2.3 Schätzeigenschaften der OLS-Methode

Größe: px
Ab Seite anzeigen:

Download "2.3 Schätzeigenschaften der OLS-Methode"

Transkript

1 .3 Schäzeigechafe der OLS-Mehode Jede Schäzmehode wei beimme Güeeigechafe auf, die vo der Erfüllug beimmer Vorauezuge abhäge. Wa die gewöhliche Mehode der kleie Quadrae (OLS-Mehode) beriff, id beimme Schäzeigechafe beka, ofer die Sadardaahme de muliple egreiomodell erfüll id. I die Sörvariable im Miel gleich 0 ud i ihre Variaz koa, o i der OLS-Schäzer der egreiokoeffiziee ach dem Gau-Markov-Theorem bei fehleder Auokorrelaio die bee lieare uverzerre Schäzfukio (be liear ubiaed (blu) eimaor). Uverzerr bedeue dabei erwarugreu. Im Miel imme die OLS-gechäze egreiokoeffiziee mi de ubekae egreiokoeffiziee der Grudgeamhei überei. Beer Schäzer bezieh ich auf die Geauigkei der Schäzug ud bedeue Effiziez. Uer de Sadardaahme i der OLS- Schäzer im lieare egreiomodell alo erwarugreu ud effizie. E gib da keie adere lieare ud erwarugreue Schäzer der egreiokoeffiziee, der zu eier gerigere Variaz führ. Darüber hiau i die OLS-Mehode koie. Koiez heiß, da ich die gechäze egreiokoeffiziee mi wachedem Sichprobeumfag imbeer de ubekae egreiokoeffiziee der Grudgeamhei aäher.

2 Erwarugreue Ei Schäzer i erwarugreu, we ei Erwarugwer mi dem Parameer der Grudgeamhei übereiimm. Um die Erwarugreue de OLS-Schäzer βˆ zu zeige, eze wir zuäch da egreiomodell (.5) i (.15) ei: ˆ 1 1 β ( XX ' ) Xy ' ( XX ' ) Nach Aumulipliziere erhäl ma o da (.33) folg. ˆ 1 1 β ( XX ' ) ˆ 1 β β ( XX ' ) XXβ ' ( XX ' ) Xu ' Nu ka der Erwarugwer vo E(ˆ) β E X'( Xβ + u) Xu ' βˆ beimm werde: 1 1 β ( XX ' ) Xu ' ) E( β) E ( XX ' ) Xu ' β E ( X' X) 1 X' u

3 Mi E(u) = 0 erhäl ma chließlich (.34) E(ˆ) β β gezeig. Au der au- Dami i die Erwarugreue de OLS-Schäzer führliche Schreibweie vo (.34) βˆ E(ˆ E(ˆ E(ˆ 1 k ) ) ) 1 k, i erichlich, da die Erwarugwere der OLS-Schäzer ˆ 1, ˆ,..., ˆ k mi de ubekae egreiokoeffiziee de ökoomeriche Modell übereiimme.

4 Effiziez Ei erwarugreuer Schäzer, der im Vergleich zu alle aleraive uverzerre Schäzer die kleie Variaz ha, heiß effizie. Ma bezeiche eie olche Schäzfukio al bee uverzerre Schäzer. Der OLS- Schäzer βˆ i i der Klae der lieare Schäzfukioe effizie. E ei βˆ ~ j der OLS-Schäzer für de ubekae egreiokoeffiziee βj ud β j ei beliebiger aderer liearer Schäzer. Effiziez bedeue da, da Die Variaz de OLS-Schäzer βˆ j am gerige i: ~ (.35) Var( βˆ j ) Var( β j ), j=1,,,k. Koiez We ei Schäzer mi zuehmedem Sichprobeumfag eie Parameervekor immer geauer reffe oll, da i ibeodere ei Grezverhale für -> vo Ieree, alo eie Eigechaf bei große Sichprobe. Bei der Koiez geh e um die Frage, ob ei Schäzer bei eiem über alle Greze wachede Sichprobeumfag chließlich mi dem Parameervekor β zuammefäll: lim E(ˆ) β β ud lim Cov(ˆ) β 0

5 .4 Beimmheimaß ud mulipler Korrelaiokoeffizie Beimmheimaß (Deermiaiokoeffizie) - Beureilug der globale Güe der Apaug de egreiomodell - Quaifizierug de Erkläruggehal der exogee Variable i eiem ökoomeriche Modell Varíaz der abhägige Variable Y: (.36) y (y y) y y y' y y Variazzerlegug: (.37) y ŷ û mi (.38) ŷ (ŷ y) ŷ y yˆ'ˆ y y wege ŷ y (.39) û 1 1 û uˆ' uˆ wege û 0

6 Beimmheimaß (Deermiaiokoeffizie): ŷ (.40a) oder (.40b) 1 y û y Werebereich: 0 1 echeformel: (.41a) yˆ'ˆ y y' y y y ˆ' y yˆ - y' y y y oder (.41b) βˆ' X' y y y' y y ˆ' β X' y y' y y y

7 Beipiel: Geuch i der Aeil der Variaz de Privae Verbrauch, der auf die Sreuug de verfügbare Eikomme zurückgeführ werde ka. Um hierüber eie Auage mache zu köe, wird da Beimmheimaß für die makroökoomiche Koumfukio für de Süzbereich vo 1994 bi 01 uer Verwedug der Berechugformel (.41b) ermiel. Uer Verwedug vo ˆβ ' 38, 5 0, 93354, y 4034,68 X'y xy ,83 bereche wir Mi =19 ud y 164, 98 y'y ˆˆβ'X'y ˆ _ y'y y ergib ich dami ei Beimmheimaß vo , , ,

8 Eifacher ud mulipler Korrelaiokoeffizie - Eifache egreio: (.4) r yx Aufgrud der Liearraformaio ŷ βˆ 1 βˆ x gil ŷ ˆ x womi (.4) eifach gezeig werde ka: ŷ y ˆ x y x xy y x xy x y r xy Die Wurzel de Beimmheimaße gib bei der eifache egreio daher de abolue Wer de Korrelaiokoeffiziee zwiche dem egreade y ud dem egreor x wieder: (.43) r yx

9 - Muliple egreio: Da Beimmheimaß i da da Quadra de muliple Korrelaiokoeffiziee r yŷ, der die Korrelaio zwiche der abhägige Variable y ud alle uabhägige Variable x 1,x,...,x k (=Korrelaio zwiche der abhägige Variable y ud de egreiowere ŷ) wiedergib: (.44) r yŷ r yx 1,,...k Da Vorzeiche de muliple Korrelaiokoeffiziee r yx 1,,...k bleib ubeimm, da poiive ud egaive Eiflüe der egreore gleichzeiig aufree köe: (.45) ryŷ ryx 1,,...k

10 Korrigiere Beimmheimaß Obwohl da Beimmheimaß gu ierpreierbar i, eige ich ur eigechräk für eie Vergleich vo egreiomodelle mi eier uerchiedliche Azahl vo uabhägige Variable. We zuäzliche egreore i ei egreiomodell aufgeomme werde, erhöh ich ² auch we diee keie ökoomiche elevaz beize. Ma ka die vermeide, idem ma die Zahl der Freiheigrade bei der Berechug der Deermiaio berückichig. Da korrigiere Beimmheimaß 1 uˆ' uˆ (.46) 1 k 1 y' y y 1 ka im Gegeaz zu ² im Falle eier Eibeziehug irrelevaer egreore ike. Eie Berechug de korrigiere Beimmheimaße ka über ² erfolge: (.47) k

Grundlagen der Biostatistik und Informatik

Grundlagen der Biostatistik und Informatik Aalyiche Saiik Grudlage der Bioaiik ud Iformaik Saiiche Schäzuge, Kofidez, Sigifikaz Populaio N uedlich Sichprobe edlich dr. Lázló Smeller 1 Theoreiche Vereilug Erwarugwer Theoreiche Sreuug Häufigkeivereilug

Mehr

Aufgaben zur Ökonometrie I

Aufgaben zur Ökonometrie I Aufgabe zur Ökoomerie I 3. Sigifikazess ud Kofideziervalle 3. Wie groß is der Sadardfehler der Regressio vo GASV auf VEINKR ( Eergiemodell Ib, s. Ergebisse i Aufgabe.8) (mi Ierpreaio)? Der Sadardfehler

Mehr

Hypothesenprüfungen II.

Hypothesenprüfungen II. Grudlage der Bioaiik ud Iformaik Hypoheeprüfuge II. Zwei Sichprobe -Te, F-Te, Bediguge der Awedug der -Tee Variazaalye Lázló Smeller Widerholug: Grudprizip der Hypoheeprüfuge Zu echeidede Frage Idireker

Mehr

2. Das multiple Regressionsmodell

2. Das multiple Regressionsmodell . Das mliple Regressiosmodell. Modellspezifikaio Bei ökoomerische Eigleichgsmodelle is eie edogee Variable vo eier oder mehrere eogee Variable abhägig. Allgemei lasse sich ökoomerische Eigleichgsmodelle

Mehr

Simulationsbasierte stochastisch dynamische Programmierung

Simulationsbasierte stochastisch dynamische Programmierung Simulaiobaiere ochaich dyamiche Programmierug OLIVER MUßHOFF, BERLIN NORBERT HIRSCHAUER, BERLIN Abrac Deciio ree, repreeig he backward recurive dyamic programmig approach, are ofe o flexible eough o aalyze

Mehr

Was benötigen wir dafür?

Was benötigen wir dafür? Wahrcheilicheirechug Die Laufzei vo radomiiere zufallgeeuere lgorihme häg vo gewie zufällige reigie ab eiiel Quicor. Um die Laufzeie dieer lgorihme ueruche zu öe, udiere wir im Folgede zufällige reigie

Mehr

Vorbereitung und Protokoll zum Praktikum Elektronische Messtechnik

Vorbereitung und Protokoll zum Praktikum Elektronische Messtechnik Techiche Uiveriä Chemiz Fakulä für Elekroechik u Iformaioechik Profeur für Me- u Seorechik Vorbereiug u Prookoll zum Prakikum Elekroiche Meechik Veruch: Berührugloe Diazmeug miel Ulrachall Veruchag: 13.1.

Mehr

Inhaltsverzeichnis der Formelsammlung "Ökonometrie I"

Inhaltsverzeichnis der Formelsammlung Ökonometrie I Ihalsverzeichis der Formelsammlug "Öoomerie I" Ihalsverzeichis der Formelsammlug "Öoomerie I". Öoomerische Eigleichugsmodelle mi quaiaive Variable... 4. Öoomerie ud öoomerisches Modell... 4.. Regressiosgleichug

Mehr

s xy x i x y i y s xy = 1 n i=1 y 2 i=1 x 2 s 1 n x n i Streudiagramme empirische Kovarianz x=5,5 y=7,5

s xy x i x y i y s xy = 1 n i=1 y 2 i=1 x 2 s 1 n x n i Streudiagramme empirische Kovarianz x=5,5 y=7,5 Streudiagramme für metrisch skalierte Variable paarweise Messwerte (x,y) x 5 7 y 7 5 7 5 5 7 Aussage zu Zusammehäge. empirische Kovariaz Stadardabweichug der WertPAARE x i x y Wert x Mittelwert aller x

Mehr

Vergleich der Schätzungen und Hypothesenprüfungen. μ=? Typische Aufgaben der Hypothesenprüfung. Typische Fragen - gebrauchte Merkmale

Vergleich der Schätzungen und Hypothesenprüfungen. μ=? Typische Aufgaben der Hypothesenprüfung. Typische Fragen - gebrauchte Merkmale Hypoheseprüfuge Dr László Smeller Vergleich der Schäzuge ud Hypoheseprüfuge Schäzuge: Frage: Wie groß (is eie physikalische Größe) Bluzuckerkozeraio... Awor: Pukschäzug: z.b.: Körperhöhe, Bludruck, μ?

Mehr

Schätzungen und Hypothesenprüfungen Schätzungen Hypothesenprüfungen Typische Entscheidungsfragen in der Medizin Die Alternativhypothese

Schätzungen und Hypothesenprüfungen Schätzungen Hypothesenprüfungen Typische Entscheidungsfragen in der Medizin Die Alternativhypothese Hypoheeprüfuge. Zweiichprobe -Te, F-Te, Variazaalye Schäzuge ud Hypoheeprüfuge Schäzuge Wie gro i eie Gröe? Pukchäzuge ei Wer i gegebe ud ich über die Sicherhei Parameer der Sichprobe Parameer der Populaio

Mehr

(5.18) Cov(u) = E(uu ) = σ² Ω.

(5.18) Cov(u) = E(uu ) = σ² Ω. 6.4 Verallgemeiere Kleis-Quadrae-Schäzug 6.4. Auokorrelaio ud GLS-Schäzug Ei verallgemeierer Kleis-Quadrae-Schäzer (GLS-Schäzer) für de Vekor der Regressioskoeffiziee, β, ließe sich uer Spezifikaio der

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i 8. Lieare Regressio 8.1. Die Methode der kleiste Quadrate Regressiosgerade bzw. Ausgleichsgerade sid eie Auswertug vo statistische Messdate. Ziel dieses Verfahres ist es, Beziehuge zwische zwei Merkmale

Mehr

Formelsammlung zur Ökonometrie I (Ökonometrische Eingleichungsmodelle)

Formelsammlung zur Ökonometrie I (Ökonometrische Eingleichungsmodelle) Prof. Dr. Reihold Kosfeld Isiu für Volswirschafslehre Uiversiä Kassel Formelsammlug zur Öoomerie I (Öoomerische Eigleichugsmodelle). Das muliple Regressiosmodell. Sigifiazess ud Kofideziervalle 3. Muliollieariä

Mehr

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß Ivesiiosud Fiazierugsplaug miels Kapialwermehode, Ierer Zisfuß Bearbeie vo Fraka Frid, Chrisi Klegel WI. Aufgabe: Eie geplae Ivesiio mi Aschaffugsausgabe vo.,- läss jeweils zum Jahresede die folgede Eiahme

Mehr

2. Ökonometrische Eingleichungsmodelle

2. Ökonometrische Eingleichungsmodelle . Ökoomerische Eigleichgsmodelle. Das mliple Regressiosmodell.. Modellspezifikaio I der ökoomische Theorie werde Verhalesgleichge ewickel, i dee eie ökoomische Variable wie z.b. der Kosm oder die Ivesiioe

Mehr

17. Kapitel: Die Investitionsplanung

17. Kapitel: Die Investitionsplanung ABWL 17. Kapiel: Die Ivesiiosplaug 1 17. Kapiel: Die Ivesiiosplaug Leifrage des Kapiels: Welche Type vo Ivesiiosobjeke gib es? Wie läss sich die Voreilhafigkei eies Ivesiiosobjeks fesselle? Wie ka aus

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug Übug 9 1 Ihalt der heutige Übug Statistik ud Wahrscheilichkeitsrechug Iformatioe zur Testatprüfug Besprechug der der Hausübug

Mehr

Kapitel 17 : Lineare Regression Darstellung von zweidimensionalen Daten : (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n )

Kapitel 17 : Lineare Regression Darstellung von zweidimensionalen Daten : (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ) (Kapitel 7: Lieare Regreio) Kapitel 7 : Lieare Regreio 7. Dartellug vo zweidimeioale Date : (, ), (, ),..., (, ). 7.. Beipiel : (a) Körpergewicht eie erwachee mäliche Pfälzer. Körpergröße (b) Azahl der

Mehr

Die zweite Implikation der Annahme einer skalaren Kovarianzmatrix, (2.7) 2 nxn

Die zweite Implikation der Annahme einer skalaren Kovarianzmatrix, (2.7) 2 nxn 6. Auokorrelaio 6. Form ud Auswirkug Die zweie Implikaio der Aahme eier skalare Kovariazmarix, (.7) Cov( u) E( uu') I x is, dass sich Sörerme uerschiedlicher Beobachuge ich beeiflusse, also ukorrelier

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7 5. Semester ARBEITSBLATT 7 PARAMETERDARSTELLUNG EINER EBENE

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7 5. Semester ARBEITSBLATT 7 PARAMETERDARSTELLUNG EINER EBENE Mahemaik: Mag. Schmid Wolfgang Arbeibla 7. Semeer ARBEITSBLATT 7 PARAMETERDARSTELLUNG EINER EBENE Im Raum möche man naürlich nich nur Geraden ondern auch Flächen darellen. Diee Flächen bezeichne man al

Mehr

richtige Entscheidung mit Wahrscheinlichkeit 1 α Fehlentscheidung 1. Art mit Wahrscheinlichkeit α

richtige Entscheidung mit Wahrscheinlichkeit 1 α Fehlentscheidung 1. Art mit Wahrscheinlichkeit α II Lösug zu Aufgabe 7: -Tes für Erwarugswer Saisische Tess diee dazu Hypohese abzusicher oder begrüde zu verwerfe. Hypohese esehe aus eperimeelle Beobachuge oder formale Überleguge, die eier Prüfug uerzoge

Mehr

Das Skalarprodukt ist ein Produkt zweier Vektoren, das als Ergebnis ein Skalar (eine reelle Zahl) liefert. Es ist folgendermaßen definiert: r o

Das Skalarprodukt ist ein Produkt zweier Vektoren, das als Ergebnis ein Skalar (eine reelle Zahl) liefert. Es ist folgendermaßen definiert: r o Rechemehode de Aalyiche Geomeie B & S Skipedie, 6. bee. Nowedige Gudlage.. a Skalapoduk a Skalapoduk i ei Poduk zweie Vekoe, da al gebi ei Skala eie eelle Zahl liefe. i folgedemaße defiie b a b a b a b

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n.

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n. Reeller Vektorraum Kapitel Vektorräume Die Mege aller Vektore x mit Kompoete bezeiche wir mit x R =. : x i R, i x ud wird als -dimesioaler (reeller) Vektorraum bezeichet. Defiitio Ei Vektorraum V ist eie

Mehr

Arithmetische Reihen Geometrische Reihen. Theorie und Musterbeispiele. Es wird auch das Arbeiten mit dem Summenzeichen geübt! Datei Nr.

Arithmetische Reihen Geometrische Reihen. Theorie und Musterbeispiele. Es wird auch das Arbeiten mit dem Summenzeichen geübt! Datei Nr. Zahlefolge Teil 3: Reihe Arithmetiche Reihe Geometriche Reihe Theorie ud Muterbeipiele E wird auch da Arbeite mit dem Summezeiche geübt! Datei Nr. 40050 Stad 7. September 06 Friedrich W. Buckel INTERNETBIBLIOTHEK

Mehr

Mathematische Probleme, SS 2015 Montag 1.6. $Id: convex.tex,v /06/01 09:26:03 hk Exp $

Mathematische Probleme, SS 2015 Montag 1.6. $Id: convex.tex,v /06/01 09:26:03 hk Exp $ athematische Probleme, 2015 otag 1.6 $Id: cove.te,v 1.19 2015/06/01 09:26:03 hk Ep $ 3 Kovegeometrie 3.2 Die platoische Körper I der letzte itzug habe wir mit de Vorarbeite zur Berechug der platoische

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR MATHEMATISCHE STOCHASTIK WS 005/06 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheilichkeitstheorie ud Statistik vom 9..006 Musterlösuge Aufgabe A: Gegebe sei eie Urliste

Mehr

(a) Richtig, die Varianz ist eine Summe quadratischer Größen.

(a) Richtig, die Varianz ist eine Summe quadratischer Größen. Aufgabe 1 (10 Pukte) Welche der folgede Aussage sid richtig? (a) Richtig, die Variaz ist eie Summe quadratischer Größe. (b) Falsch, die Abweichug ordialer Merkmale vom Media ist icht defiiert - also auch

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

26 Eigenschaften der Eigenwerte, Eigenvektoren und Eigenräume

26 Eigenschaften der Eigenwerte, Eigenvektoren und Eigenräume Lieare Algebra II SS 211 - Prof Dr Mafred Leiz Kapiel VIII: Das Eigewerproblem 26: Eigeschafe der Eigewere, K 26 Eigeschafe der Eigewere, Eigeveore ud Eigeräume A Eigeschafe der Eigewere B Eigeschafe der

Mehr

Intervallschätzung. Bibliografie:

Intervallschätzung. Bibliografie: Ierallschäzug Ierallschäzug (allgemei Kofidezierall des arihmeische Miels Kofidezierall für die ifferez zweier arihmeischer Miel Lehrsuhl aisik chäzug II Bibliografie: Prof r Kück Uiersiä Rosock aisik,

Mehr

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und Bevor wir zum ächste Kapitel übergehe, werde wir de Begri eier Fuktio i mehrere Variable eiführe. Eie Fuktio vo Variable ist eie Vorschrift, die jedem Pukt (x 1,x,...,x ) eier Teilmege D des IR eie bestimmte

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Saisik im Bachelor-Sudium der BWL ud VWL Mehode, Awedug, Ierpreaio Mi herausehmbarer Formelsammlug ei Impri vo Pearso Educaio Müche Boso Sa Fracisco Harlow, Eglad Do Mills, Oario Sydey Mexico

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

So lösen Sie die Gleichung für den Korrelationskoeffizienten

So lösen Sie die Gleichung für den Korrelationskoeffizienten 8. Lieare Regressio 8.1. Die Methode der kleiste Quadrate Regressiosgerade bzw. Ausgleichsgerade sid eie Auswertug vo statistische Messdate. Dabei sid Datepukte ( x 1, y 1 ),( x 2, y 2 ), ( x, y ) gegebe.

Mehr

Grundgesamtheit handelt, stellt sich die Frage nach der Unsicherheit dieser Schatzung.

Grundgesamtheit handelt, stellt sich die Frage nach der Unsicherheit dieser Schatzung. R Lösug zu Aufgabe 4: Kofideziervall a) Abschäzug vo Erwarugswer ud adardabweichug: Wie bereis i Übugsaufgabe eigeführ, selle der Mielwer ud die reuug eier ichprobe die bese chäzwere für de Erwarugswer

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungen zum Wiederholungsblatt

Einführung in die Wahrscheinlichkeitstheorie Lösungen zum Wiederholungsblatt TUM, Zetrum Mathematik Lehrstuhl für Mathematische Physik WS 23/4 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weider Eiführug i die Wahrscheilichkeitstheorie Lösuge zum Wiederholugsblatt Aufgabe

Mehr

Analytische Statistik. Statistische Schätzungen ( Fortsetzung) Population N = unendlich. Stichprobe n = endlich

Analytische Statistik. Statistische Schätzungen ( Fortsetzung) Population N = unendlich. Stichprobe n = endlich Aalyche Sak Zur Ererug Sache Schäzuge ( Forezug) Populao N = uedlch Theoreche Verelug Erwarugwer Theoreche Sreuug Schprobe = edlch Häufgkeverelug Durchch Sadardabwechug Aufgabe der Schäzheore Zur Ererug

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit

Mehr

6 Vergleich mehrerer unverbundener Stichproben

6 Vergleich mehrerer unverbundener Stichproben 6 Vergleich mehrerer uverbudeer Stichprobe 6.1 Die eifaktorielle Variazaalyse Die eifaktorielle Variazaalyse diet der Utersuchug des Eiflusses eier kategorieller (bzw. ichtmetrischer) Variable, die die

Mehr

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes.

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes. Prof. Dr. H. Breer Osabrück S 2010/2011 Mathematik III Vorlesug 81 Eigeschafte des Dachprodukts Die folgede Aussage beschreibt die uiverselle Eigeschaft des Dachproduktes. Satz 81.1. Es sei K ei Körper,

Mehr

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden Folge ud Reihe Folge Eie Folge ist eie Abbildug der atürliche Zahle N = {0, 1,,...} i die Mege der (zumidest i de meiste Fälle) reelle Zahle R. I diesem Fall ka ma sich eie Folge als Pukte i eiem Koordiatesystem

Mehr

Prognoseverfahren. 3.4 Aufgaben... 121 ÜBERBLICK

Prognoseverfahren. 3.4 Aufgaben... 121 ÜBERBLICK Progoseverfahre. Eiführug....................................... 8.. Wisseschafliche Progose.................... 8.. Daebasis ud saisische Progosemodelle......... Beispiel: Umsazprogose........................

Mehr

Analyse von Zeitreihen

Analyse von Zeitreihen Aalse vo Zeireihe Besiug er Saisokooee bei sseaisch saisoale Verläufe Eizelveräerug vo Zeiabschi zu Zeiabschi Durchschiliche Veräerug über ie Zeiabschie eier Zeireihe Bibliografie Prof. Dr. Kück; Saisik,

Mehr

Abschlussklausur vom 26. Juli 2012 Teil 1: Multiple Choice (10 Punkte)

Abschlussklausur vom 26. Juli 2012 Teil 1: Multiple Choice (10 Punkte) Prof. Dr. Oliver Ladma Jahrekur Makroökoomik, Teil 2 1 bchluklauur vom 26. Juli 2012 Teil 1: Multiple Choice (10 Pukte 1. Welche der folgede Bediguge defiiert de maximale teady-tate- oum: r g B r g g C

Mehr

Statistik I Februar 2005

Statistik I Februar 2005 Statistik I Februar 2005 Aufgabe 0 Pukte Ei Merkmal X mit de mögliche Auspräguge 0 ud, das im Folgede wie ei kardialskaliertes Merkmal behadelt werde ka, wird a Merkmalsträger beobachtet. Dabei bezeichet

Mehr

2 Konvergenz von Folgen

2 Konvergenz von Folgen Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge

Mehr

10. Grundlagen der linearen Regressionsanalyse 10.1 Formulierung linearer Regressionsmodelle

10. Grundlagen der linearen Regressionsanalyse 10.1 Formulierung linearer Regressionsmodelle 10. Grudlage der lieare Regressiosaalyse 10.1 Formulierug liearer Regressiosmodelle Eifaches lieares Regressiosmodell: Das eifache lieare Regressiosmodell ist die simpelste Form eies ökoometrische Modells

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meihardt 6. Stoc, Wallstr. 3 (Raum 06-206) Sprechstude jederzeit ach Vereibarug ud ach der Vorlesug. Mathematische ud statistische Methode I Dr. Malte Persie persie@ui-maiz.de http://psymet03.sowi.ui-maiz.de/

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug 9. Vorlesug Joche Köhler 1 Statistik ud Wahrscheilichkeitsrechug Testatprüfug am Doerstag 5.Mai Wa? Doerstag, 5. Mai, 8:00 Uhr

Mehr

ue biostatistik: hypothesen, t test 1/8 h. lettner / physik

ue biostatistik: hypothesen, t test 1/8 h. lettner / physik ue biotatitik: hypothee t tet /8 h. letter / phyik Hypothee Augagituatio ud Problemtellug * Populatio σ * Lagjähriger Durchchitt Erte * Wahrcheilichkeit für Ereigie Müze Roulette * Radioaktivität Hitergrudtrahlug

Mehr

e sx y(x)dx 2. Direkt gemäss der Definition unter Verwendung der in der Vorlesung angeführten Eigenschaften

e sx y(x)dx 2. Direkt gemäss der Definition unter Verwendung der in der Vorlesung angeführten Eigenschaften Kapiel LAPLACE Tranformaion Die Laplace Tranformaion erwei ich al nüzlich zur Löung von linearen Dgln und Dgl- Syemen mi konanen Koeffizienen Dabei werden die Anfangbedingungen gleich miberückichig Definiion

Mehr

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa 20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Gazratioale Fuktioe 9. Defiitio gazratioaler Fuktioe Im Folgede werde ebe lieare ud quadratische Fuktioe auch solche betrachtet, bei dee die Variable i der dritte, vierte oder auch i eier och höhere Potez

Mehr

Hauptprüfung 2010 Aufgabe 4

Hauptprüfung 2010 Aufgabe 4 Haupprüfung Aufgabe Gegeben ind die Punke A(5//), B(//), C(//) und S(//5).. Zeigen Sie, da da Dreieck ABC rechwinklig und gleichchenklig i. Berechnen Sie die Koordinaen de Punke D o, da da Viereck ABCD

Mehr

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters:

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters: . Schätzverfahre. Puktschätzug wirtschaftlicher Kezahle Allgemei: Puktschätzug eies Parameters: Ermittlug eies Schätzwertes für eie ubekate Parameter eier Zufallsvariable i der Grudgesamtheit mit Hilfe

Mehr

3 Vergleich zweier unverbundener Stichproben

3 Vergleich zweier unverbundener Stichproben 3 Vergleich zweier uverbudeer Stichprobe 3. Der Zweistichprobe t-test Es wird vorausgesetzt, dass die beide Teilstichprobe x, x,..., x ud y, y,..., y jeweils aus (voeiader uabhägige) ormalverteilte Grudgesamtheite

Mehr

,,, xn. 3. Intervallschätzungen Zufallsstichproben und Stichprobenfunktionen Zufallsstichproben. Zufallsvariablen mit

,,, xn. 3. Intervallschätzungen Zufallsstichproben und Stichprobenfunktionen Zufallsstichproben. Zufallsvariablen mit 3. Itervallschätzuge 3.1. Zufallsstichprobe ud Stichprobefuktioe 3.1.1 Zufallsstichprobe 1 Sei eie Zufallsvariable ud seie gemeisamer Verteilug,,,, Zufallsvariable mit - da heiße 1,,, Zufallsstichprobe

Mehr

Übungen mit dem Applet erwartungstreu

Übungen mit dem Applet erwartungstreu Übuge mit dem Applet erwartugstreu Visualisierug vo erwartugstreu Begriffe ud statischer Hitergrud. Visualisieruge mit dem Applet..3. Zufallsstreuug der Eizelwerte...3. Mittelwerte 3.3 Variaz. 4.4 Variaz

Mehr

10 Aussagen mit Quantoren und

10 Aussagen mit Quantoren und 0 Aussage mit Quatore ud 0.6. Eisatz vo (bereits bekater) Eistezaussage Bisher hatte wir Eistezbeweise geführt, idem wir ei passedes Objekt agegebe habe ( Setze... ). Stattdesse ka ma auch auf bereits

Mehr

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe

Mehr

Lies dir die Blätter genau durch! Kontrolliere, was du noch alles weißt! Löse die Aufgaben!

Lies dir die Blätter genau durch! Kontrolliere, was du noch alles weißt! Löse die Aufgaben! 1 Wedrock (2007) Zammefa ie dir die Blätter ea drch! Kotrolliere, wa d och alle weißt! e die Afabe! Fktioe Bei eier mathematiche Fktio wird jedem x ea ei y zeordet. Dartellbar id Fktioe al: Wertetabelle,

Mehr

Mathematik: Mag. Schmid Wolfgang+LehrerInnenteam ARBEITSBLATT 6-13 ERMITTELN DER KREISGLEICHUNG

Mathematik: Mag. Schmid Wolfgang+LehrerInnenteam ARBEITSBLATT 6-13 ERMITTELN DER KREISGLEICHUNG ahemaik: ag. Schmid WolfgangLehrerInneneam ARBEITSBLATT - ERITTELN DER KREISGLEICUNG Wir wollen un nun bemühen, die Gleichung pezieller Kreie zu ermieln. Beipiel: Ermile die Gleichung jene Kreie mi dem

Mehr

Musterlösung Serie 10

Musterlösung Serie 10 Prof. D. Salamo Aalysis I MATH, PHYS, CHAB HS 04 Muserlösug Serie 0. a Wir bereche mi der biomische Formel e cos ix + e ix x = = =0 =0 e ix e i x = =0 e i x Da = gil, öe wir i der leze Summe die Terme

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

9. Übungsblatt Aufgaben mit Lösungen

9. Übungsblatt Aufgaben mit Lösungen 9. Übugsblatt Aufgabe mit Lösuge Aufgabe 1: Gegebe sei die folgede Differetialgleichug 15u(x) + 3xu (x) + x u (x) = 8x 3, x > 0. (a) Gebe Sie ei reelles Fudametalsystem der zugehörige homogee Differetialgleichug

Mehr

1 Elementare Zahlentheorie. 0. Grundbegriffe

1 Elementare Zahlentheorie. 0. Grundbegriffe Elemeare Zahleheorie 0 Grudbegriffe Mi Z bezeiche wir de Rig der gaze Zahle Is x eie reelle Zahl, so sei x die größe gaze Zahl, die kleier oder gleich x is Beache: x is diejeige gaze Zahl z mi z x < z

Mehr

Aufgaben zur Ökonometrie I

Aufgaben zur Ökonometrie I Aufgabe zur Ökoomerie I 5. Heeroskedasiziä 5. Was verseh ma uer Heeroskedasiziä ud wodurch ka dieser Modelldefek verursach werde? Die Aahme A. lauee, dass die Sörgröße i jeder Periode die gleiche Variaz

Mehr

10. Testen von Hypothesen Seite 1 von 6

10. Testen von Hypothesen Seite 1 von 6 10. Teste vo Hypothese Seite 1 vo 6 10.1 Eiführug i das Teste vo Hypothese Eie Hypothese ist eie Vermutug bzw. Behauptug über die Wahrscheilichkeit eies Ereigisses. Mit Hilfe eies geeigete Tests (=Testverfahre)

Mehr

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Beispiel: Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

x = a + b α + β. b) Wir erweitern den Bruch geeignet (Standardtrick: z z ist reell, daher ergibt 1/z = 1/z z/ z = z/(z z) einen reellen Nenner):

x = a + b α + β. b) Wir erweitern den Bruch geeignet (Standardtrick: z z ist reell, daher ergibt 1/z = 1/z z/ z = z/(z z) einen reellen Nenner): Karlsruher Istitut für Techologie (KIT) Istitut für Aalysis Priv-Doz Dr P C Kustma Dr D Frey WS 0/ Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zum 3 Übugsblatt Aufgabe Zuächst zum Supremum:

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8 Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir

Mehr

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel.

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel. Uiversität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dr. D. Zimmerma MSc. J. Köller MSc. R. Marczizik FDSA 4 Höhere Mathematik II 30.04.2014 el, kyb, mecha, phys 1 Kovergezkriterie

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

Lineare Transformationen

Lineare Transformationen STAT 4 FK Herleituge Lieare Trasformatioe Sei eie lieare Trasformatio vo, so gilt Allgemei: a b, () Lieare Trasformatio des arithmetische Mittels y a+b x i () Da a eie additiv verküpfte Kostate ist, ka

Mehr

38 Normen und Neumannsche Reihe

38 Normen und Neumannsche Reihe 168 V. Lieare Algebra 38 Norme ud Neumasche Reihe Wir erier zuächst a (vgl. 15.6) 38.1 Normierte Räume. Es sei E ei Vektorraum über K = R oder K = C. Eie Abbildug : E [0, ) heißt Norm auf E, falls gilt

Mehr

Arbeitsblatt 22: Rekursive Reihen Alkoholentzug

Arbeitsblatt 22: Rekursive Reihen Alkoholentzug Arbeitsblatt 22: Reursive Reihe Aloholetzug Erläuteruge ud Aufgabe Zeicheerlärug: [ ] - Drüce die etsprechede Taste des Graphirechers! [ ] S - Drüce erst die Taste [SHIFT] ud da die etsprechede Taste!

Mehr

1 Randomisierte Bestimmung des Medians

1 Randomisierte Bestimmung des Medians Praktikum Diskrete Optimierug (Teil 0) 0.07.006 Radomisierte Bestimmug des Medias. Problemstellug ud Ziel I diesem Abschitt stelle wir eie radomisierte Algorithmus zur Bestimmug des Medias vor, der besser

Mehr

Positiv denken! Lösungen

Positiv denken! Lösungen Schülerzirkel Mathematik Fakultät für Mathematik. Uiversität Regesburg Positiv deke! Lösuge Aufgabe 1 (GMAMQM (ur für die Klasse 7/8) [ Pukte]). Seie a, b reelle Zahle. 1. Sei a 0 ud b 0. Zeige, dass a

Mehr

Klausur Einführung in die statistische Messdatenauswertung für Biotechnologen Kurzfragen

Klausur Einführung in die statistische Messdatenauswertung für Biotechnologen Kurzfragen Klauur Eführug de ache Medaeauwerug für Boechologe 3.7.9 Kurzfrage. We wrd przpell de relave Summehäugke S() au der relave Häugkedche h() bemm?. Welche Skaleveau müe zwe Merkmale habe um ee Regreogerade

Mehr

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen.

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen. Wurzelgesetze Gesetzmäßigkeite Grudlage Das Wurzelziehe (oder Radiziere) ist die Umkehrug des Potezieres. Daher sid die Wurzelgesetze de Potezgesetze sehr ählich. Die Wurzel aus eier positive Zahl ergibt

Mehr

3 Grenzwerte. 3.1 Grenzwerte von Folgen

3 Grenzwerte. 3.1 Grenzwerte von Folgen 03-grezwerte.cdf 3 Grezwerte 3. Grezwerte vo Folge Kovergez Mache Folge zeige ei spezielles Verhalte, we der Idex sehr groß wird. Sie äher sich eier bestimmte Zahl. Betrachte wir zum Beispiel die Folge

Mehr

Kapitel VI. Einige spezielle diskrete Verteilungen

Kapitel VI. Einige spezielle diskrete Verteilungen Kapitel VI Eiige spezielle diskrete Verteiluge D 6 (Hypergeometrische Verteilug) Eie Zufallsvariable X heißt hypergeometrisch verteilt, we sie folgede Wahrscheilichkeitsfuktio besitzt: M N M P ( X ) p

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

4. Vektorräume mit Skalarprodukt

4. Vektorräume mit Skalarprodukt 4. Vektorräume mit Skalarprodukt Wiederholug: V=R x, y R: x= x x i x, y= y y, :R R R Skalarprodukt Stadardskalarprodukt lieare Abbildug mit 2 Argumete 4. Eigeschafte vo Skalarprodukte Def.: Es sei V ei

Mehr

Kapitel 5: Gemeinsame Verteilung und Unabhängigkeit von Zufallsvariablen

Kapitel 5: Gemeinsame Verteilung und Unabhängigkeit von Zufallsvariablen - 39 (Kapitel 5: Gemeisame Verteilug ud Uabhägigkeit vo Zuallsvariable Kapitel 5: Gemeisame Verteilug ud Uabhägigkeit vo Zuallsvariable 5 Deiitio : : Ω Ω,, seie Abbilduge über derselbe Mege Ω Die Abbildug

Mehr

Schätzen. Mehrdimensionale Verteilungsfunktionen Kovarianz und Korrelation Statistiken BLUE Konsistenz Arithmetisches Mittel vs.

Schätzen. Mehrdimensionale Verteilungsfunktionen Kovarianz und Korrelation Statistiken BLUE Konsistenz Arithmetisches Mittel vs. Schätze Mehrdimeioale Verteilugfuktioe Kovariaz ud Korrelatio Statitike BLUE Koitez Arithmetiche Mittel v. Media Quiz Die -dimeioale Verteilugfuktio eier -dimeioale Zufallvariable mit Kompoete,, it für

Mehr

Restkapazität. = O( V ) mal kritisch. Also gibt es insgesamt höchstens O( V E ) Augmentierungen.

Restkapazität. = O( V ) mal kritisch. Also gibt es insgesamt höchstens O( V E ) Augmentierungen. Lemma 4.5.9. Der Algorihmu von Edmond-Karp führ höchen O( V E ) Augmenierungen durch. Bewei. Eine Kane (u, v) heiße kriich auf augmenierenden Weg p gdw. c f (u, v) = c f (p). Rekapaziä Eine kriiche Kane

Mehr

Übungen mit dem Applet Taylor-Entwickung von Funktionen

Übungen mit dem Applet Taylor-Entwickung von Funktionen Taylor-Etwickug vo Fuktioe Übuge mit dem Applet Taylor-Etwickug vo Fuktioe Ziele des Applets... Mathematischer Hitergrud... 3 Vorschläge für Übuge... 3 3. Siusfuktio si(...3 3. Cosiusfuktio cos(...4 3.3

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL

BERGISCHE UNIVERSITÄT WUPPERTAL BERGISCHE UNIVERSITÄT WUPPERTAL Klausuraufgabe zum Grudsudium Prüfugsgebie: Eiführug i die Wirschafsiformaik (PO 2006) Grudlage vo Decisio Suppor Syseme (BWiWi 1.14) Tag der Prüfug: 08.08.2008 Name des

Mehr

Herleitung der Parameter-Gleichungen für die einfache lineare Regression

Herleitung der Parameter-Gleichungen für die einfache lineare Regression Herleitug der Parameter-Gleichuge für die eifache lieare Regressio Uwe Ziegehage. März 03 Historie v.0 6.03.009, erste Versio hochgelade v.0 0.03.03, eie Vorzeichefehler beseitigt, diverse Gleichuge ud

Mehr

Repräsentativität und Unabhängigkeit

Repräsentativität und Unabhängigkeit Repräsetativität ud Uabhägigkeit Ziel: Bestmögliche Erassug der Eigeschate der Grudgesamtheit Problem: Beurteilug der Repräsetativität ist ur durch umassede Iormatio über die Grudgesamtheit möglich Asatz:

Mehr

Monotonie einer Folge

Monotonie einer Folge Mootoie eier Folge 1 E Mootoe Folge We jedes Folgeglied eier Folge größer oder gleich dem vorhergehede Folgeglied ist a 1 a ℕ so et ma die Folge mooto steiged (oder mooto wachsed). Die geometrische Folge

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr