Das Noether-Theorem. Philipp Arras, Jakob Moritz. 18. Juli Quellen 6

Größe: px
Ab Seite anzeigen:

Download "Das Noether-Theorem. Philipp Arras, Jakob Moritz. 18. Juli Quellen 6"

Transkript

1 Das Noether-Theorem Philipp Arras, Jakob Moritz 18. Juli 013 Inhaltsverzeichnis 1 Herleitung des Noether-Theorems in der Feldtheorie Voraussetzungen Herleitung Kontinuitätsgleichung und Erhaltungsgrößen Anwendung 3.1 Translationen Drehungen Beispiel: Klein-Gordon-Feld Translationen (reelles KG-Feld) Drehungen (reelles KG-Feld) U(1)-Symmetrie (komplexes KG-Feld) Quellen 6 1 Herleitung des Noether-Theorems in der Feldtheorie 1.1 Voraussetzungen Aus der klassischen Punkt-Mechanik kennen wir bereits das Noether-Theorem. Es besagt, dass aus jeder kontinuierlichen Symmetrie eines physikalischen Systems eine Erhaltungsgröße folgt. Eine kontinuierliche Symmetrie ist dabei eine Transformation, die durch einen kontinuierlichen Parameter parametrisiert wird und das Verhalten des physikalischen Systems nicht ändert. In der klassischen Feldtheorie erhält man zusätzlich eine Stromdichte J µ (Noether-Strom), die einer Kontinuitätsgleichung genügt. Dies soll im Folgenden gezeigt werden. Betrachte ein Feld φ r (x) mit r {1,..., n} 1 dessen Physik durch die Langrangedichte L = L(φ r (x), φ r,µ ) beschrieben wird. Ohne Beschränkung der Allgemeinheit betrachten wir nun infinitesimale Transformationen der Koordinaten und des Feldes. Diese sind allgemein gegeben durch: Drehung Translation {}}{ x µ x µ = x µ + δx µ = x µ + ω νµ x ν + δ µ (1) φ r (x) φ r(x ) = φ r (x) + φ r (x) = φ r (x) + 1 n ω µν S rs µν φ s (x) () 1 n = 1: Skalarfeld, Vektorfelder klar, für Tensorfelder nummeriere alle Komponenten des Tensors durch und schreibe ihn als Vektor. Beachte dann jedoch das Transformationsverhalten. Das entstehende Objekt ist natürlich kein 4-Vektor! Es wird die Einsteinsche Summenkonvention verwendet. Außerdem wähle c = 1 und g µν = diag(1, 1, 1, 1) µν. s=1 1

2 Hierbei bezeichnen x und x den gleichen Punkt in der Raumzeit in den beiden unterschiedlichen Koordinatensystemen. 3 φ r und φ r bezeichnen die Komponenten des Feldes bezüglich der beiden Koordinaten. ω µν ist wie gewöhnlich bei Erzeugenden von Rotationen ein antisymmetrischer Tensor ( ω µν = ω νµ ). ist aus gleichem Grund antisymmetrisch in µ und ν. S definiert die Transformationseigenschaften des Feldes und charakterisiert es dadurch. 4 Gegeben sei nun eine Transformation, die die Lagrange-Dichte L invariant lässt, also: S µν rs L(φ r(x ), φ r,µ(x )) = L(φ r (x), φ r,µ (x)) (3) Aus dieser Bedingung folgt die Kovarianz der Bewegungsgleichungen. Gleichungen (1), () und (3) sind die gegebenen Voraussetzungen für den Beweis des Theorems. Verwende außerdem folgende Definitionen: δφ r (x) := φ r(x) φ r (x) (4) φ r (x) := φ r(x ) φ r (x) (5) Wir nennen δφ r (x) Variation und φ r (x) totale Variation von φ r (x). Weil kontinuierliche Transformationen und damit oe infinitesimale Transformationen betrachtet werden, kann die Rechnung in erster Ordnung in δφ r (x) durchgeführt werden: (a b : a = b + O((δφ r ) ). 1. Herleitung Es gilt: φ r (x) = δφ r (x ) + φ r (x ) φ r (x) (6) Mit δφ r (x ) = δφ r (x µ + δx µ ) δφ r (x) und φ r (x ) φ r (x) + φr δx ν folgt Führe nun die gleiche Rechnung für L durch: Die Variation von L ergibt: Nebenrechnung: L δx ν = L x µ δxµ = φ r (x) δφ r (x) + φ r δx ν (7) 0 = L(φ r(x ), φ r,µ(x )) L(φ r (x), φ r,µ (x)) (8) δl + L δx ν (9) δl = L δφ r + L δφ r,µ φ r (10) = L δφ r ( L ),µ δφ r +( L δφ r ),µ = ( L δφ r ),µ φ r (11) Euler-Lagrange-Gleichung (7) = ( L ( φ r φ r δx ν )),µ (1) (9) 0 = ( L ( φ r φ r δx ν )),µ + L δx ν = (15) (13) x µ (Lδxµ ) L x µ (δxµ ) = µ( ω µ ν x ν )=0 = x µ (Lδxµ ) = x µ (Lgµσ δx σ ) (14) 3 passive Transformation 4 zum Beispiel klassische E-Dynamik: S rs µν = δ r µ δs ν δs ν δ r µ oder Dirac-Felder: S rs µν = 1 4 [γµ, γ ν ] rs mit γ µ : Dirac-Matrizen

3 (13) = ( L ( φ r φ r δx ν ) + Lg µσ δx σ ),µ (15) = ( L φ r ( L φ r + Lg µν )δx ν ),µ = 0 (16) Definiere: T µν := L φ,ν r Lg µν (17) Diese Größe heißt Energie-Impuls-Tensor. Es wird sich herausstellen, dass d 3 xt µ0 erhalten ist. Es ist zu beachten, dass T µν in dieser Form nicht zwangsläufig symmetrisch ist (z.b. in der klass. E-Dynamik), jedoch durch Divergenz-Terme immer symmetrisiert werden kann. 5 0 = ( L φ r T µν δx ν ),µ (18) =:J µ Dies ist das Noether-Theorem in größter Allgemeinheit. Beachte, dass die Symmetrietransformation in der Herleitung nicht (etwa auf Lorentztransformationen) eingeschränkt wurde. 1.3 Kontinuitätsgleichung und Erhaltungsgrößen Der Noether-Strom J µ erfüllt damit wie versprochen eine Kontinuitätsgleichung: J µ,µ = t J 0 + div J = 0 (19) Für die Erhaltungsgröße definiere 6 Q := dv J 0. Damit gilt: d dt Q (19) = dv div J = 0 (0) Für die zweite Gleichheit wurde der Integralsatz von Gauß verwandt, mit dem üblichen Argument, dass J im Unendlichen verschwinden muss. Q ist also die aus J µ folgende Erhaltungsgröße. Anwendung.1 Translationen Translationen sind in der Notation gegeben durch: Außerdem: δ ν R 4 beliebig (1) ω µν 0 φ r 0 () T νµ,ν = 0 (3) 5 siehe E-Dynamik-Vorlesung von Prof. Komnik Gleichung (563) (565) oder Prof. Bartelmanns Elektrodynamik-Skript Gleichung (7.80) (7.84): T µ ν = 1 Aσ,νF µσ + 1 4π 16π gµ νf αβ F αβ. Addiere 1 4π Aν,σF µσ = σ( 1 4π Aν F µσ ) wegen σf µσ = j µ = 0 in Abwesenheit von Ladungen. µ σ( 1 AνF µσ ) = 0 wegen Antisymmetrie von F µσ. Symmetrisierter E.-I.-Tensor: T µν = 4π 1,ν (A 4π σ A ν,σ)f µσ π gµ νf αβ F αβ = 1 ( F ν 4π σf µσ gµν F αβ F αβ ) 6 Verwende die Schreibweise dv d 3 x und dv d 3 x 3

4 Aus der (4-)Translationsinvarianz folgt die Kontinuitätsgleichung für T µν (für jedes ν = 0, 1,, 3). Es gilt: E := dv T 00 und P i := dv T 0i mit T 00 L = φ φr L (4) r =p i E = Hamiltonfunktion = Energie (5) Aus der Kontinuitätsgleichung für T µν folgt also die Erhaltung für den 4er-Impuls (E, P ). Dies rechtfertigt im Nachhinein die Bezeichnung Energie-Impuls-Tensor.. Drehungen Für Drehungen gilt: δ µ 0 δx µ = ω µν x ν (6) φ r (x) = 1 ω µνs µν rs φ s (x) (7) J µ = 1 L ω νσ Srs νσ φ s (x) T µν ω νσ x σ (8) = 1 ( L Srs νσ φ s (x) + x ν T µσ x σ T µν ) ω νσ (9) =:M µνσ (18) Da die Elemente von ω νσ freie Parameter sind, folgt mit dem Noether-Theorem (18) eine Kontinuitätsgleichung für M: t M 0µσ + div M µσ = 0 (30) Hieraus erhalten wir (nur) sechs Erhaltungsgrößen, weil M µνσ antisymmetrisch in ν und σ ist: M µν := dv M 0µν = 1 dv ( L φ S rs µν φ s + x µ T 0ν x ν T 0µ ) (31) r =π r Betrachten wir nur den Raumteil und nur den zweiten und dritten Term, folgt die Erhaltung des Bahndrehimpulses. DBahn i := 1 ɛi jk (xj T 0k x k T 0j ) = ɛ i jk xj T 0k (3) D Bahn := dv D Bahn = dv ( r p ) ist erhalten. (33) Den ersten Term interpretieren wir als Spin. D i Spin = dv 1 ɛi jk πr S jk rs φ s (34) Weiterhin erhalten wir den Boost-Vektor K i = M 0i = 1 dv (π r S 0i rsφ s + tt 0i x i T 00 ) (35) Um für diese Größe etwas Intuition zu bekommen, setzen wir S = 0. Dann gilt: t dv p + const. = x T 00 1 dv dv T 00 (36) t P E =: v + const. x T 00 dv = }{{ E } T 00 dv =: x ES (0) =: x ES (t) (37) t v + x ES (0) = x ES (t) (38) 4

5 Wir sehen, der Energieschwerpunkt x ES bewegt sich unbeschleunigt. Konsistenzcheck: In der Theorie des relativistischen Punktteilchens gilt: P = mγv und E = mγ P E = v (39) 3 Beispiel: Klein-Gordon-Feld L = 1 (( µφ )( µ φ) m φ φ) (40) L reell = 1 (( µφ)( µ φ) m φ ) (41) 3.1 Translationen (reelles KG-Feld) Rechnet das selber nach: T µν,µ = ( + m )φ = 0 (4) Die Erhaltungsgrößen sind: E = dv { φ L} = 1 dv ( φ + ( φ) + m φ ) (43) P i = dv T 0i = dv t φ i φ = dv φ φ (44) 3. Drehungen (reelles KG-Feld) Weil das Klein-Gordon-Feld ein skalares Feld ist, transformiert das Feld trivial: Damit gilt: φ(x) = 0 S µν rs = 0 (45) T 0i = t φ i φ (46) D Bahn = dv ( t φ)( φ r ) (47) D Spin = 0 (48) 1 r K = dv {t t φ φ + [( t φ) + ( φ) + m φ ]} (49) 3.3 U(1)-Symmetrie (komplexes KG-Feld) Die Lagrangedichte hängt nur vom Absolutquadrat des Feldes ab und unterliegt deshalb einer U(1)- Symmetrie. Die Koordinaten werden bei dieser Symmetrietransformation nicht transformiert. Die Transformation wird mit α R parametrisiert. φ e iα φ = φ r (x) + iαφ r (x) + O(α ) (50) φ e iα φ = φ r(x) iαφ r(x) + O(α ) (51) δφ r (x) = iαφ r (x) δφ r(x) = iαφ r(x) (5) und: φ r (x) = δφ r (x), φ r(x) = δφ r(x) (53) 5

6 Daraus folgt mit dem Noether-Theorem J µ = i( L φ r L φ r,µ φ r) (54) J 0 = i(π r (x)φ r (x) π r(x)φ r(x)) (55) Damit ist also folgende Größe erhalten (wähle q R beliebig und fest als physikalische Konstante): Q := iq dv (π r (x)φ r (x) π r(x)φ r(x)) (56) In der Quantenfeldtheorie wird sich q als Ladung und Q als der dazugehörige Operator herausstellen. Dies wollen wir im Folgenden motivieren. In quantisierter 7 Form gilt: Es gilt: dq dt [Q, φ r (x)] = iq = 0 [Q, H] = 0 (57) dv [π s (x ), φ r (x)] φ s (x ) = qφ r (x) (58) = iδ srδ( x x ) Sei nun Q Eigenzustand von Q. Also: Q Q = Q Q. Man zeigt leicht: φ r (x) Q ist Eigenvektor zu Q mit Eigenwert (Q q) φ r(x) Q ist Eigenvektor zu Q mit Eigenwert (Q + q) Qφ r (x) Q = (Q q)φ r (x) Q (59) Qφ r(x) Q = (Q + q)φ r(x) Q (60) Dies erinnert an die Auf- und Absteigeoperatoren des harmonischen Oszillators, wo jeweils ein Energiequant erzeugt oder vernichtet wird. Hier ist die Situation sehr ähnlich. An Gleichung (59) erkennt man, dass ein Teilchen mit der Eigenschaft q vernichtet wird, wohingegen bei Gleichung (60) ein Teilchen mit der Eigenschaft q erzeugt wird. Eine äquivalente Beschreibung ist Folgende: Durch Gleichung (59) wird ein Teilchen mit der Eigenschaft q erzeugt und Gleichung (60) erzeugt ein Teilchen mit Eigenschaft q. Wir sehen also: Das komplexe Klein- Gordon-Feld beschreibt zwei Teilchen mit einer entgegengesetzten Eigenschaft q. Interpretieren wir q als Ladung entspricht die komplexe Konjugation genau der Teilchen-Antiteilchen-Dualität. Gleichung (60) erzeugt also ein Teilchen und (59) erzeugt das entsprechende Antiteilchen. Das Noether-Theorem besagt, dass aus der U(1)-Symmetrie die Gesamtladungserhaltung folgt. 4 Quellen Franz Schwabl: Quantenmechanik für Fortgeschrittene (QM II), 5. Auflage. Springer Verlag, Berlin Heidelberg 008 Michio Kaku: Quantum Field Theory, Oxford University Press, New York Oxford [, ] bezeichne den Kommutator, H den Hamilton-Operator, φ r(x) den Feldoperator und π r(x) den kanonischen Impuls zu φ r. Damit ist Q ebenfalls ein Operator. 6

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung 92 Teilchenphysik, HS 2007-SS 2008, Prof. A. Rubbia (ETH Zurich) 6.2 Lagrange-Funktion in der relativistischen Felheorie Kapitel 6 Der Lagrange-Formalismus 6.1 Euler-Lagrange-Gleichung In der Quantenmechanik

Mehr

Theoretische Physik II: Elektrodynamik SS 96 C.C. Noack. Das Noether-Theorem. for Pedestrians

Theoretische Physik II: Elektrodynamik SS 96 C.C. Noack. Das Noether-Theorem. for Pedestrians ITP ITP ÍÒ Ú Ö ØĐ Ø Ö Ñ Ò ÁÒ Ø ØÙØ ĐÙÖ Ì ÓÖ Ø È Ý Theoretische Physik II: Elektrodynamik SS 96 C.C. Noack A Einleitung Das Noether-Theorem for Pedestrians Das Noether-Theorem [E. Noether: Nachr.Gesellsch.Wiss.

Mehr

2.2 4-Stromdichte [Griffiths , Jackson 11.9]

2.2 4-Stromdichte [Griffiths , Jackson 11.9] Um zu verstehen, wie sich die elektromagnetischen Felder transformieren, gehen wir von den Maxwellgleichungen aus. Dazu brauchen wir zunächst die. 4-Stromdichte [Griffiths 1.3.4, Jackson 11.9] Die Ladungsdichte

Mehr

Teilchenphysik für Fortgeschrittene

Teilchenphysik für Fortgeschrittene Teilchenphysik für Fortgeschrittene Notizen zur Vorlesung im Wintersemester 2015-2016 Peter Schleper 15. Oktober 2015 Institut für Experimentalphysik, Universität Hamburg peter.schleper@physik.uni-hamburg.de

Mehr

Inhaltsverzeichnis. Teil I Grundlagen. Teil II Symmetrie-Werkzeuge. 1 Einleitung 3

Inhaltsverzeichnis. Teil I Grundlagen. Teil II Symmetrie-Werkzeuge. 1 Einleitung 3 Inhaltsverzeichnis Teil I Grundlagen 1 Einleitung 3 1.1 Was wir nicht herleiten können... 3 1.2 Überblick über das Buch... 5 1.3 Elementarteilchen und fundamentale Wechselwirkungen 8 2 Die Spezielle Relativitätstheorie

Mehr

Seminarvortrag. Spinoren der Lorentzgruppe

Seminarvortrag. Spinoren der Lorentzgruppe Seminarvortrag Spinoren der Lorentzgruppe Juli 2003 Inhaltsverzeichnis 1 Grundbegriffe 3 1.1 Tensoren und Spinoren........................ 3 1.2 Lorentzgruppe............................ 3 2 Spinoren 4

Mehr

Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a

Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a V.3.4 Kanonische Transformationen Es kann günstig sein Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a Koordinatentransformation im Phasenraum Wir betrachten eine allgemeine Koordinatentransformation

Mehr

Eichtransformationen. i) Satz: HP impliziert Kovarianz der Lagrange-Gl. 2. Art unter Koord.-Transf.

Eichtransformationen. i) Satz: HP impliziert Kovarianz der Lagrange-Gl. 2. Art unter Koord.-Transf. Eichtransformationen i) Satz: HP impliziert Kovarianz der Lagrange-Gl. 2. Art unter Koord.-Transf. Beweis: Wirkung S ist unabhängig von Parametrisierung für gegebene physikalische Bahnkurve; folglich haben

Mehr

Abelsche Eichsymmetrie

Abelsche Eichsymmetrie Seminar zur Theorie der Teilchen und Felder Anja Teuber Münster, 11. Juni 2008 Inhaltsverzeichnis 1 Motivation 3 2 Vorbereitung 3 2.1 Eichinvarianz in der klassichen Elektrodynamik................... 3

Mehr

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild:

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild: 1.4 Vektoren Jeder Vektor (Vierer-Vektor) lebt an einem bestimmten Punkt der Raumzeit. Dieser lässt sich bei Krümmung nicht einfach verschieben. Betrachte deshalb Menge alle Vektoren an einem Punkt p =

Mehr

Einführung in den Symmetriebegriff und gruppentheoretische Grundlagen

Einführung in den Symmetriebegriff und gruppentheoretische Grundlagen Einführung in den Symmetriebegriff und gruppentheoretische Grundlagen Stephanie Artmeier WS 0/ Inhaltsverzeichnis Einführung... Gruppen.... Beispiel gleichseitiges Dreieck... 3. Darstellung von Gruppen...

Mehr

24 Herleitung der Maxwell-Gleichungen

24 Herleitung der Maxwell-Gleichungen 24 Herleitung der Maxwell-Gleichungen In dieser Vorlesung werden wir die Maxwell-Gleichungen aus rein theoretischen Erwägungen herleiten. Dabei muß der Begriff Herleitung allerdings mit Vorsicht betrachtet

Mehr

8 Spontane Symmetriebrechung

8 Spontane Symmetriebrechung 8 SPONTANE SYMMETRIEBRECHUNG 111 8 Spontane Symmetriebrechung 8.1 Gebrochene diskrete Symmetrie Betrachte die φ 4 -Theorie eines reellen Skalarfeldes mit der Lagrangedichte L = 1 ( µφ)( µ φ) 1 m φ λ 4!

Mehr

Die Noether Theoreme

Die Noether Theoreme Die Noether Theoreme Friedemann Brandt Antrittsvorlesung, 12. April 2000 Zur Wahl des Themas Kurzbiographie Noether Allgemeine Form der Theoreme Noethers Originalarbeit Eigene Arbeiten Zur Wahl des Themas

Mehr

Eichinvarianz in der Quantenmechanik. abgeleitet aus der Maxwell-Theorie

Eichinvarianz in der Quantenmechanik. abgeleitet aus der Maxwell-Theorie Eichinvarianz in der Quantenmechanik abgeleitet aus der Maxwell-Theorie Seminarvortrag Quantenelektrodynamik 1. Teil: Schrödingergleichung Motivation: Eichtheorien sind ein inhaltsreicher Gedankenkomplex

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 27. Juli 2015, Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 27. Juli 2015, Uhr KIT SS 05 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung 7. Juli 05, 6-8 Uhr Aufgabe : Kurzfragen (+4++3=0 Punkte) (a) Zwangsbedingungen beschreiben Einschränkungen

Mehr

Beispiel: Rollender Reifen mit

Beispiel: Rollender Reifen mit Beispiel: Rollender Reifen mit Kinetische Energie: Trägheitsmoment Potenzielle Energie: Zwangsbedingung: konstant nicht-gleitendes Rollen, holonome ZB Erweiterte Lagrange-Fkt.: t-abhängig: Interpretation:

Mehr

10. Spezielle Relativitätstheorie (SRT) 10.1 Grundlagen und Lorentztransformation

10. Spezielle Relativitätstheorie (SRT) 10.1 Grundlagen und Lorentztransformation 10. Spezielle Relativitätstheorie (SRT) 10.1 Grundlagen und Lorentztransformation (a) Inertialsysteme und das spezielle Relativitätsprinzip Es gibt unendlich viele Inertialsysteme (IS), die sich relativ

Mehr

1 Lagrange-Formalismus

1 Lagrange-Formalismus Lagrange-Formalismus SS 4 In der gestrigen Vorlesung haben wir die Beschreibung eines physikalischen Systems mit Hilfe der Newton schen Axiome kennen gelernt. Oft ist es aber nicht so einfach die Kraftbilanz

Mehr

5. Raum-Zeit-Symmetrien: Erhaltungssätze

5. Raum-Zeit-Symmetrien: Erhaltungssätze 5. Raum-Zeit-Symmetrien: Erhaltungssätze Unter Symmetrie versteht man die Invarianz unter einer bestimmten Operation. Ein Objekt wird als symmetrisch bezeichnet, wenn es gegenüber Symmetrieoperationen

Mehr

Sechste Vorlesung: Gravitation II

Sechste Vorlesung: Gravitation II Sechste Vorlesung: Gravitation II 6.1 Das Einstein-Hilbert-Funktional 6.2 Relativistische Elektrodynamik 6.3 Spurfreiheit des Energie-Impuls-Tensors T αβ em * 6.1 Das Einstein-Hilbert-Funktional Wir wollen

Mehr

Formelsammlung Klassische Feldtheorie

Formelsammlung Klassische Feldtheorie Formelsammlung Klassische Feldtheorie 6 (Pseudo-)Orthogonale Gruppen 1. Definition Gruppe: Menge G mit einer Operation (g 1,g 2 ) G G g 1 g 2 G (Multiplikation) (1) die folgende Bedingungen erfüllt: Assoziativität:

Mehr

6 Spontane Symmetriebrechung

6 Spontane Symmetriebrechung 6 SPONTANE SYMMETRIEBRECHUNG 84 6 Spontane Symmetriebrechung In diesem Abschnitt behandeln wir die Theorien weitgehende auf dem klassischen Niveau. 6.1 Spontan gebrochene diskrete Symmetrie Betrachte die

Mehr

1 Mathematische Hilfsmittel

1 Mathematische Hilfsmittel Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation

Mehr

Über teleparallele Gravitationstheorien

Über teleparallele Gravitationstheorien Diplomkolloquium Über teleparallele Gravitationstheorien Uwe Münch 24. September 1997 Übersicht: Geometrische Größen Gravitation als Eichtheorie der Translationen: Teleparallelismus-Theorien Alternative

Mehr

T2 Quantenmechanik Lösungen 4

T2 Quantenmechanik Lösungen 4 T2 Quantenmechanik Lösungen 4 LMU München, WS 17/18 4.1. Lösungen der Schrödinger-Gleichung Beweisen Sie die folgenden Aussagen. Prof. D. Lüst / Dr. A. Schmi-May version: 06. 11. a) Die Separationskonstante

Mehr

Bewegung im elektromagnetischen Feld

Bewegung im elektromagnetischen Feld Kapitel 6 Bewegung im elektromagnetischen Feld 6. Hamilton Operator und Schrödinger Gleichung Felder E und B. Aus der Elektrodynamik ist bekannt, dass in einem elektrischen Feld E(r) und einem Magnetfeld

Mehr

Diracs kanonische Quantisierung von Systemen mit Nebenbedingungen

Diracs kanonische Quantisierung von Systemen mit Nebenbedingungen Diracs kanonische von Systemen mit Nebenbedingungen Christof Witte HU Berlin Seminar zur theoretischen Physik WS 08/09 Christof Witte kanonische 1 / 46 Motivation bewährt: Übergang von klassischer zu quantenmechanischer

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik Prof. Dr. Th. Feldmann 21. Januar 2014 Kurzzusammenfassung Vorlesung 23 vom 21.1.2014 Satz von Liouville Der Fluß eines Hamilton schen Systems im Phasenraum

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik) Prof. Dr. Th. Feldmann 15. Januar 2014 Kurzzusammenfassung Vorlesung 21 vom 14.1.2014 6. Hamilton-Mechanik Zusammenfassung Lagrange-Formalismus: (generalisierte)

Mehr

Grundlagen der analytischen Mechanik

Grundlagen der analytischen Mechanik Grundlagen der analytischen Mechanik Seminar: Theorie der komplexen Systeme Marcus Tassler Grundlagen der analytischen Mechanik p. Teil I: Lagrange Mechanik Grundlagen der analytischen Mechanik p. Überblick

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 12. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 12. 06.

Mehr

Übungen zur Feldtheorie

Übungen zur Feldtheorie Übungen zur Feldtheorie (wird fortgesetzt) Klaus Morawetz, Zi 564, klaus.morawetz@physik.tu-chemnitz.de, www.mpipks-dresden.mpg.de/ morawetz I. Relativistische Kinematik und Kovarianz 1. Leiten Sie das

Mehr

2.10 Normierung der Dirac-Spinoren

2.10 Normierung der Dirac-Spinoren 2.10 Normierung der Dirac-Spinoren In der schwachen Wechselwirkung, die die Parität verletzt, werden auch Axial-Vektoren eine große Rolle spielen, da der Strom eines linkshändigen Spin-1/2 Teilchens ū

Mehr

Hamilton-Jacobi-Formalismus I

Hamilton-Jacobi-Formalismus I Hamilton-Jacobi-Formalismus I 1 Hamilton-Jacobi-Formalismus I Johannes Berger Leonard Stimpfle 05.06.2013 Die Hauptschwierigkeit bei der Integration gegebener Differentialgleichungen scheint in der Einführung

Mehr

Klein-Gordon-Gleichung

Klein-Gordon-Gleichung Seminar zur Theorie der Atome, Kerne und kondensierten Matierie Klein-Gordon-Gleichung Judith Beier 17.12.2014 1 Inhaltsverzeichnis 1 Einblick in die Geschichte der relativistischen Quantenmechanik 3 2

Mehr

Quantenmechanik für Fortgeschrittene (QMII)

Quantenmechanik für Fortgeschrittene (QMII) Franz Schwabl Quantenmechanik für Fortgeschrittene (QMII) Vierte, erweiterte und aktualisierte Auflage mit 79 Abbildungen, 4 Tabellen und 101 Aufgaben 4y Springer Inhaltsverzeichnis Teil I. Nichtrelativistische

Mehr

Dirac-Gleichung und Eichtheorien

Dirac-Gleichung und Eichtheorien Dirac-Gleichung und Eichtheorien Hauptseminar Theoretische Grundlagen der Teilchenphysik Mustafa Tabet 22. Mai 2015 INSTITUT FÜR THEORETISCHE PHYSIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

III.3 Lösung der freien Dirac-Gleichung

III.3 Lösung der freien Dirac-Gleichung III.3 Lösung der freien Dirac-Gleichung Dieser Abschnitt geht auf die Lösungen der Gleichung III.6 und einige deren Eigenschaften ein, beginnend mit ebenen Wellen Abschn. III.3.. Dann wird die zweite Quantisierung

Mehr

Einblicke in die Teilchenphysik

Einblicke in die Teilchenphysik Einblicke in die Teilchenphysik 1. Einführung 2. Beschleuniger 3. Detektoren 4. Bewegungsgleichungen und Symmetrien 5. Das Quark-Modell und die CKM-Matrix 6. CP-Verletzung im Standardmodell 7. Proton-

Mehr

Inhaltsverzeichnis. Teil I. Nichtrelativistische Vielteilchen-Systeme

Inhaltsverzeichnis. Teil I. Nichtrelativistische Vielteilchen-Systeme Inhaltsverzeichnis Teil I. Nichtrelativistische Vielteilchen-Systeme 1. Zweite Quantisierung... 3 1.1 Identische Teilchen, Mehrteilchenzustände undpermutationssymmetrie... 3 1.1.1 Zustände und Observable

Mehr

(a) Λ ist eine Erhaltungsgröße. (b) Λ ist gleich der Exzentrizität ε der Bahnkurve.

(a) Λ ist eine Erhaltungsgröße. (b) Λ ist gleich der Exzentrizität ε der Bahnkurve. PD Dr. S. Mertens S. Falkner, S. Mingramm Theoretische Physik I Mechanik Blatt 7 WS 007/008 0.. 007. Lenz scher Vektor. Für die Bahn eines Teilchens der Masse m im Potential U(r) = α/r definieren wir mit

Mehr

VIII. Lagrange-Formulierung der Elektrodynamik

VIII. Lagrange-Formulierung der Elektrodynamik VIII. Lagrange-Formulierung der Elektrodynamik In diesem Kapitel wird gezeigt, dass die Maxwell Lorentz-Gleihungen der Elektrodynamik sih aus einem Extremalprinzip herleiten lassen. Dabei wird einem System

Mehr

Klausur zu Theoretische Physik 2 Klassische Mechanik

Klausur zu Theoretische Physik 2 Klassische Mechanik Klausur zu Theoretische Physik 2 Klassische Mechanik 1. August 216 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 5 Aufgaben mit insgesamt 25 Punkten. Die Klausur

Mehr

Darstellungstheorie der Poincaré-Gruppe

Darstellungstheorie der Poincaré-Gruppe Darstellungstheorie der Poincaré-Gruppe Enric Günther 1 und Ole Niekerken 2 Studierendenschaft Dept. Physik, Universität Hamburg Jungiusstr. 9-11, 20355 Hamburg Februar 2007 1 eguenthe@physnet.uni-hamburg.de

Mehr

Die Einsteinschen Feldgleichungen

Die Einsteinschen Feldgleichungen Die Einsteinschen Feldgleichungen 1 Forderungen an die Feldgleichungen 2 2 Forderungen an die Feldgleichungen Es ist nicht möglich die Einsteinschen Feldgleichungen strikt aus bekannten Tatsachen abzuleiten.

Mehr

Klausur zu Theoretische Physik 2 Klassische Mechanik

Klausur zu Theoretische Physik 2 Klassische Mechanik Klausur zu Theoretische Physik Klassische Mechanik 30. September 016 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 5 Aufgaben mit insgesamt 5 Punkten. Die Klausur

Mehr

Theoretische Physik I/II

Theoretische Physik I/II Theoretische Physik I/II Prof. Dr. M. Bleicher Institut für Theoretische Physik J. W. Goethe-Universität Frankfurt Aufgabenzettel XI 27. Juni 2011 http://th.physik.uni-frankfurt.de/ baeuchle/tut Lösungen

Mehr

Mic ael Flohr Gamma-itis 16. und 17. Januar 2003

Mic ael Flohr Gamma-itis 16. und 17. Januar 2003 Handout X zur Vorlesung THEORETISCHE PHYSIK III Mic ael Flohr Gamma-itis 16. und 17. Januar 23 KOVARIANZ DER DIRAC-GLEICHUNG In de Vorlesung haben wir die Dirac-Gleichung über das Transformationsverhalten

Mehr

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [ Vorlesung 4 Teilchen im externen Elektromagnetischen Feld Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e v B c ]. 1) Das elektrische

Mehr

Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen:

Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen: Poisson-Klammern Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen: Def: "Poisson-Klammer von F und G": Einfachste Beispiele: im Hamilton-Formalismus sind p,

Mehr

Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen:

Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen: Poisson-Klammern Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen: Def: "Poisson-Klammer von F und G": Einfachste Beispiele: im Hamilton-Formalismus sind p,

Mehr

Matrixelemente von Tensoroperatoren und die Auswahlregeln

Matrixelemente von Tensoroperatoren und die Auswahlregeln Vorlesung 3 Matrixelemente von Tensoroperatoren und die Auswahlregeln In der Quantenmechanik müssen wir ab und zu die Matrixelemente von verschiedenen Operatoren berechnen. Von spezieller Bedeutung sind

Mehr

1d) Die z Komponente L z des Drehimpulses. 1e) f(x)g (x)δ(x z) = f(z)g (z) nach Definition der Delta-Distribution. heißt

1d) Die z Komponente L z des Drehimpulses. 1e) f(x)g (x)δ(x z) = f(z)g (z) nach Definition der Delta-Distribution. heißt Aufgabe 1 (10 Punkte) Fragen 1a) Jede Drehung im dreidimensionalen Raum lässt sich als Hintereinanderausführung dreier Drehungen um die ursprüngliche z-achse, die x-achse im Koordinatensystem nach der

Mehr

Geometrische Algebra

Geometrische Algebra Geometrische Algebra Florian Jung Institut für Physik, WA THEP Universität Mainz Klausurtagung des Graduiertenkollegs Bullay, 13. September 2006 Florian Jung: Geometrische Algebra 1 / 24 Gliederung Grundlagen

Mehr

Allgemeine Mechanik Musterlo sung 10.

Allgemeine Mechanik Musterlo sung 10. Allgemeine Mechanik Musterlo sung 0. U bung. HS 03 Prof. R. Renner Kanonische Transformation Gegeben sei die Hamiltonfunktion des harmonischen Oszillators H(q, p) p + q. m. Berechne die Bewegungsgleichung

Mehr

Modul 1: RELATIVISTISCHE QUANTENMECHANIK

Modul 1: RELATIVISTISCHE QUANTENMECHANIK Modul : RELATIVISTISCHE QUANTENMECHANIK Zusatz zur Vorlesung Atom- und Molekülphysik LVA Nr. 42.73) H. Leeb, Wintersemester 25 Einleitung Die Schrödingergleichung ist nicht geeignet um die Bewegung eines

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Hamiltonsche Mechanik (Kanonische Mechanik)

Hamiltonsche Mechanik (Kanonische Mechanik) Hamiltonsche Mechanik (Kanonische Mechanik) Hamilton-Funktion und Hamiltonsche Bewegungsgleichungen Motivation: Die Hamiltonsche Formulierung der klassischen Mechanik - erweiterert Klasse der zulässigen

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu Klassische Elektrodynamik 1 Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astrono mie Auf de m Hügel 71 kbasu@astro.uni-bonn.de

Mehr

Seminarvortrag Hamiltonsches Chaos. Daniel Lahrmann ( ), 2. Dezember 2015

Seminarvortrag Hamiltonsches Chaos. Daniel Lahrmann ( ),   2. Dezember 2015 Seminarvortrag Hamiltonsches Chaos 404 204, E-Mail: d_lahr01@wwu.de 2. Dezember 2015 1 Inhaltsverzeichnis 1 Hamiltonsche Systeme 3 1.1 Allgemeines.................................................. 3 1.2

Mehr

Vorlesung Theoretische Mechanik

Vorlesung Theoretische Mechanik Julius-Maximilians-Universität Würzburg Vorlesung Theoretische Mechanik Wintersemester 17/18 Prof. Dr. Johanna Erdmenger Vorläufiges Skript 1 (Zweite Vorlesung, aufgeschrieben von Manuel Kunkel, 23. 10.

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

Das Atiyah-Singer-Index-Theorem in SU(2)-Yang-Mills-Theorie

Das Atiyah-Singer-Index-Theorem in SU(2)-Yang-Mills-Theorie Das Atiyah-Singer-Index-Theorem in SU(2)-Yang-Mills-Theorie Marc Wagner mcwagner@theorie3.physik.uni-erlangen.de http://theorie3.physik.uni-erlangen.de/ mcwagner 13. November 2006 Das Atiyah-Singer-Index-Theorem

Mehr

Spezielle Relativitätstheorie und Elektrodynamik Ferienkurs Elektrodynamik

Spezielle Relativitätstheorie und Elektrodynamik Ferienkurs Elektrodynamik Spezielle Relativitätstheorie und Elektrodynamik Ferienkurs Elektrodynamik 22.03.2011 Inhaltsverzeichnis 1 Spezielle Relativitätstheorie 2 1.1 Grundlagen................................... 2 1.2 Minkowski-Raum................................

Mehr

Zusammenfassung: Wigner-Eckart-Theorem

Zusammenfassung: Wigner-Eckart-Theorem Zusammenfassung: Wigner-Eckart-Theorem Clebsch-Gordan- Reihe: Def. vontensor - Algebraische Version, (via infinitesimaler Rotation): Clebsch-Gordan- Reihe für Tensoren: Wigner-Eckart- Theorem: Geometrie

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

KLAUSUR THEORETISCHE MECHANIK

KLAUSUR THEORETISCHE MECHANIK KLAUSUR THEORETISCHE MECHANIK Univ. Potsdam Prof. A. Feldmeier Fr 30. Juli 00 4 bis 7 Uhr JEDE AUFGABE AUF EIN NEUES BLATT MIT NAME UND MATRIKEL Schein: mindest. halbe Punktzahl. Davon mindest. ein Drittel

Mehr

Relativistische Punktmechanik

Relativistische Punktmechanik KAPITEL II Relativistische Punktmechanik Der Formalismus des vorigen Kapitels wird nun angewandt, um die charakteristischen Größen und Funktionen zur Beschreibung der Bewegung eines freien relativistischen

Mehr

Kapitel 7. Bosonfelder: Die Klein-Gordon Gleichung. 7.2 Die Klein-Gordon-Gleichung. 7.1 Einleitung

Kapitel 7. Bosonfelder: Die Klein-Gordon Gleichung. 7.2 Die Klein-Gordon-Gleichung. 7.1 Einleitung 10 Teilchenphysik, HS 007-SS 008, Prof. A. Rubbia ETH Zurich) 7. Die Klein-Gordon-Gleichung Kapitel 7 Bosonfelder: Die Klein-Gordon Gleichung Wir können im Prinzip die Schrödinger-Gleichung einfach erweitern.

Mehr

Schnellkurs ART: Metrik in der SRT und ART, Äquivalenzprinzip

Schnellkurs ART: Metrik in der SRT und ART, Äquivalenzprinzip Schnellkurs ART: Metrik in der SRT und ART, Äquivalenzprinzip Space tells matter how to move, matter tells space how to curve. 1 1 Misner, Thorne, Wheeler Grundlegende Frage Mit welchen mathematischen

Mehr

Heidelberger Taschenbiicher Band 13

Heidelberger Taschenbiicher Band 13 Heidelberger Taschenbiicher Band 13 Quantenmechanik in algebraischer Darstellung H. s. Green Springer-Verlag Berlin Heidelberg New York 1966 Titel der englischen Originalausgabe: Matrix Mechanics. P. Noordhoff

Mehr

Universalität für Wigner Matrizen

Universalität für Wigner Matrizen Universalität für Wigner Matrizen Benjamin Schlein, Universität Zürich HSGYM Tag 29. Januar 2015 1 1. Einführung Zufallmatrizen: sind N N Matrizen dessen Einträge Zufallsvariablen mit gegebenen Verteilung

Mehr

Dirac Gl. relativistischer Fall

Dirac Gl. relativistischer Fall Dirac Gl. relativistischer Fall Freie Dirac Gleichung ohne Feld: ħ = c = iħ Ψ t α = Lösungsansatz: Ψx = = [ α p + mβ]ψ σ, β = σ 2 2 Pauli Matrizen ϕp χp pos. Energie e ipx iet p x neg. Energie Lösungen

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 28. Juli 2014, Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 28. Juli 2014, Uhr KIT SS 4 Klassische Theoretische Physik II V: Prof Dr M Mühlleitner, Ü: Dr M auch Klausur Lösung 8 Juli 4, 7-9 Uhr Aufgabe : Kurzfragen (+++=8 Punkte (a Verallgemeinerte Koordinaten sind Koordinaten, die

Mehr

X.4 Elektromagnetische Wellen im Vakuum

X.4 Elektromagnetische Wellen im Vakuum X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen

Mehr

Lorentz-Transformation als orthogonale Transformation der Raum-Zeit: eigentliche Lorentz-Transformationen (Drehungen) mit det (a µν ) = +1;

Lorentz-Transformation als orthogonale Transformation der Raum-Zeit: eigentliche Lorentz-Transformationen (Drehungen) mit det (a µν ) = +1; Klassische Feldtheorie D Quantenelektrodynamik 1 Klassische Feldtheorie Relativitätsprinzip: Naturgesetze unabhängig von der Wahl des inertialen Bezugssystems. Forderung nach Kovarianz physikalischer Theorien;

Mehr

Hamilton-Systeme. J. Struckmeier

Hamilton-Systeme. J. Struckmeier Invarianten für zeitabhängige Hamilton-Systeme J. Struckmeier Vortrag im Rahmen des Winterseminars des Instituts für Angewandte Physik der Johann-Wolfgang-Goethe-Universität Frankfurt a.m. Hirschegg, 04.

Mehr

Relativistische Quantenfeldtheorie

Relativistische Quantenfeldtheorie Relativistische Quantenfeldtheorie von Prof. Dr. James D. Bjorken und Prof. Dr. Sidney D. Drell Standford Linear A ccelerator Center Standford University Bibliographisches Institut Mannheim/Wien/Zürich

Mehr

Nichtlinearität in der klassischen Physik

Nichtlinearität in der klassischen Physik Nichtlinearität in der klassischen Physik Dr. Peter Schlagheck Vorlesung an der Uni Regensburg im Wintersemester 25/26 Inhaltsverzeichnis Klassische Mechanik 2. Lagrange-Formalismus........................................

Mehr

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes X.3 Energie und Impuls des elektromagnetischen Feldes 169 X.3 Energie und Impuls des elektromagnetischen Feldes Genau wie mechanische Systeme trägt das elektromagnetische Feld Energie ( X.3.1 und Impuls

Mehr

Relativistische Quantenmechanik und die Klein-Gordon Gleichung

Relativistische Quantenmechanik und die Klein-Gordon Gleichung Relativistische Quantenmechanik und die Klein-Gordon Gleichung Oliver Smith o smit01 wwu.de) 17. Februar 2015 Wir wollen die Klein-Gordon Gleichung untersuchen und Formalismen einführen, um Parallelen

Mehr

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Fakultät für Physik Michael Schrapp Technische Universität München Vorlesung Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Inhaltsverzeichnis 1 Motivation 2 2 Generalisierte Koordinaten und

Mehr

a) In der Regel wird ein Gebiet im Phasenraum im Laufe der Zeit stark deformiert.

a) In der Regel wird ein Gebiet im Phasenraum im Laufe der Zeit stark deformiert. Ergänzende Bemerkungen zum Liouville-Theorem: a) In der Regel wird ein Gebiet im Phasenraum im Laufe der Zeit stark deformiert. Beispiel: Ebenes mathematisches Pendel b) Geladenes Teilchen in äußerem Magnetfeld

Mehr

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern TP2: Elektrodynamik WS 2017-2018 Arbeitsblatt 10 21/22.12. 2017 Dipole und Multipole in stationären Feldern Die Multipolentwicklung ist eine hilfreiche Näherung zur Lösung der Poisson Gleichung, wenn eine

Mehr

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie Ferienkurs Elektrodynamik WS11/1 - Elektrodynamik und spezielle Relativitätstheorie Isabell Groß, Martin Ibrügger, Markus Krottenmüller. März 01 TU München Inhaltsverzeichnis 1 Minkowski-Raum und Lorentz-Transformation

Mehr

Theoretische Elektrotechnik

Theoretische Elektrotechnik Theoretische Elektrotechnik Band 1: Variationstechnik und Maxwellsche Gleichungen von Dr. Roland Süße und Prof. Dr. Bernd Marx Technische Universität Ilmenau Wissenschaftsverlag Mannheim Leipzig Wien Zürich

Mehr

Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau

Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau Mathematische Grundlagen Mit den folgenden mathematischen Grundlagen sollten

Mehr

Pfadintegraldarstellung des freien Dirac-Feldes Seminar zur Theorie der Teilchen und Felder

Pfadintegraldarstellung des freien Dirac-Feldes Seminar zur Theorie der Teilchen und Felder Pfadintegraldarstellung des freien Dirac-Feldes Seminar zur Theorie der Teilchen und Felder Kevin Mitas 20. Januar 2016 1 1 Einleitung Aus den vorherigen Vorträgen ist die Pfadintegraldarstellung bekannt.

Mehr

Teilchen im elektromagnetischen Feld

Teilchen im elektromagnetischen Feld Kapitel 5 Teilchen im elektromagnetischen Feld Ausgearbeitet von Klaus Henrich, Mathias Dubke und Thomas Herwig Der erste Schritt zur Lösung eines quantenmechanischen Problems ist gewöhnlich das Aufstellen

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

Übersicht über das Quarkmodell. Lunchclub-Seminarvortrag am Pascal Gunkel

Übersicht über das Quarkmodell. Lunchclub-Seminarvortrag am Pascal Gunkel Übersicht über das Quarkmodell Lunchclub-Seminarvortrag am 04.02.15 Pascal Gunkel Gliederung Einleitung Globale Transformationen in der QCD SU(3)-Flavor-Symmetrie Poincaré Invarianz SU(3)-Color-Symmetrie

Mehr

Warum haben Teilchen eine Masse 0?

Warum haben Teilchen eine Masse 0? Warum haben Teilchen eine Masse 0? In der heutigen Doppelstunde werde ich versuchen, den Higgs-Mechanismus zu erklären, der nach heutiger Meinung dafür verantwortlich ist, dass Teilchen überhaupt eine

Mehr