Hinweise und orshläge

Mehr

Ein Winkel zwischen 0 und 90 heißt spitzer Winkel, ein Winkel zwischen 90 und 180 heißt stumpfer Winkel.

Ein Winkel zwischen 0 und 90 heißt spitzer Winkel, ein Winkel zwischen 90 und 180 heißt stumpfer Winkel. Geometrie 1 3 Winkelsummen Der von zwei Nhrseiten eines Vieleks geildete Winkel heißt Innenwinkel. Die Summe der Innenwinkel eines Dreieks eträgt 180. + + = 180 Die Summe der Innenwinkel eines Viereks

Mehr

Überzeugen Sie sich von einer neuen Unterrichtsmethode im Bereich der Technischen Kommunikation.

Überzeugen Sie sich von einer neuen Unterrichtsmethode im Bereich der Technischen Kommunikation. Üerzeugen Sie sih von einer neuen Unterrihtsmethode im ereih der Tehnishen Kommuniktion. Erklärungsvideo unter: www.youtue.om Tehnishes Zeihnen mit selstgeuten Modellen www.hndwerk-tehnik.de Servie / Downlods

Mehr

Mäxchen ein Würfelspiel

Mäxchen ein Würfelspiel Mäxhen ein Würfelspiel A A1 Betrhten Sie ds Foto. Ws mhen die Personen? 2 + 5 Fünfundzwnzig..., hlt, nein: zweiundfünfzig. 3 + 2 Dreier Psh Ds glue ih niht. Ds will ih sehen. Ertppt! Du hst j nur eine

Mehr

Flächenberechnung. Aufgabe 1:

Flächenberechnung. Aufgabe 1: Flächenerechnung Aufge : Berechnen Sie den Flächeninhlt zwischen dem Funktionsgrphen und der -Achse in den Grenzen von is von: ) f() = ) f() = - Skizzieren Sie die Funktionsgrphen und schrffieren Sie die

Mehr

Top-Aevo Prüfungsbuch

Top-Aevo Prüfungsbuch Top-Aevo Prüfungsbuh Testufgben zur Ausbildereignungsprüfung (AEVO) 250 progrmmierte Testufgben (Multiple Choie) 1 Unterweisungsentwurf / 1 Präsenttion 40 möglihe Frgen nh einer Unterweisung Top-Aevo.de

Mehr

Aktion: Der Patient führt eine Pro- bzw. Supination

Aktion: Der Patient führt eine Pro- bzw. Supination .5 Üungen mit un ohne Gerät 389 A..103 Extension es Ellenogen gelenks. Ausgngsstellung. En stellung. Anmerkung: Es ist uf einen stilen Rumpf zu hten. Neen iesen reltiv isolierten Streküungen für en M.

Mehr

Gib dir fünf Oberkörperübungen

Gib dir fünf Oberkörperübungen Gi dir fünf Oerkörperüungen Strting Five ds einfche Progrmm zur Moilistion und Dehnung der strk enspruchten Muskultur. Zum Ausproieren hier ein Auszug us dem gesmten Moilistionsprogrmm, ds du (unter Sportlern

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen Klusur zur Vorlesung Grundegriffe der Informtik 10. März 2009 mit Lösungsvorschlägen Klusurnummer Nme: Vornme: Mtr.-Nr.: Aufge 1 2 3 4 5 6 7 mx. Punkte 4 2 7 8 8 8 9 tts. Punkte Gesmtpunktzhl: Note: Aufge

Mehr

Änderungen in Zweitauflagen von Buch, Arbeits- und Theorieheft und Begleitordner

Änderungen in Zweitauflagen von Buch, Arbeits- und Theorieheft und Begleitordner Änderungen in Zweituflgen von uh, reits- und Theorieheft und egleitordner lle uflgen des Shüleruhes, des reits- und Theorieheftes und des egleitordners lssen sih prolemlos neeneinnder verwenden. Shüleruh

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1)

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1) teilung Informtik, Fh Progrmmieren 1 Einführung Dten liegen oft ls niht einfh serier- und identifizierre Dtensätze vor. Stttdessen reräsentieren sie lnge Zeihenketten, z.b. Text-, Bild-, Tondten. Mn untersheidet

Mehr

SWISS ICE HOCKEY FEDERATION REFEREE COMMITTEE. Regelfragen a) Rapport b) DIS c) SPD. a) Ja b) Nein. a) Nein b) Ja

SWISS ICE HOCKEY FEDERATION REFEREE COMMITTEE. Regelfragen a) Rapport b) DIS c) SPD. a) Ja b) Nein. a) Nein b) Ja Regelfrgen 1-200 Folgende Akürzungen werden in diesem Dokument verwendet: KBS = Kleine Bnkstrfe / DIS = Disziplinrstrfe / SPD = Spielduerdisziplinrstrfe MAS = Mthstrfe / EAP = Endnspielpunkt FRAGE ANTWORTEN

Mehr

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung?

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung? Aufge F 99: Drehstromverruher Ein symmetrisher Verruher ist n ds Drehstromnetz ( 0 V, f 50 Hz) ngeshlossen. Die us dem Netz entnommene Wirkleistung eträgt,5 kw ei einem eistungsfktor os 0,7. ) Berehnen

Mehr

Aussichten A1. Einstufungstest. Autorin: Sanja Mazuranic Redaktion: Renate Weber Layout: Claudia Stumpfe Satz: Regina Krawatzki, Stuttgart

Aussichten A1. Einstufungstest. Autorin: Sanja Mazuranic Redaktion: Renate Weber Layout: Claudia Stumpfe Satz: Regina Krawatzki, Stuttgart Aussihten A1 Autorin: Snj Mzurni Rektion: Rente Weer Lyout: Clui Stumpfe Stz: Regin Krwtzki, Stuttgrt Ernst Klett Sprhen GmH, Stuttgrt 2010 www.klett.e Alle Rehte vorehlten. Aussihten A1 Aussihten A1 Aufgenltt

Mehr

Mit Würfeln Quader bauen 14

Mit Würfeln Quader bauen 14 3 1 Quder uen Ein Spiel zu zweit Würfelt wehslungsweise mit einem Spielwürfel und fügt die gewürfelte Anzhl Holzwürfel den vorhndenen Würfeln hinzu. In jeder Spielrunde versuht ihr, us llen vorhndenen

Mehr

INTEGRATIONSPRÜFUNG. Fragen zu Werte- und Orientierungswissen. Modelltests A2

INTEGRATIONSPRÜFUNG. Fragen zu Werte- und Orientierungswissen. Modelltests A2 INTEGRATIONSPRÜFUNG Frgen zu Werte- und Orientierungswissen Modelltests A2 WERTE- UND ORIENTIERUNGSWISSEN SPRACHNIVEAU A2 MODELLTEST 1 Sie sehen insgesmt 18 Frgen. Die Frgen 1-9 hen 2 Antwortmöglichkeiten

Mehr

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius.

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius. Gymso 1 Grundwissen Mthemtik 8.Klsse Gymnsium SOB 1.Funktionle Zusmmenhänge 1.1.Proportionlität Ändern sih ei einer Zuordnung die eiden Größen im gleihen Verhältnis, so spriht mn von einer direkten Proportionlität.

Mehr

ISAC. Computer Algebra für Brüche --- angepasst an Ausbildungszwecke

ISAC. Computer Algebra für Brüche --- angepasst an Ausbildungszwecke ISAC Computer Alger für Brühe --- ngepsst n Ausildungszweke Stefn Krnel skrnel@ist.tugrz.t Institut für Mthemtik TU Grz Österreih July 0 00 Astrt Rehnen mit Brühen ist ein grundlegender Teil des Mthemtikunterrihts.

Mehr

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-CHSE Wie wir die Fläche zwischen einer Funktion und der -chse erechnen, hen wir rechentechnische ereits geklärt.

Mehr

Pythagoras. Suche ein rechtwinkliges Dreieck mit ganzzahligen Seitenlängen. ... c Roolfs

Pythagoras. Suche ein rechtwinkliges Dreieck mit ganzzahligen Seitenlängen. ... c Roolfs Pythgors Suhe ein rehtwinkliges Dreiek mit gnzzhligen Seitenlängen..... 1 Pythgors Für ein Dreiek mit den Seitenlängen = 3 und = 4 (in m) gilt vermutlih = 5. Weise diese Vermutung nh. Tipp: Bestimme den

Mehr

Download. Hausaufgaben: Trigonometrie. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Trigonometrie. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Downlod Otto Myr Husufgen: Üen in drei Differenzierungsstufen Downloduszug us dem Originltitel: Husufgen: Üen in drei Differenzierungsstufen Dieser Downlod ist ein uszug us dem Originltitel Husufgen Mthemtik

Mehr

Name... Matrikel Nr... Studiengang...

Name... Matrikel Nr... Studiengang... Proeklusur zur Vorlesung Berechenrkeitstheorie WS 201/1 1. Jnur 201 Prof. Dr. André Schulz Bereitungszeit: 120 Minuten [So oder so ähnlich wird ds Deckltt der Klusur ussehen.] Nme... Mtrikel Nr.... Studiengng...

Mehr

UNTERRICHTSPLAN LEKTION 18

UNTERRICHTSPLAN LEKTION 18 Lektion 18 Geen Sie ihm doch diesen Tee! UNTERRICHTSPLAN LEKTION 18 1 Hllo, Schwester Angelik! Prtnerreit, Die TN sehen sich zu zweit ds Foto n und eschreien, ws sie sehen. Uneknnte Wörter schlgen sie

Mehr

Download. Hausaufgaben Geometrie 1. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben Geometrie 1. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: ownlod Otto Myr Husufgen Geometrie 1 Üen in drei ifferenzierungsstufen ownloduszug us dem Originltitel: Husufgen Geometrie 1 Üen in drei ifferenzierungsstufen ieser ownlod ist ein uszug us dem Originltitel

Mehr

Vorlesung Diskrete Strukturen Transportnetze

Vorlesung Diskrete Strukturen Transportnetze Vorlesung Diskrete Strukturen Trnsportnetze Bernhr Gnter WS 2009/10 Gerihtete Grphen Ein shlingenloser gerihteter Grph ist ein Pr (V, A), woei V eine elieige Menge ist, eren Elemente wir Eken nennen un

Mehr

Klausur Grundlagen der Elektrotechnik

Klausur Grundlagen der Elektrotechnik Prüfung Grundlgen der Elektrotehnik Seite 1 von 20 Klusur Grundlgen der Elektrotehnik 1) Die Klusur esteht us 8 Aufgen, dvon 7 Textufgen und ein Single- Choie-Teil. 2) Zulässige Hilfsmittel: Linel, Winkelmesser,

Mehr

1. Voraussetzung. 2. Erstmalig anmelden Login beantragen. Online Fahrzeug-Registrierung. Anleitung

1. Voraussetzung. 2. Erstmalig anmelden Login beantragen. Online Fahrzeug-Registrierung. Anleitung Anleitung Online Fhrzeug-Registrierung 1. Vorussetzung Ihr Unternehmen muss ereits ei Toll Collet ls Kunde registriert sein. Den Antrg finden Sie unter www.toll-ollet.de/registrierung 2. Erstmlig nmelden

Mehr

eins 09 Mach den Check! Mitläufer?

eins 09 Mach den Check! Mitläufer? eins 09 Mh den Chek! Mher oder Mitläufer? Welher Typ ist Du? Mher oder Mitläufer? Mh den Psyhotest! Hier geht s los... 1. Ein guter Freund von Dir und seine Fmilie sollen geshoen werden. Ws mhst Du? Ih

Mehr

1 GeschäftsdiaGramme. Abbildung 1.1: Übersicht zu unterschiedlichen Grafi ktypen. 2.1.4 Unify objects: graphs e.g. org graphs, networks, and maps

1 GeschäftsdiaGramme. Abbildung 1.1: Übersicht zu unterschiedlichen Grafi ktypen. 2.1.4 Unify objects: graphs e.g. org graphs, networks, and maps 1 GeshäftsdiGrmme Wenn mn eine deutshe Üersetzung des Begriffes usiness hrts suht, so ist mn mit dem Wort Geshäftsdigrmme gnz gut edient. Wir verstehen unter einem Geshäftsdigrmm die Visulisierung von

Mehr

Polynominterpolation (Varianten)

Polynominterpolation (Varianten) HTL Slfelden Polynominterpoltion Seite von Wilfried Rohm Polynominterpoltion (Vrinten) Mthemtishe / Fhlihe Inhlte in Stihworten: Lösen von Gleihungssysteme, Mtrizenrehnung, Mthd-Progrmm Kurzzusmmenfssung

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeihne ds Dreiek ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erehne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und C(8

Mehr

Hausaufgabe 2 (Induktionsbeweis):

Hausaufgabe 2 (Induktionsbeweis): Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000 Lndeswettewer Mthemtik Bern Runde 999/000 Aufge Ein Würfel wird durh je einen Shnitt rllel zur order-, Seiten und Dekflähe in ht Quder zerlegt (siehe Skizze) Können sih die Ruminhlte dieser Quder wie :

Mehr

Rechnerlösungen gibt es zu den Aufgaben 6 bis 10. Ausführliche Berechnungsbeispiele und vieles mehr gibt es unter

Rechnerlösungen gibt es zu den Aufgaben 6 bis 10. Ausführliche Berechnungsbeispiele und vieles mehr gibt es unter R. Brinkmnn http://rinkmnn-du.de eite.0.0 Lösungen Bruhrehnung I mit dem GTR CAIO fx-cg 0 Rehnerlösungen git es zu den Aufgen 6 is 0. Ausführlihe Berehnungseispiele und vieles mehr git es unter http://www.freiurger-verlg.de/

Mehr

Ja, klar! Das weiß ich.

Ja, klar! Das weiß ich. J, klr! Ds weiß ih. Einstieg ins Modul 1: Wir und die nderen Areit mit den Aildungen S. XXX Lösung: 1G; 2K; 3C; 4E; 5F; 6H; 7B; 8D; 9I; 10J; 11L; 12A Einführung der Begriffe Sprehen, Shreien, Lesen und

Mehr

ZDfB_Ü01_LV_06 120206. Felix Brandl München ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01. Kandidatenblätter LESEVERSTEHEN ZEIT: 40 MINUTEN

ZDfB_Ü01_LV_06 120206. Felix Brandl München ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01. Kandidatenblätter LESEVERSTEHEN ZEIT: 40 MINUTEN Felix Brndl Münhen ZDfB_Ü01_LV_06 120206 ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01 Kndidtenlätter ZEIT: 40 MINUTEN Zertifikt Deutsh für den Beruf Üungsstz 01 Aufge 1 Bitte lesen Sie den folgenden

Mehr

Projektmanagement Selbsttest

Projektmanagement Selbsttest Projektmngement Selsttest Oliver F. Lehmnn, PMP Projet Mngement Trining www.oliverlehmnn-trining.de Dieses Dokument drf frei verteilt werden, solnge seine Inhlte einshließlih des Copyright- Vermerks niht

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr

ANATOMIE-QUIZ KÖRPER-QUIZ

ANATOMIE-QUIZ KÖRPER-QUIZ ANATOMIE-QUIZ KÖRPER-QUIZ 1 Viel Spß eim Rätseln! Dein Körper esteht us vielen Orgnen, die in gnz esonderer Weise zusmmenreiten. Die meisten Orgne kennst du ereits, sie hen eine estimmte Form und einen

Mehr

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass)

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass) onstruktion des regulären Fünfeks mit dem rostigen Zirkel (rusty ompss) Vrinte 1 Oliver ieri ie hier vorliegende Methode zur onstruktion eines regulären Fünfeks unter Zuhilfenhme eines rostigen Zirkels

Mehr

Übungssatz 02 FIT IN DEUTSCH 2. Kandidatenblätter/Prüferblätter ISBN: 3-938744-85-5. FIT2_ÜS02_Kandidaten-/Prueferblaetter_April_2006

Übungssatz 02 FIT IN DEUTSCH 2. Kandidatenblätter/Prüferblätter ISBN: 3-938744-85-5. FIT2_ÜS02_Kandidaten-/Prueferblaetter_April_2006 KASTNER AG ds medienhus FIT2_ÜS02_Kndidten-/Prueferletter_April_2006 FIT IN DEUTSCH 2 Üungsstz 02 Kndidtenlätter/Prüferlätter ISBN: 3-938744-85-5 Üungsstz 02 Inhlt Vorwort 3 Kndidtenlätter Hören 5 Lesen

Mehr

3 Exzisionstechniken und Defektdeckungen in speziellen Lokalisationen

3 Exzisionstechniken und Defektdeckungen in speziellen Lokalisationen 95 3 Exzisionstehniken und Defektdekungen in speziellen Loklistionen 3.1 Kopf-Hls-Region Voremerkungen Die Häufigkeit störender Veränderungen sowie enigner und mligner kutner Neuildungen im Kopf-Hls- Bereih

Mehr

Lektion 1...4 Lektion 2...9 Lektion 3...14 Lektion 4...19 Lektion 5...24 Lektion 6...29 Lektion 7...34

Lektion 1...4 Lektion 2...9 Lektion 3...14 Lektion 4...19 Lektion 5...24 Lektion 6...29 Lektion 7...34 Inhlt Shritte plus 5 Lektion 1...4 Lektion 2...9 Lektion 3...14 Lektion 4...19 Lektion 5...24 Lektion 6...29 Lektion 7...34 Shritte plus 6 Lektion 8...39 Lektion 9...44 Lektion 10...49 Lektion 11...54

Mehr

Kleines Deutschlandquiz

Kleines Deutschlandquiz Kleines Deutshlndquiz 0 Stimmen diese Aussgen üer Deutshlnd? Kreuzen Sie n. d e f g h i j k l Die Bundesrepulik Deutshlnd esteht us 6 Bundesländern. Jedes Bundeslnd ht einen eigenen Bundesknzler / eine

Mehr

Mathematik Trigonometrie Einführung

Mathematik Trigonometrie Einführung Mthemtik Trigonometrie Einführung Ws edeutet ds Wort Trigonometrie und mit ws eshäftigt sih die Trigonometrie? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Ek'

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Tagesablauf Arbeit Freizeit

Tagesablauf Arbeit Freizeit Tgesluf Areit Freizeit Am Morgen Ü 1 Lesen Sie A 1. Ordnen Sie Frgen und Antworten zu. 1. Steht Sr B. gern uf? A 5 oder 6 Minuten. 2. Wnn fährt die U-Bhn? B Nein, sie leit gerne noh einen Moment liegen.

Mehr

Vektoren. b b. R heißt der Vektor. des. und b. . a b

Vektoren. b b. R heißt der Vektor. des. und b. . a b 6 Vektoren 66 Ds Vektorprodukt Definition des Vektorprodukts Wir etrchten im dreidimensionlen Rum zwei nicht kollinere Vektoren R, \{0} Gesucht ist ein Vektor x R, der uf jedem der eiden Vektoren und senkrecht

Mehr

Einführungsmöglichkeiten des Skalarprodukts. r r

Einführungsmöglichkeiten des Skalarprodukts. r r Einfühungsmöglihkeiten des Sklpodukts Jügen Zumdik I. Geometishe Zugänge im Euklidishen Vektoum Euklidishe Länge eines Vektos ist eeits eingefüht Polem Winkel zwishen Vektoen R² α β ϕ α-β osϕ osα-β osαosβ

Mehr

1. Berechnen Sie in den folgenden Strahlensatzfiguren die unbekannten Stücke! z y 23

1. Berechnen Sie in den folgenden Strahlensatzfiguren die unbekannten Stücke! z y 23 Trigonometrie 1: Strhlensätze 1. Berehnen Sie in den folgenden Strhlenstzfiguren die uneknnten Stüke! ) 2.5 4 5 9 ) 4 3 5 10 z w 7 9 7 z 23 11 w 13 15 d) 18 3 e) 8 6 8 4 3 z 2. Welhe der folgenden Verhältnisse

Mehr

Unterwegs. 1 Ordnen Sie zu. 2 Sehen Sie die Fotos an. Was meinen Sie? Sprechen Sie. 3 Sehen Sie die Fotos an und hören Sie. vierzig 40 LEKTION 11

Unterwegs. 1 Ordnen Sie zu. 2 Sehen Sie die Fotos an. Was meinen Sie? Sprechen Sie. 3 Sehen Sie die Fotos an und hören Sie. vierzig 40 LEKTION 11 11 Unterwegs 1 2 5 6 FOLGE 11: MÄNNER! 1 Ordnen Sie zu. ds Auto die Tnkstelle die Grge der Führerusweis A B C D... ds Auto......... 2 Sehen Sie die Fotos n. Ws meinen Sie? Sprehen Sie. d Foto 1: Ws will

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr