Finanzmathematik. Jürgen Dippon. 28. März Vorlesung WS 2010/11

Größe: px
Ab Seite anzeigen:

Download "Finanzmathematik. Jürgen Dippon. 28. März 2011. Vorlesung WS 2010/11"

Transkript

1 Finanzmathematik Vorlesung WS 21/11 Jürgen Dippon 28. März 211

2 Inhaltsverzeichnis 1 Einführung Grundbegrie Put-Call-Parität Schranken für Optionen Ein-Perioden-Marktmodelle Bedingte Erwartungen und Martingale Bedingte Erwartungen Martingale Finanzmärkte in diskreter Zeit Risikoneutrale Bewerung von Finanzderivaten Vollständige Märkte Das Cox-Ross-Rubinstein-Modell Binomialapproximation Bewertung amerikanischer Optionen Stochastische Prozesse in stetiger Zeit Grundbegrie Klassen von Prozessen Brownsche Bewegung Das Itô-Integral Zeitstetige Finanzmärkte Risikoneutrale Bewertung Das Black-Scholes-Modell Black-Scholes mittels risikoneutraler Bewertung Black-Scholes mittels No-Arbitrage-Bewertung Die Feynman-Kac-Formel Risikokennziern Hedging-Strategien Schätzung der Volatilität Spezielle Derivate Kreditderivate Credit Default Swaps Bewertung des CDS Literatur 75 2

3 1 Einführung Die klassische Finanzmathematik beschäftigt sich in erster Linie mit grundlegenden Finanzinstrumenten oder Anlageformen (basic securities) Aktien (stocks) festverzinsliche Wertpapiere (bonds) Währungen (foreign exchange) Rohstoe (commodities) Energie Die moderne Finanzmathematik untersucht derivative Finanzinstrumente (derivatives, derivative securities, contingent claims), die von einfacheren Finanzinstrumenten (underlyings) abgeleitet werden. Beispiele für Derivate: Forwards Futures Optionen (options, contingent claims) Geschichte 17. Jahrhundert in den Niederlanden: Put-Optionen auf Tulpen 18. Jahrhundert in London: Problem kein gesetzlicher Rahmen beim Ausfall eines Vertragspartners 193: Gesetzliche Regulierung 197: Bedeutende Zunahme von Termingeschäften 1973: Gründung der Chicago Board Options Exchange 199: Deutsche Terminbörse (DTB) nimmt Handel mit Optionen auf 1998: Fusion der DTB mit der SDFEX (Schweizerische Terminbörse) zur EUREX Wissenschaftliche Untersuchung 19: Louis Bachelier modelliert in seiner Dissertation Theorie de la spéculation den Aktienkurs als Brownsche Bewegung 1965: Paul Samuelson modelliert den Aktienkurs als geometrische Brownsche Bewegung 1973: Fischer Black und Myron Scholes geben explizite Formeln zur Optionspreisbewertung an unabhängig davon auch Robert Merton 1981: M. Harrison und S. Pliska führen Martingalmethoden in die Optionspreisbewertung ein 1997: Ökonomie-Nobelpreis für Scholes und Merton (Black 1995 gestorben) 23: Ökonomie-Nobelpreis für Robert F. Engle (ARCH-Zeitreihen) 3

4 Quantitative Fragen Bewertung (pricing) von Derivaten Hedging Strategien für Derivate (Absicherung) Risikomanagement von Portfolios Portfoliooptimierung Modellwahl und Kalibrierung Aktuelle Fragestellungen Verbesserung der Modellierung der Underlyings: Lévy Prozesse, fraktale Brownsche Bewegung, Sprünge in den Aktienkursen, Insider-Information, stochastische Volatilitäten,... Modellierung des Korrelationsrisikos in groÿen Portfolios Bewertungsmethoden für hochdimensionale und pfadabhängige Auszahlunsprole in komplexeren Modellen Modellierung der Marktliquidität und des Ausfallrisikos Risikomanagement bei extremer Entwicklung von Märkten 1.1 Grundbegrie Finanzinstrumente: primäre Finanzinstrumente: Basisgüter sekundäre Finanzinstrumente: Derivate Denition 1.1. Ein Derivat ist ein Finanzinstrument, dessen Wert zum Verfallszeitpunkt T (expiry date) vom Wert eines einfacheren Finanzinstruments (underlying) zum Zeitpunkt T (oder auch vom Werteverlauf bis zum Zeitpunkt T) abhängt. Beispiele für Basisgüter (underlying securities) Aktien (stocks) Zinsraten (interest rates) Währungen (currencies) Rohstoe (commodities) Wetter Indizes wie DAX, Dow Jones, CAT-Index (catastrophe losses) Firmenwerte (rm values) Bonitäten (rating) Die Preisentwicklung eines Basisgutes wird üblicherweise mit S = (S t ) = {S t t } bezeichnet. 4

5 Festverzinsliche Wertpapiere Startkapital zum Zeitpunkt t = : B annum: Kapital nach t = n Jahren B (1) n Bei jährlicher Zinsausschüttung mit Zinsrate r per = B (1 + r) n Zinsausschüttung nach 1 k Jahren und Zinsrate r k pro 1 k Jahre: Kapital nach n Jahren ( B n (k) = B 1 + r ) nk k Bei stetiger Verzinsung mit dem Momentanzins (short rate) r: Kapital nach n Jahren Märkte: Börsen OTC (Over-the-Counter) B n := lim k B(k) n = B e nr Typen von Händlern: Hedgers versuchen ihre Institution gegen Risiken abzusichern Spekulanten versuchen durch Wetten Prot zu machen Arbitrageure versuchen durch simultane Transaktionen auf verschiedenen Märkten Prot aus Kursdierenzen zu ziehen Modellannahmen (perfekter Finanzmarkt) reibungsloser Markt: keine Transaktionskosten, keine Steuern, keine Einschränkungen für short sales, Kaufs- und Verkaufspreise sind identisch kein Ausfallrisiko, Soll- und Habenzinsen sind identisch Wettbewerbsmarkt: der Preis wird vom Markt und nicht von einzelnen Marktteilnehmern festgelegt Kapitalanlagen sind beliebig teilbar NO ARBITRAGE!!! Short Selling ist eine Handelsstrategie, bei der der Investor Objekte, z.b. Aktien, die ihm nicht selbst gehören, von einem Partner für eine gewisse Zeit ausleiht, diese verkauft, später wieder zurückkauft und an den Partner zurückgibt. In der Zwischenzeit anfallende Erträge des Objekts (z.b. Dividenden) muss der Investor an den Partner erstatten. Short Selling ist nur dann für den Investor interessant, wenn der Rückkaufswert S t (deutlich) kleiner als der Verkaufswert S ist. Short Selling ist in der Praxis zahlreichen Restriktionen unterworfen. Ein Portfolio ist eine Kombination mehrerer Finanzinstrumente, deren Wertentwicklung als Ganzes gesehen wird. Finanzmärkte bieten 5

6 risikolose Anlagen (z.b. festverzinsliche Wertpapiere) risikobehaftete Anlagen (z.b. Aktien) Ein Anleger ist nur bereit, in risikoreichere Anlagen zu investieren, wenn er die Möglichkeit sieht, einen höheren Prot als in risikoärmeren Anlagen zu erzielen. Arbitrage ist die Möglichkeit, ohne Kapitaleinsatz einen risikolosen Prot zu erzielen (formale Denition später). Würde diese Möglichkeit bestehen, so könnte man damit risikolos riesige Geldsummen erwirtschaften. Märkte im Gleichgewicht neutralisieren solche Arbitrage-Möglichkeiten. Es wird sich zeigen, dass die No-Arbitrage-Annahme direkt zu einer Methode zur Bewertung von Derivaten führt. Beispiel eines einfachen Derivates: Denition 1.2 Ein Forward-Kontrakt (Terminkontrakt) vereinbart den Kauf oder Verkauf eines Finanzgutes zu einem festen zukünftigen Zeitpunkt T (delivery date) zu einem festen Preis K, dem sog. Terminkurs (delivery price, strike price). Häug wählt man den Terminkurs K so, dass der Wert der Forward-Kontraktes bei Vertragsabschluss (t = ) den Wert Null hat. Bei dieser Wahl des Terminkurses ist bei Vertragsabschluss also nichts zu bezahlen, erst zum Zeitpunkt T. Bei Vertragsabschluss (t = ) führt der Verkäufer des Kontraktes die beiden folgenden Aktionen durch: Er nimmt einen Kredit über S zur risikofreien Zinsrate r auf Er kauft das Underlying mit diesem Geldbetrag Bei Vertagsablauf (t = T ) führt der Verkäufer des Kontraktes die beiden folgenden Aktionen durch: Er übergibt dem Käufer des Underlying (welches jetzt den Wert S T besitzt) zum Preis von K = S e rt. Zur Tilgung des Kredits bezahlt er S e rt. Damit hat er alle Verbindlichkeiten aufgelöst. Würde der Verkäufer einen Betrag K > S e rt fordern, könnte er einen risikolosen Gewinn einstreichen. Würde der Verkäufer einen Betrag K < S e rt fordern, könnte der Käufer einen risikolosen Gewinn einstreichen. Dies würde jeweils der Forderung nach arbitragefreien Preisen zuwiderlaufen. Damit ist der arbitragefreie Terminkurs K = S e rt Beachte: Es wurden keine Annahmen über die Kursentwicklung von (S t ) gemacht! Beispiel: 6

7 Ein Investor erwirbt am 1. September einen Forward-Kontrakt mit dem Inhalt, in 9 Tagen 1 6 e zum Umtauschkurs von.9 US $ zu kaufen. Falls der Kurs nach Ablauf der 9 Tage auf.95 $ gestiegen ist, gewinnt der Investor $, da 1 6 e dann am Markt für $ verkauft werden können. Hier also t = 1. September T t = 9 Tage T = 3. November K = $ Pay-o-Prol (Auszahlungsprol) eines Forward-Kontraktes zur Zeit T : payoff long position K S T short position Pay-o eines Forward-Kontraktes zum Laufzeitende T : S T K Pay-o eines Forward-Verkaufskontraktes zum Laufzeitende T : K S T Forwards sind nicht standardisiert und bergen das Risiko in sich, dass eine Vertragsseite ausfällt (default risk). Sie werden deshalb an Börsen kaum gehandelt, sondern nur over the counter (OTC). Eine Variante sind Futures, welche in standardisierter Form an Börsen gehandelt werden. Hierbei wird, z.b. täglich, die Wertveränderung des Futures (aufgrund von Wertänderungen des zugrundeliegenden Finanzgutes) zwischen den Vertragsparteien ausgeglichen, so dass der Wert des Futures anschlieÿend wieder gleich Null ist. Unter schwachen Voraussetzungen stimmen Terminkurse (delivery prices) von Forwards und Futures überein. Futures werden z.b. an der CBOT gehandelt. Ein etwas komplizierteres Derivat: Denition 1.3 Eine Option gibt dem Käufer das Recht, ein bestimmtes Finanzgut bis zu einem zukünftigen Verfallszeitpunkt T (expiry, maturity) zu einem vereinbarten Ausübungspreis K (strike price) zu kaufen oder verkaufen. Der Optionskontrakt beinhaltet im Unterschied zum Forward oder Future jedoch nicht die Picht zur Ausübung. 7

8 Beim Kaufrecht wird die Option als Call (Kaufoption), beim Verkaufsrecht als Put (Verkaufsoption) bezeichnet. Ist die Ausübung der Option nur zum Verfallszeitpunkt T möglich, so spricht man von einer europäischen Option. Kann die Option jederzeit bis zum Zeitpunt T ausgeübt werden, wird diese amerikanische Option genannt. Der Käufer bendet sich in einer long position, der Verkäufer bendet sich in einer short position. Pay-o einer long position bei einem Call zum Verfallszeitpunkt T payoff K S T Pay-O = (S T K) + = max{s T K, } = max{s T, K} K Sei t T. S(t) < K : die Option ist out of the money S(t) = K : die Option ist at the money S(t) > K : die Option ist in the money Problem: Wie lautet der faire Preis C und P für eine Call- bzw. Put-Option? Gewinn (yield) einer long position bei einer Call-Option yield C K K+C S T 8

9 Beispiel Markt mit drei Anlagemöglichkeiten: (risikoloser) Bond B Aktie S europäische Call-Option mit Strike K = 1 und Expiry t = T auf die Aktie S Investition zum Zeitpunkt t = mit Preisen (in e) B() = 1 S() = 1 C() =.2 Zum Zeitpunkt t = T soll sich die Welt (der Markt) in nur zwei möglichen Zuständen benden können: u (= up) oder d (= down) mit Preisen (in e) und Startkapital sei 25 e. Portfolio A : t = B(T, u) = 1.25, S(T, u) = 1.75, also C(T, u) =.75 B(T, d) = 1.25, S(T, d) =.75, also C(T, d) = Anlage Anzahl Betrag in e Bond 1 1 Aktie 1 1 Call Portfolio A : t = T Portfolio B : t = Anlage up down Bond Aktie Call Anlage Anzahl Betrag in e Bond Aktie 7 7 Call Portfolio B : t = T 9

10 Anlage up down Bond Aktie Call Oensichtlich existiert in diesem Markt eine Arbitrage-Möglichkeit, da Portfolio A und Portfolio B denselben Gewinn erwirtschaften Portfolio B jedoch mit einem geringeren Einsatz! = Call-Option besitzt falschen Preis! Stelle zum Zeitpunkt t = das Dierenzportfolio C auf: Portfolio C zum Zeitpunkt t = : Portfolio C := Portfolio B Portfolio A = (11.8, 7, 29) (1, 1, 25) = (1.8, 3, 4) Anlage Aktion Bond Kaufe 1.8 Einheiten -1.8 Aktie Verkaufe 3 geliehene Einheiten, 3 welche zum Zeitpunkt t = T wieder zurückgegeben werden Call kaufe 4 Einheiten Dies ergibt zum Zeitpunkt t = einen Gewinn von.4 e. Portfolio C zum Zeitpunkt t = T : Anlage Aktion up down Bond Verkaufe 1.8 Einheiten Aktie Kaufe 3 Einheiten zurück Call Option ausüben, falls sinnvoll 3 Zum Zeitpunkt t = T ist das Portfolio C also ausgeglichen. Zum Zeitpunkt t = wurde damit ein risikoloser Gewinn von.4 e realisiert. Weitere Beobachtung: Mit 1.8 Bonds und 3 Aktien short kann die Wirkung der Call-Option zum Zeitpunkt t = T neutralisiert werden. Man sagt: Die Bond- und die Aktienposition bilden einen Hedge gegen die Position des Calls. Dies gilt unabhängig davon, wie groÿ die Wahrscheinlichkeiten für den Zustand up/down der Welt sind! 1

11 1.2 Put-Call-Parität Seien S t der Spot-Preis einer Aktie, C t und P t die Werte von auf der Aktie denierten europäischen Call- bzw. Put-Optionen mit Verfallsdatum T und Ausübungspreis K. Π t bezeichne den Wert eines Portfolios bestehend aus einer Aktie, einem Put und einer short position in einem Call: Π t = S t + P t C t Satz 1.1 Für europäische Call- und Put-Optionen C t und P t auf der zugrunde gelegten Aktie S t (ohne Dividendenzahlung) gilt die Put-Call-Parität t T r(t t) Π(t) = S t + P t C t = Ke Beispiel: Aktie der Deutschen Bank (alle Preise in DM) t = 23. Juni 1997, T = 18. Juni 1998, K = 8., r = 3.15% p.a. Aktie S(t) = 97.7 Call C(t) = 23.3 Put P (t) = 4.16 S(t) + P (t) C(t) = Diskontierter Strike-Preis: K 1 + r = = Ursachen für Dierenz: Dividendenzahlung vor T, Nachfrageeekte, Schranken für Optionen Satz 1.2 Für europäische und amerikanische Call-Optionen gilt: ( ) + C(t) S(t) e r(t t) K t [,T ] t [,T ] C(t) S(t) Satz 1.3 Es ist nicht sinnvoll, eine amerikanische Call-Option vor ihrem Verfallsdatum auszuüben, da C A (t) = C E (t) t [,T ] Satz 1.4 (i) Für zwei Call-Optionen auf denselben Basiswert, mit demselben Verfallsdatum, aber unterschiedlichen Ausübungspreisen K 1 < K 2, gilt für alle t [, T ] (a) C K1 (t) C K2 (t) (b) C K1 (t) C K2 (t) e r(t t) (K 2 K 1 ) (c) λ [,1] C λk1 +(1 λ)k 2 (t) λc K1 (t) + (1 λ)c K2 (t) 11

12 (ii) Für zwei Call-Optionen auf denselben Basiswert, mit demselben Ausübungspreis, aber unterschiedlichen Verfallsdaten T 1 und T 2, gilt T 1 T 2 = C(T 1 ) C(T 2 ) Satz 1.5 Für amerikanische Optionen gilt die folgende Put-Call-Beziehung: t [,T ] r(t t) S(t) K C A (t) P A (t) S(t) Ke 1.4 Ein-Perioden-Marktmodelle 1 Aktie mit Preis S = 15 1 Bond mit Preis B = 1 mit Zinsrate r im Zeitraum T Zustand ω 1 mit W p Zustand ω 2 mit W 1 p Aktienpreis S T 18 9 Bondpreis B T 1 + r 1 + r Gesucht: Preis einer europäischen Call-Option mit Verfallsdatum T und Ausübungspreis K = 15 Auszahlung { X T (ω) = (S T K) + 3 falls ω = ω 1 (ω) = falls ω = ω 2 Erwartungswert von X T E(X T ) = 3 p + (1 p) = 3p Mögliche Denition des Call-Preises zum Zeitpunkt t = ( ) XT X = E = 3p 1 + r 1 + r Spezialfall: Für p = 1 2 und r = folgt X = 15 Wir zeigen: Dieser Optionspreis lässt jedoch Arbitrage zu! Dazu konstruieren wir aus Sicht des Käufers der Option ein Portfolio, das Arbitrage zulässt. Zeitpunkt t = Aktion : Cash Flow Kaufe die Option zum Preis von Leihe der Aktie und verkaufe diese zum Preis von 3 5 Kaufe festverzinsliches Wertpapier zum Preis von 35 (r = ) 35 Bilanz Zeitpunkt t = T Zustand : ω 1 Zustand ω 2 (Wert der Aktie S T = 18) (Wert der Aktie S T = 9) Option wird ausgeübt 3 Option wertlos Kaufe 1 3 Aktie und Rückgabe 6 Kaufe 1 3 Aktie und Rückgabe 3 Verkauf des Wertpapiers 35 Verkauf des Wertpapiers 35 Bilanz

13 Mit dieser Strategie wäre ein risikoloser Gewinn von 5 Geldeinheiten möglich. Also kann X = 15 kein arbitragefreier Preis der Option sein! Aufgabe: Konstruiere aus Sicht der die Option verkaufenden Seite ein Portfolio, bestehend aus einer Anzahl a festverzinslicher Wertpapiere (jeweils mit Wert 1 zum Zeitpunkt t = und Zinsrate r während der Laufzeit) und einer Anzahl b von Aktien, welches das Auszahlungsprol (zum Zeitpunkt t = T ) der Option repliziert. Bestimme damit den arbitragefreien Wert der Option (zum Zeitpunkt t = ). Lösung: Zum Zeitpunkt t = : a 1 + b S = X Zum Zeitpunkt t = T : a (1 + r) + b S T (ω 1 ) = (S T (ω 1 ) K) + a (1 + r) + b S T (ω 2 ) = (S T (ω 2 ) K) + Mit Werten: Zum Zeitpunkt t = : a 1 + b 15 = X Zum Zeitpunkt t = T : a (1 + r) + b 9 = (1) a (1 + r) + b 18 = 3 (2) Auösen des linearen Gleichungssystems mit den beiden Unbekannten a und b liefert aus (1) zunächst a = b 1+r 9 und damit b = 1 3 also a = r und X = r Man sagt, das o.g. Portfolio repliziert zu jedem Zeitpunkt die Call-Option. Mit dieser Replikationsstrategie kann der arbitragefreie Preis der Option ermittelt werden die die Option ausstellende Institution sich gegen Preisrisiken absichern (Hedging) Eine modernere Lösung des Problems besteht in der Anwendung der Methode der risikoneutralen Bewertung: 13

14 (i) Ersetze p durch p so, dass der diskontierte Aktienpreisprozess ein faires Spiel ist: ( ) S = E ST 1 + r Hier: 15 = 1 1+r (p 18 + (1 p ) 9), also p = 2+5r 3 Für r = folgt p = 2 3 P = (p, 1 p ) ist das zum Aktienpreisprozess risikoneutrale Wahrscheinlichkeitsmaÿ (ii) Berechne den fairen Preis der Option bzgl. E ( ) X := E Xt = 3p 1 + r 1 + r = r 1 + r = r Für r = folgt X = 2 Denition des Ein-Perioden-Modells: Der Finanzmarkt kennt nur die beiden Zeitpunkte t = und t = T. Es werden d + 1 Finanzgüter gehandelt mit Preisen zu den Zeitpunkten S () t = : S() =. R d+1 + S d () t = T : S(T ) = S (T ). S d (T ) R d+1 + -wertige ZV wobei S i (T ), i {,..., d}, R + -wertige Zufallsvariablen auf dem endlichen Wahrscheinlichkeitsraum (Ω, F, P) mit Ω = N, F = P(Ω) und P({ω}) > für alle ω Ω = {ω 1,..., ω N } Hier: R + := [, ) Kauf und Verkauf der Finanzgüter zum Zeitpunkt t = gemäÿ der Handelsstrategie ϕ = ϕ. ϕ d R d+1 Zum Zeitpunkt t = Investition der Summe S(), ϕ = d ϕ i S i () R i= Zum Zeitpunkt t = T liegt das vom Zufall abhängige Kapital vor: S(T ), ϕ = d ϕ i S i (T ) i= reellwertige ZV 14

15 Denition 1.4 Der (oben denierte) Finanzmarkt lässt eine Arbitrage-Möglichkeit zu, falls es ein Portfolio ϕ R d+1 gibt, so dass die folgende Bedingung gilt: S(), ϕ und S(T, ω), ϕ und ω Ω S(T, ω), ϕ > ω Ω Gibt es kein solches ϕ, so heiÿt der Finanzmarkt arbitragefrei. Bemerkung: Falls es im oben denierten Finanzmarkt ein Portfolio ϕ R d+1 mit S(), ϕ < und S(T, ω), ϕ ω Ω gibt, ist ϕ eine Arbitrage-Möglichkeit. Satz 1.6 Der (oben denierte) Finanzmarkt ist genau dann arbitragefrei, falls es einen sogenannten Zustandspreis-Vektor ψ R N mit ψ i > für alle i {1,..., N} gibt, so dass wobei S = Sψ = S(), S (T, ω 1 ) S (T, ω N ).. S d (T, ω 1 ) S d (T, ω N ) Kurz: Der Markt ist genau dann arbitragefrei, wenn es einen Zustandspreis-Vektor (state price vector, pricing kernel) gibt. Sei ψ ein solcher Zustandspreis-Vektor. Mit ψ := N ψ i gilt für q j := ψ j ψ (, 1] i=1 N q j = 1 j=1 d.h. durch (q 1,..., q N ) wird ein W -Maÿ Q auf Ω deniert. Damit S i () ψ = N S i (T, ω j )q j = E Q (S i (T )) j=1 Unter Q sind die mit ψ standardisierten Preise der Finanzgüter i {,..., d} deshalb risikoneutral. Ist i ein Finanzgut mit S i (T, ω j ) > für alle j {1,..., N}, so können die Preise der anderen Finanzgüter als Vielfaches von S i (T, ω j ) ausgedrückt werden. Das Finanzgut i wird dann Numéraire gennant. Sei z.b. Finanzgut i = ein risikoloser Bond mit ω Ω S (T, ω) = 1 Damit 15

16 S () ψ = N q j S (T, ω j ) = j=1 N q j = 1 j=1 Ist r die Zinsrate pro Zeiteinheit, dann gilt S () = ψ = (1 + r) T Damit ergibt sich der Preis von Finanzgut i zum Zeitpunkt t = zu N ( ) S i (T, ω j ) S i () = q j (1 + r) T = E Si (T ) Q (1 + r) T d.h. j=1 ( ) S i () (1 + r) = E Si (T ) Q (1 + r) T In der Sprache der Wahrscheinlichkeitstheorie: Der stochastische Prozess { } Si (t) (1 + r) t : t {, T } ist ein Q-Martingal Achtung: Im allgemeinen ist dieser Prozess aber kein P -Martingal für ein von Q verschiedenes W - Maÿ P, welches z.b. die Einschätzung eines Anlegers widerspiegelt. Da für alle ω Ω P ({ω}) > (nach Annahme) und Q({ω}) > (wie gezeigt) sind P und Q zwei sog. äquivalente Maÿe. Also ist Q ein zu P ein äquivalentes Martingalmaÿ. Damit: Der Markt ist genau dann arbitragefrei, wenn es ein äquivalentes Martingalmaÿ gibt Bewertung eines neu eingeführten Finanzinstrumentes mit vom Zufall abhängigen Auszahlungen δ(t ) zum Zeitpunkt t = T durch mit einem äquivalenten Martingalmaÿ Q. δ() = E Q ( δ(t ) (1 + r) T Problem: Der Preis δ() ist nur eindeutig, falls Q eindeutig. Denition 1.5 Der (oben denierte) Finanzmarkt heiÿt vollständig, falls es zu jedem Finanzinstrument δ(t ) (das ist eine auf Ω = {ω 1,..., ω N } denierte reellwertige Zufallsvariable) ein aus den d + 1 Basisinstrumenten bestehendes Portolio ϕ R d+1 gibt, das δ(t ) repliziert, d.h. falls ) ϕ R d+1 ω {ω 1,...,ω N } d S i (T, ω)ϕ i = δ(t, ω) i= 16

17 oder kompakter falls S ϕ = δ(t) := ϕ R d+1 δ(t, ω 1 ). δ(t, ω N ) Ein Finanzmarkt ist also genau dann vollständig, wenn die (d + 1) Vektoren S (T, ω 1 ) S d (T, ω 1 ).,...,. S (T, ω N ) S d (T, ω N ) den gesamten R N aufspannen. Satz 1.7 Der (oben denierte) Finanzmarkt sei arbitragefrei. Dann ist dieser Markt genau dann vollständig, wenn es einen eindeutigen Zustandspreis-Vektor ψ gibt. Eine Kombination der Sätze 1.6 und 1.7 ergibt: Ein Finanzmarkt ist genau dann vollständig und arbitragefrei, wenn es einen eindeutigen Zustandspreis-Vektor gibt. Probabilistische Interpretation unserer Ergebnisse: Ein Finanzmarkt ist genau dann arbitragefrei, wenn ein äquivalentes Martingalmaÿ existiert. Ein arbitragefreier Finanzmarkt ist genau dann vollständig, wenn genau ein äquivalentes Martingalmaÿ existiert. Beispiel: Binäres Einperiodenmodell d + 1 = 2 Ω = {ω 1, ω 2 } r = Basisinstrumente Raum der möglichen Zustände Zinsrate ( ) ( ) S () 1 S() = = S 1 () 15 ( ) ( ) 1 18 S (T ) =, S 1 (T ) = 1 9 Also S = ( ) Zustandspreis-Vektor ψ R 2 + : Sψ = S() ( ) ( ) 1 ψ = 15 17

18 wird (in eindeutiger Weise) gelöst durch ( ) 2/3 ψ = 1/3 (= ψ = ψ 1 + ψ 2 = 1) Also existiert (zu jedem nichtdegenerierten W-Maÿ P ) ein eindeutiges äquivalentes Martingalmaÿ Q mit Q(ω 1 ) = ψ 1 ψ = 2 3 und Q(ω 2 ) = ψ 2 ψ = 1 3 Der oben denierte Finanzmarkt ist vollständig, da zu jedem (neuen) Finanzinstrument δ(t ) mit Zahlungen δ(t, ω 1 ) und δ(t, ω 2 ) ein replizierendes Portfolio ϕ R 2 existiert, d.h. S ϕ = δ(t ) da die Spalten von S den R d+1 = R N aufspannen. Sei δ(t ) die im letzten Beispiel genannte europäische Call-Option { δ(t, ω) = (S(T, ω) K) + 3 für ω = ω 1 = für ω = ω 2 Dann wird ( durch ϕ = 3 und ϕ 1 = 1 3 ) ( ) ϕ = ϕ 1 (eindeutig) gelöst. ( ) 3 18

19 2 Bedingte Erwartungen und Martingale Eine gut lesbare Einführung in die Wahrscheinlichkeitstheorie: J. Jacod and P. Protter. Probability Essentials. 2nd Ed. Springer 24. Eine klassische Einführung in die Martingal-Theorie: D. Williams. Probability with Martingales. Cambridge Ein schönes Lehrbuch, das einen weiten Bogen von der Maÿtheorie bis zur Stochastischen Analysis schlägt: D. Meintrup, S. Schäer. Stochastik Theorie und Anwendungen. Springer 25. Etwas anspruchsvoller: J. Wengenroth. Wahrscheinlichkeitstheorie. De Gruyter 28. A. Klenke. Wahrscheinlichkeitstheorie. 2. Auage, Springer 28. Im Folgenden sei (Ω, F, P ) immer ein Wahrscheinlichkeitsraum. (Eingeführt durch Andrey Nikolaevich Kolmogorov ( ), Grundbegrie der Wahrscheinlichkeitsrechnung, 1933) 2.1 Bedingte Erwartungen Denition. Seien P und Q zwei auf derselben σ-algebra F denierte Maÿe. Q heiÿt P- stetig, falls In Zeichen: Q P A F P (A) = = Q(A) = Satz von Radon-Nikodým. Seien P und Q zwei auf derselben σ-algebra F denierte endliche Maÿe. Es gilt Q P genau dann, wenn es eine F-B-messbare nichtnegative Funktion f gibt mit A F Q(A) = Satz 2.1. Integrierbare ZV X: (Ω, F, P ) (R, B). σ-algebra C F. Dann existiert eine ZV Z : (Ω, F, P ) (R, B) mit folgenden Eigenschaften: A f dp Z ist integrierbar und C-B-messbar X dp = Z dp C C C C ( ) ( ) 19

20 Z ist eindeutig bis auf die Äquivalenz = P C -f.ü.. Denition 2.1. Integrierbare ZV X: (Ω, F, P ) (R, B). σ-algebra C F. Die Äquivalenzklasse (im eben denierten Sinne) der ZVn Z: (Ω, F, P ) (R, B) mit ( ) und ( ) oder auch ein Repräsentant dieser Äquivalenzklasse heiÿt bedingte Erwartung von X bei gegebenem C. In Zeichen: E(X C) Häug wird ein Repräsentant dieser Äquivalenzklasse als eine Version von E(X C) bezeichnet. E(X C) ist eine Vergröberung von X. Bemerkung 2.4. Geometrische Interpretation des bedingten Erwartungswertes: Es sei L 2 (Ω, F, P ) der Hilbertraum der Äquivalenzklassen quadratisch integrierbarer reeller Zufallsvariablen auf (Ω, F, P ) und C eine Teil-σ-Algebra von F. Es sei M der lineare Teilraum von L 2 (Ω, F, P ), dessen Elemente als Repräsentanten C-B-messbare Zufallsvariablen haben. Man kann zeigen, dass M abgeschlossen ist. Sei X L 2 (Ω, F, P ) mit Repräsentanten X und Y := E(X C) mit zugehöriger Äquivalenzklasse Ŷ. Man kann zeigen, dass Ŷ die orthogonale Projektion von X auf M ist und das Proximum (bestapproximierendes Element im Sinne der L 2 (Ω, F, P )- Norm) in M zu X darstellt. Mit anderen Worten: Y := E(X C) minimiert unter allen C-B-messbaren Zufallsvariablen den Ausdruck E X Y 2 Unter Verwendung eines Stutzungargumentes kann diese Denition auch auf die Klasse der integrierbaren Zufallsvariablen fortgesetzt werden. Beispiele C = F... E(X C) = X f.s. C = {, Ω}... E(X C) = EX C = {, B, B c, Ω} mit < P (B) < 1. 1 X dp =: E(X B), ω B P (B) B (E(X C))(ω) = 1 P (B c X dp, ω B c ) B c E(X B) heiÿt bedingter Erwartungswert von X unter der Hypothese B Satz 2.2. X, X i integrierbar; σ-algebra C F; c, α 1,2 R. a) E(X C)dP = X dp C C C b) X = c P-f.s. = E(X C) = c f.s. c) X P-f.s. = E(X C) f.s. C d) E(α 1 X 1 + α 2 X 2 C) = α 1 E(X 1 C) + α 2 E(X 2 C) f.s. 2

21 e) X 1 X 2 P-f.s. = E(X 1 C) E(X 2 C) f.s. f) X C-B-messbar = X = E(X C) f.s. g) X integrierbar, Y C-B-messbar, XY integrierbar = E(XY C) = Y E(X C) f.s. g') X, X integrierbar, XE(X C) integrierbar = E(XE(X C) C) = E(X C)E(X C) f.s. h) σ-algebra C 1,2 mit C 1 C 2 F, X integrierbar E(E(X C 1 ) C 2 ) = E(X C 1 ) f.s. E(E(X C 2 ) C 1 ) = E(X C 1 ) f.s. Hier f.s. im Sinne von P C2 -f.s. bzw. P C1 -f.s. Denition 2.2. σ-algebra C F. A F. P (A C) := E(1 A C) heiÿt bedingte Wahrscheinlichkeit von A bei gegebener σ-algebra C. Bemerkung 2.1. Zu Denition 2.2. P (A C) dp = P (A C). C C Beispiel. C = {, B, B c, Ω} mit < P (B) < 1. Denition 2.3. C (P (A C))(ω) = P (A B) P (B) P (A B c ) P (B c ) =: P (A B), ω B =: P (A B c ), ω B c. a) Integrierbare ZV X: (Ω, F, P ) (R, B). ZV Y : (Ω, F, P ) (Ω, F ). E(X Y ) := E(X Y 1 (F )) [kleinste σ-algebra in Ω, bzgl. der Y messbar ist... F(Y )( } {{ } F)]... bedingte Erwartung von X bei gegebenem Y b) Integrierbare ZV X: (Ω, F, P ) (R, B). ZVn Y i : (Ω, F, P ) (Ω i, F i ) (i I) C( F) sei die kleinste σ-algebra in Ω, bzgl. der alle Y i messbar sind [C = F( Yi 1 i I (F i ))... F(Y i, i I)] E(X (Y i ) i I ) := E(X C)... bedingte Erwartung von X bei gegebenem Y i, i I c) A F; ZV Y : (Ω, F, P ) (Ω, F ). P (A Y ) := E(1 A Y )... bedingte Wahrscheinlichkeit von A bei gegebenem Y Bemerkung 2.2. Integrierbare ZV X: (Ω, F, P ) (R, B). a) σ-algebra C in F (X 1 (B), C) unabhängig = E(X C) = EX f.s. b) ZV Y : (Ω, F, P ) = (Ω, F ) (X, Y ) unabhängig = E(X Y ) = EX f.s. 21

22 Satz 2.3. Integrierbare ZV X: (Ω, F, P ) (R, B). ZV Y : (Ω, F, P ) (Ω, F ). Dann ex. Abb. g: (Ω, F ) (R, B) mit E(X Y ) = g Y. g ist die sog. Faktorisierung der bedingten Erwartung. g ist eindeutig bis auf die Äquivalenz = P Y -f.ü.. Denition 2.4. Integrierbare ZV X: (Ω, F, P ) (R, B) bzw. A F. ZV Y : (Ω, F, P ) (Ω, F ). Sei g bzw. g A eine bis auf Äquivalenz = P Y - f.ü. eindeutig bestimmte Faktorisierung von E(X Y ) bzw. von P (A Y ). E(X Y = y) := g(y)... bedingte Erwartung von X unter der Hypothese Y = y P (A Y = y) := g A (y)... bed. Wahrscheinlichkeit von A unter der Hypoth. Y = y E(X Y = ) = g P (A Y = ) = g A Satz 2.4. Integrierbare ZV X: (Ω, F, P ) (R, B) bzw. A A. ZV Y : (Ω, F, P ) (Ω, F ) a) A F A E(X Y = y) P Y (dy) = Y 1 (A ) X dp, insbesondere Ω E(X Y = y) P Y (dy) = EX. b) A F A P (A Y = y) P Y (dy) = P (Y 1 (A ) A), insbesondere Ω P (A Y = y) P Y (dy) = P (A). Beispiel. X bzw. A sowie Y wie zuvor. Sei y Ω mit {y} F und P Y ({y}) >. a) E(X Y = y) = E(X [Y = y]) } {{ } } {{ } s. Def s. Beispiel nach Def b) P (A Y = y) = P (A [Y = y]) } {{ } } {{ } s. Def s. Beispiel nach Def Satz 2.5. Integrierbare ZV X: (Ω, F, P ) (R, B). ZV Y : (Ω, F) (Ω, F ). a) X = c f.s. = E(X Y = ) = c P Y -f.ü. b) X f.s. = E(X Y = ) P Y -f.ü. c) E(αX 1 + βx 2 Y = ) = αe(x 1 Y = ) + βe(x 2 Y = ) P Y -f.ü. d) X 1 X 2 f.s. = E(X 1 Y = ) E(X 2 Y = ) P Y -f.ü. 2.2 Martingale Denition 2.6. Eine Folge (X n ) n N von integrierbaren ZVn X n : (Ω, F, P ) (R, B) heiÿt bei gegebener monoton wachsender Folge (F n ) n N von σ-algebren F n F mit F n -B- Messbarkeit von X n [wichtiger Fall F n = F(X 1,..., X n ) (n N)] a) ein Martingal bzgl. (F n ), wenn [d.h. n N n N E(X n+1 F n ) = X n f.s. C F n C X n+1 dp = C X n dp ], 22

23 Abbildung 1: P. Lévy und J.L. Doob b) ein Submartingal bzgl. (F n ), wenn n N E(X n+1 F n ) X n f.s., d.h. n N C F n X n+1 dp C C X n dp c) ein Supermartingal bzgl. (F n ), wenn ( X n ) ein Submartingal bzgl. (F n ) ist. Die in Denition 2.6 genannte Folge von aufsteigenden σ-algebren wird auch als Filtration bezeichnet (P.A. Meyer). Bemerkung 2.3. Ein Martingal (X n ) bzgl. (F n ) ist auch ein Martingal bzgl. (F(X 1,..., X n )). Entsprechend für Sub-, Supermartingal. Die Herkunft der Bezeichnung Martingal (engl. martingale) ist nicht genau geklärt. Teil des Zaumzeuges, um die Kopfbewegung des Pferdes zu kontrollieren Eine Seil, um den Klüverbaum zu verspanen Ein Wettsystem, bei dem nach einem Verlust der Einsatz verdoppelt wird Der Begri des Martingals im mathematischen Sinne wird J. Ville (1939) zugeschrieben. Paul Lévy ( ) und Joseph Leo Doob (191124) lieferten wichtige Beiträge zur Martingal-Theorie. Beispiele für Martingale: 1. Partialsummenfolge ( n i=1 V i) n N zu einer unabhängigen Folge (V n ) n N von integrierbaren reellen ZVn mit Erwartungswerten. 2. Aktienpreise: S n = S ξ 1 ξ n mit unabhängigen positiven Zufallsvariablen ξ i mit Eξ i = 1. 23

Finanzmathematik Vorlesung WS 2010/11

Finanzmathematik Vorlesung WS 2010/11 1. Einführung Finanzmathematik Vorlesung WS 21/11 Jürgen Dippon Institut für Stochastik und Anwendungen Universität Stuttgart Die klassische Finanzmathematik beschäftigt sich in erster Linie mit grundlegenden

Mehr

Finanzmathematik. Vorlesung SS 2005. Jürgen Dippon Institut für Stochastik und Anwendungen Universität Stuttgart

Finanzmathematik. Vorlesung SS 2005. Jürgen Dippon Institut für Stochastik und Anwendungen Universität Stuttgart Finanzmathematik Vorlesung SS 2005 Jürgen Dippon Institut für Stochastik und Anwendungen Universität Stuttgart Homepage der Vorlesung: www.isa.uni-stuttgart.de/lehre/fm Version vom 29. Juli 2005 J. Dippon

Mehr

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/ Finanzmathematik - Wintersemester 2007/08 http://code.google.com/p/mitgetexed/ Stand: 4. November 2007 Inhaltsverzeichnis 1 Motivation und erste Begriffe 2 2 Endliche Finanzmärkte 4 3 Das Cox-Ross-Rubinstein-Modell

Mehr

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen Finanzmathematik Absichern und Bewerten von Optionen Arnold Janssen / Klaus Janßen Universität Düsseldorf 27.09.2012 Rohstoffe, Devisen, Aktien, Kredite,... haben Preise, die im Laufe der Zeit zufällig

Mehr

III Stochastische Analysis und Finanzmathematik

III Stochastische Analysis und Finanzmathematik III Stochastische Analysis und Finanzmathematik Ziel dieses Kapitels ist es, eine Einführung in die stochastischen Grundlagen von Finanzmärkten zu geben. Es werden zunächst Modelle in diskreter Zeit behandelt,

Mehr

Amerikanischen Optionen

Amerikanischen Optionen Die Bewertung von Amerikanischen Optionen im Mehrperiodenmodell Universität-Gesamthochschule Paderborn Fachbereich 17 Seminar Finanzmathematik SS 2001 Referentin: Christiane Becker-Funke Dozent: Prof.

Mehr

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären.

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. Einleitung Das Ein-Perioden-Modell ist das einfachste Modell, um die Idee der Preisgebung von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. naive Idee der Optionspreisbestimmung: Erwartungswertprinzip

Mehr

Martingale. Kapitel 6. 6.1 Martingale in diskreter Zeit. 6.1.1 Definition und Beispiele

Martingale. Kapitel 6. 6.1 Martingale in diskreter Zeit. 6.1.1 Definition und Beispiele Kapitel 6 Martingale In der Statistik modellieren Martingale z.b. Glücksspiele oder Handelsstrategien in Finanzmärkten und sind ein grundlegendes Hilfsmittel für die statistische Inferenz stochastischer

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

SoSe 2004 Mareen Hofmann, Sonja Lange

SoSe 2004 Mareen Hofmann, Sonja Lange Einführung in die Finanzmathematik Grundlagen SoSe 2004 Mareen Hofmann, Sonja Lange Inhaltsverzeichnis 1 Einleitung 2 2 Finanzmärkte und Instrumente 2 2.1 Finanzmärkte............................. 2 2.2

Mehr

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Francesca Biagini Mathematisches Institut, LMU biagini@math.lmu.de Münchner Wissenschaftstage im Jahr der Mathematik 21. Oktober 28

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag 8. Übungsblatt zur Vorlesung Finanzmathematik I Aufgabe Hedging Amerikanischer Optionen Wir sind in einem arbitragefreien

Mehr

Finanz- und Risikomanagement II

Finanz- und Risikomanagement II Finanz- und Risikomanagement II Fakultät Grundlagen März 2009 Fakultät Grundlagen Finanz- und Risikomanagement II Einperiodenmodell Marktmodell Bewertung von Derivaten Binomialbaum Bewertungen im Abhängigkeiten

Mehr

Wichtige Begriffe in der Finanzmathematik

Wichtige Begriffe in der Finanzmathematik Wichtige Begriffe in der Finanzmathematik Forward: Kontrakt, ein Finanzgut zu einem fest vereinbarten Zeitpunkt bzw. innerhalb eines Zeitraums zu einem vereinbarten Erfüllungspreis zu kaufen bzw. verkaufen.

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Walter Sanddorf-Köhle Foliensatz Nr. 3 1 / 46 Ein Einperiodenmodell Beispiel 5 Betrachtet wird nun ein Wertpapiermarkt mit

Mehr

Notationen. Burkhard Weiss Futures & Optionen Folie 2

Notationen. Burkhard Weiss Futures & Optionen Folie 2 Optionspreismodelle Notationen S t : X: T: t: S T : r: C: P: c: p: s: aktueller Aktienkurs Ausübungspreis (Rest-)laufzeit der Option Bewertungszeitpunkt Aktienkurs bei Verfall risikofreier Zinssatz Preis

Mehr

Bewertung von Forwards, Futures und Optionen

Bewertung von Forwards, Futures und Optionen Bewertung von Forwards, Futures und Optionen Olaf Leidinger 24. Juni 2009 Olaf Leidinger Futures und Optionen 2 24. Juni 2009 1 / 19 Überblick 1 Kurze Wiederholung Anleihen, Terminkontrakte 2 Ein einfaches

Mehr

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5 Einfache Derivate Stefan Raminger 4. Dezember 2007 Inhaltsverzeichnis 1 Begriffsbestimmungen 1 2 Arten von Derivaten 3 2.1 Forward..................................... 3 2.2 Future......................................

Mehr

Quantitative Finance

Quantitative Finance Kapitel 11 Quantitative Finance Josef Leydold c 2006 Mathematische Methoden XI Quantitative Finance 1 / 30 Lernziele für den Teil Quantitative Finance Die Welt der stetigen Zinsen (Renditen) Wichtige Finanzprodukte:

Mehr

3.2 Black-Scholes Analyse

3.2 Black-Scholes Analyse 3.. BLACK-SCHOLES ANALYSE 39 3. Black-Scholes Analyse Allgemeine Vorüberlegungen Eine Aktie ist eine Anlage ähnlich einem Kredit. Der Anleger bekommt eine Verzinsung, da Kapital ein Arbeitsfaktor ist.

Mehr

Finanzmathematik... was ist das?

Finanzmathematik... was ist das? Finanzmathematik... was ist das? The core of the subject matter of mathematical finance concerns questions of pricing of financial derivatives such as options and hedging covering oneself against all eventualities.

Mehr

Optionspreisbestimmung nach Cox-Ross-Rubinstein

Optionspreisbestimmung nach Cox-Ross-Rubinstein Optionspreisbestimmung nach Cox-Ross-Rubinstein Michael Beer 8. Mai 000 Inhaltsverzeichnis Einführung und Problembeschreibung. Was sind Optionen?.............................. Modellspezifikation..............................3

Mehr

Quantitative BWL 2. Teil: Finanzwirtschaft

Quantitative BWL 2. Teil: Finanzwirtschaft Quantitative BWL 2. Teil: Finanzwirtschaft Mag. Tomáš Sedliačik Lehrstuhl für Finanzdienstleistungen Universität Wien 1 Themenübersicht 1. Portfoliotheorie und Portfoliomodelle i. Grundbegriffe: Rendite,

Mehr

Kapitel 6 Martingale

Kapitel 6 Martingale Kapitel 6 Martingale Martingale spielen eine große Rolle in der Finanzmathematik, und sind zudem ein wichtiges Hilfsmittel für die statistische Inferenz stochastischer Prozesse, insbesondere auch für Zählprozesse

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 17 Crash Course Brownsche Bewegung (stetige Zeit, stetiger Zustandsraum); Pricing & Hedging von Optionen in stetiger Zeit Literatur Kapitel 17 * Uszczapowski:

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Finanz- und Risikomanagement Seite 1 von 35 Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Finanz- und Risikomanagement Seite 1 von 35 Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: Übungsaufgaben zu Finanz- und Risikomanagement... 3 Aufgabe... 3 Aufgabe... 3 Aufgabe 3... 3 Aufgabe 4... 3 Aufgabe 5... 4 Aufgabe 6... 4 Aufgabe 7... 4 Aufgabe 8... 4 Aufgabe 9...

Mehr

Stochastische Prozesse Gliederung zur Vorlesung im Sommersemester 2006

Stochastische Prozesse Gliederung zur Vorlesung im Sommersemester 2006 Stochastische Prozesse Gliederung zur Vorlesung im Sommersemester 26 Markus Reiß Universität Heidelberg reiss@statlab.uni-heidelberg.de VORLÄUFIGE FASSUNG: 28. Juli 26 Inhaltsverzeichnis 1 Der Poissonprozess

Mehr

Bewertung von europäischen und amerikanischen Optionen

Bewertung von europäischen und amerikanischen Optionen Bewertung von europäischen und amerikanischen en 1. Vortrag - Einführung Technische Universität Berlin Institut für Mathematik 8. November 2007 Inhaltsverzeichnis 1 Definitionen amerikanische / europäische

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

1 Stochastische Prozesse in stetiger Zeit

1 Stochastische Prozesse in stetiger Zeit 1 Stochastische Prozesse in stetiger Zeit 1.1 Grundlagen Wir betrachten zufällige Prozesse, definiert auf einem Wahrscheinlichkeitsraum (Ω, F, P), welche Werte in einen fest gewählten Zustandsraum annehmen.

Mehr

Einführung in die Optionspreisbewertung

Einführung in die Optionspreisbewertung Einführung in die Optionspreisbewertung Bonn, Juni 2011 MAF BN SS 2011 Huong Nguyen Gliederung Einführung Definition der Parameter Zwei Komponente zur Ermittlung der Optionsprämie Callwert-Kurve Wirkungen

Mehr

Derivatebewertung im Binomialmodell

Derivatebewertung im Binomialmodell Derivatebewertung im Binomialmodell Roland Stamm 27. Juni 2013 Roland Stamm 1 / 24 Agenda 1 Einleitung 2 Binomialmodell mit einer Periode 3 Binomialmodell mit mehreren Perioden 4 Kritische Würdigung und

Mehr

Übung zu Forwards, Futures & Optionen

Übung zu Forwards, Futures & Optionen Übung zu Forwards, Futures & Optionen Vertiefungsstudium Finanzwirtschaft Dr. Eric Nowak SS 2001 Finanzwirtschaft Wahrenburg 15.05.01 1 Aufgabe 1: Forward auf Zerobond Wesentliche Eckpunkte des Forwardgeschäfts:

Mehr

Zur Bewertung von Derivaten Eine Einführung

Zur Bewertung von Derivaten Eine Einführung Zur Bewertung von Derivaten Eine Einführung Dr. Volkert Paulsen 17. September 2009 Im wesentlichen unternimmt man auf Finanzmärkten eine Zweiteilung in Basis- und derivative Finanzgüter. Ein Anteil an

Mehr

Finanzmathematik Bachelorarbeit aus Mathematische Modelle in den Naturwissenschaften im WS 2010

Finanzmathematik Bachelorarbeit aus Mathematische Modelle in den Naturwissenschaften im WS 2010 Finanzmathematik Bachelorarbeit aus Mathematische Modelle in den Naturwissenschaften im WS 2010 Harald Hinterleitner (0755828) und Christof Schöffl (0686939) 28. März 2010 Inhaltsverzeichnis 1 Ein-Perioden-Wertpapiermärkte

Mehr

Prof. Dr. Thilo Meyer-Brandis. Finanzmathematik 1 WS 2012/13

Prof. Dr. Thilo Meyer-Brandis. Finanzmathematik 1 WS 2012/13 Prof. Dr. Thilo Meyer-Brandis Finanzmathematik 1 WS 2012/13 Dieses Skript gibt den Inhalt der Vorlesung Finanzmathematik I: Eine Einführung in diskreter Zeit wieder und basiert auf dem Buch Stochastic

Mehr

II. Bewertung von Derivaten in diskreter Zeit

II. Bewertung von Derivaten in diskreter Zeit II. Bewertung von Derivaten in diskreter Zeit 2.1. Wahrscheinlichkeitstheoretische Grundlagen 2.1.1. Bedingte Erwartungswerte Sei (Ω, F, P) ein Wahrscheinlichkeitsraum. Für A, B F mit P(B) > 0 ist die

Mehr

Das Black-Scholes Marktmodell

Das Black-Scholes Marktmodell Das Black-Scholes Marktmodell Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 8. April 2011 1 / 14 Gliederung 1 Einleitung Fortgeschrittene Finanzmathematik einfach erklärt

Mehr

Internationale Finanzierung 7. Optionen

Internationale Finanzierung 7. Optionen Übersicht Kapitel 7: 7.1. Einführung 7.2. Der Wert einer Option 7.3. Regeln für Optionspreise auf einem arbitragefreien Markt 7.3.1. Regeln für Calls 7.3.2. Regeln für Puts 7.3.3. Die Put Call Parität

Mehr

Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken

Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken Seminararbeit von Marleen Laakmann 2. Mai 2010 Einleitung Zur Messung und Steuerung von Kreditrisiken gibt es eine Reihe von Methoden und

Mehr

Interdisziplinäres Vertiefungsfach Geld und Finanzierung. Vertiefungskurs I: Optionspreise und Derivate. Klaus Pötzelberger

Interdisziplinäres Vertiefungsfach Geld und Finanzierung. Vertiefungskurs I: Optionspreise und Derivate. Klaus Pötzelberger Interdisziplinäres Vertiefungsfach Geld und Finanzierung Vertiefungskurs I: Optionspreise und Derivate Klaus Pötzelberger Institut für Statistik und Mathematik Option Slide 1 Klaus Pötzelberger Optionspreis

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 n Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 18. Mai 2015 n Erinnerung Eine Option ist das Recht (aber nicht die Verpflichtung) ein Produkt S in der Zukunft zu einem heute festgelegten

Mehr

Aufgaben Brealey/Myers [2003], Kapitel 21

Aufgaben Brealey/Myers [2003], Kapitel 21 Quiz: 1, 2, 4, 6, 7, 10 Practice Questions: 1, 3, 5, 6, 7, 10, 12, 13 Folie 0 Lösung Quiz 7: a. Das Optionsdelta ergibt sich wie folgt: Spanne der möglichen Optionspreise Spanne der möglichen Aktienkurs

Mehr

Optionspreistheorie von Black & Scholes

Optionspreistheorie von Black & Scholes Optionspreistheorie von Black & Scholes Vortrag zum Seminar Econophysics Maximilian Eichberger 20. November 2007 Zusammenfassung Nach einer kurzen Erläuterung zu den Grundbegriffen und -prinzipien des

Mehr

Finanzmanagement 5. Optionen

Finanzmanagement 5. Optionen Übersicht Kapitel 5: 5.1. Einführung 5.2. Der Wert einer Option 5.3. Regeln für Optionspreise auf einem arbitragefreien Markt 5.3.1. Regeln für Calls 5.3.2. Regeln für Puts 5.3.3. Die Put Call Parität

Mehr

Die Black-Scholes-Gleichung

Die Black-Scholes-Gleichung Die Black-Scholes-Gleichung Franziska Merk 22.06.2012 Outline Optionen 1 Optionen 2 3 Optionen Eine Kaufoption ist ein Recht, eine Aktie zu einem heute (t=0) festgelegten Preis E an einem zukünftigen Zeitpunkt

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 16 Crash Course Optionen: Pricing & Hedging in diskreter Zeit Literatur Kapitel 16 * Uszczapowski: Kapitel 2, 3, 6 * Pliska: Kapitel 1.4 * Lamberton & Lapeyre:

Mehr

1.8 Der Wert zum Zeitpunkt t der long Position eines zum Zeitpunkt 0 abgeschlossenen

1.8 Der Wert zum Zeitpunkt t der long Position eines zum Zeitpunkt 0 abgeschlossenen 1 Einführung 1.4 Berechnung des Erfüllungspreises eines Forwards mit Hilfe des NAP 1.6 Sichere Wertgleichheit zweier Portfolios zum Zeitpunkt T liefert Wertgleichheit zum Zeitpunkt 0 1.7 Preisbestimmung

Mehr

76 10. WEITERE ASPEKTE

76 10. WEITERE ASPEKTE 76 10. WEITERE ASPEKTE 10. Weitere Aspekte 10.1. Aktien mit Dividendenzahlungen Betrachten wir das Black Scholes-Modell. Falls die Aktie nun Dividenden bezahlt, wird der Wert der Aktie um den Wert der

Mehr

Fondsgebundene Lebensversicherungsverträge mit garantierten Auszahlungen

Fondsgebundene Lebensversicherungsverträge mit garantierten Auszahlungen Günther Sieghartsleitner Fondsgebundene Lebensversicherungsverträge mit garantierten Auszahlungen Diplomarbeit Technische Mathematik Studienzweig Operations Research, Statistik, Finanz- und Versicherungsmathematik

Mehr

Risikomanagement: Hintergrund und Ziele

Risikomanagement: Hintergrund und Ziele Risikomanagement: Hintergrund und Ziele Beispiel 1 Anfangskapital V 0 = 100 Spiel: man verliert oder gewinnt 50 mit Wahrsch. jeweils 1/2. Kapital nach dem Spiel V 1 = { 150 mit Wahrsch. 1/2 50 mit Wahrsch.

Mehr

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Francesca BIAGINI, München, Daniel ROST, München Money out of nothing? - Prinziien und Grundlagen der Finanzmathematik Die Finanzmathematik hat als jüngste mathematische Diszilin in den letzten 15 Jahren

Mehr

Aktien, D Derivate, A Arbitrage Kursverläufe des DAX: Tagesgang 5.1.2011-1a -

Aktien, D Derivate, A Arbitrage Kursverläufe des DAX: Tagesgang 5.1.2011-1a - : Eine Einführung in die moderne Finanzmathematik Prof. Dr. Dietmar Pfeifer Institut für Mathematik chwerpunkt Versicherungs- und Finanzmathematik Kursverläufe des DA: agesgang 5.1.2011-1a - Kursverläufe

Mehr

Vorlesung im SoSe 2010 Stochastische Analysis & Zeitstetige Finanzmathematik

Vorlesung im SoSe 2010 Stochastische Analysis & Zeitstetige Finanzmathematik Univ. Leipzig Mathematisches Institut Vertretung Professur Stochastische Prozesse Max v. Renesse email: mrenesse@math.tu-berlin.de Vorlesung im SoSe 2010 Stochastische Analysis & Zeitstetige Finanzmathematik

Mehr

Optionen. Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg

Optionen. Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg Optionen Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg 1 Übersicht Der Optionsvertrag Pay Offs / Financial Engineering Wertgrenzen Put-Call-Paritätsbedingung Bewertung von Optionen

Mehr

Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung

Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung Ausarbeitung zum Vortrag im Seminar Stochastische Dynamische Optimierung vom 18.01.2008 Datum : 18.01.2008 Verfasser: Martin Schymalla

Mehr

Interdisziplinäres Vertiefungsfach Geld und Finanzierung Vertiefungskurs I: Optionspreise und Derivate

Interdisziplinäres Vertiefungsfach Geld und Finanzierung Vertiefungskurs I: Optionspreise und Derivate Interdisziplinäres Vertiefungsfach Geld und Finanzierung Vertiefungskurs I: Optionspreise und Derivate Klaus Pötzelberger Institut für Statistik und Mathematik Wirtschaftsuniversität Wien Inhaltsverzeichnis

Mehr

Diskrete Stochastik der Finanzmärkte. Einführung und Anwendungsbeispiel

Diskrete Stochastik der Finanzmärkte. Einführung und Anwendungsbeispiel Seminarbeitrag Diskrete Stochastik der Finanzmärkte. Einführung und Anwendungsbeispiel Sven Wiesinger 8. Juni 2004 1. Einleitung Historisches. Bei dem Versuch, eine Theorie der Spekulation zu entwickeln,

Mehr

Bewertung von Derivaten im Black-Scholes Modell

Bewertung von Derivaten im Black-Scholes Modell Bewertung von Derivaten im Black-Scholes Modell Bachelorarbeit Westfälische Wilhelms-Universität Münster Fachbereich Mathematik und Informatik Institut für Mathematische Statistik Betreuung: PD Dr. Volkert

Mehr

Aufgaben zur Vorlesung Finanzmanagement

Aufgaben zur Vorlesung Finanzmanagement Aufgaben zur Vorlesung Finanzmanagement B. rke FH Gelsenkirchen, Abteilung Bocholt February 4, 006 Aufgabenblatt: "Bewertung von Optionen" 1 Lösungshinweise 1 uropean Put Option Zeichnen Sie den einer

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel von Christian Schmitz Übersicht Zufallszahlen am Computer Optionspreis als Erwartungswert Aktienkurse simulieren Black-Scholes Formel Theorie

Mehr

Bewertung von amerikanischen Optionen im CRR Modell. Seminararbeit von Nadja Amedsin

Bewertung von amerikanischen Optionen im CRR Modell. Seminararbeit von Nadja Amedsin Bewertung von amerikanischen Optionen im CRR Modell Seminararbeit von Nadja Amedsin 22.05.10 i Inhaltsverzeichnis 1 Einführung 1 2 Amerikanischer Claim 1 2.1 Beispiele................................ 2

Mehr

Die Bewertung von Derivaten in zeitdiskreten Modellen

Die Bewertung von Derivaten in zeitdiskreten Modellen Die Bewertung von Derivaten in zeitdiskreten Modellen Bachelorarbeit zur Erlangung des akademischen Grades Bachelor of Science Westfälische Wilhelms-Universität Münster Fachbereich Mathematik und Informatik

Mehr

Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen)

Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen) Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen) Peter Albrecht (Mannheim) Die Prüfung des Jahres 2004 im Bereich Finanzmathematik (Grundwissen) wurde am 09. Oktober 2004 mit diesmal

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel Seite 1 von 24 Zufallszahlen am Computer 3 Gleichverteilte Zufallszahlen 3 Weitere Verteilungen 3 Quadratische Verteilung 4 Normalverteilung

Mehr

commodities (Waren/handelbare Rohstoffe, z.b. Edel- u. Industriemetalle, Agrar-Produkte,...)

commodities (Waren/handelbare Rohstoffe, z.b. Edel- u. Industriemetalle, Agrar-Produkte,...) Seydel: Skript Numerische Finanzmathematik, Prolog (Version 2011) 1 ¼º ÈÖÓÐÓ µ Ö Ú Ø A. Übersicht Wesentliche Anlagemärkte sind Aktien Anleihen Rohstoffe equities, stocks bonds commodities (Waren/handelbare

Mehr

Derivate. Risikomanagement mit Optionen. Falk Everding

Derivate. Risikomanagement mit Optionen. Falk Everding Derivate Risikomanagement mit Optionen Falk Everding Inhalt Einführung Kassa- und Termingeschäfte Basisgüter bei Optionen Handelsplätze von Optionen Optionsarten Funktionsweisen von Optionen Ausstattungsmerkmale

Mehr

Was kosten Garantien?

Was kosten Garantien? Alternative Zinsgarantien in der Lebensversicherung, Köln, 1. Juni 2012 Was kosten Garantien? Prof. Dr. Ralf Korn Technische Universität Kaiserslautern, Fachbereich Mathematik EI-QFM und Fraunhofer ITWM

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2014

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2014 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2014 Walter Sanddorf-Köhle Foliensatz Nr. 8 1 / 40 Erweiterungen des Binomialmodells Dividendenzahlungen Sei S der Wert einer Aktie

Mehr

Irrfahrten. Und ihre Bedeutung in der Finanzmathematik

Irrfahrten. Und ihre Bedeutung in der Finanzmathematik Irrfahrten Und ihre Bedeutung in der Finanzmathematik Alexander Hahn, 04.11.2008 Überblick Ziele der Finanzmathematik Grundsätzliches zu Finanzmarkt, Aktien, Optionen Problemstellung in der Praxis Der

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 22. Juni 2015 Erinnerung Eine Option ist das Recht (aber nicht die Verpflichtung) ein Produkt S in der Zukunft zu einem heute festgelegten

Mehr

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

Zur Bewertung von Basket Optionen

Zur Bewertung von Basket Optionen Westfälische Wilhelms-Universität Münster Fachbereich Mathematik und Informatik Institut für Mathematische Statistik Zur Bewertung von Basket Optionen Bachelorarbeit August 2 Leo Bronstein MatrikelNummer

Mehr

Bulle und Bär. Wie die Finanzmathematik Risiken bewertet. von Christoph Kühn

Bulle und Bär. Wie die Finanzmathematik Risiken bewertet. von Christoph Kühn Forschung intensiv Bulle und Bär Wie die Finanzmathematik Risiken bewertet von Christoph Kühn Finanzderivate gelten als obskur, verwickelt und riskant. Und das nicht zu Unrecht, wie die aktuelle Krise

Mehr

Derivate und Bewertung

Derivate und Bewertung . Dr. Daniel Sommer Marie-Curie-Str. 0 6049 Frankfurt am Main Klausur Derivate und Bewertung.......... Wintersemester 006/07 Klausur Derivate und Bewertung Wintersemester 006/07 Aufgabe 1: Statische Optionsstrategien

Mehr

Zusammenfassung Finanzmarkttheorie 2

Zusammenfassung Finanzmarkttheorie 2 UNI BERN BWL Zusammenfassung Finanzmarkttheorie 2 FS 2014 bei Prof. Dr. Heinz Zimmermann Zusammenfassung zusammengestellt aus den Folien zur Vorlesung. Zusammenfassung enthält wahrscheinlich noch Typos.

Mehr

Einführung in die Finanzmathematik Vorlesung an der TU Darmstadt WS 2004/2005

Einführung in die Finanzmathematik Vorlesung an der TU Darmstadt WS 2004/2005 Einführung in die Finanzmathematik Vorlesung an der TU Darmstadt WS 2004/2005 Jakob Creutzig TU Darmstadt, AG 9 9. Februar 2005 Inhaltsverzeichnis 1 Finanzderivate 2 2 Ein-Perioden-Modellierung 8 3 Prozesse

Mehr

2. Modelle in diskreter Zeit

2. Modelle in diskreter Zeit 2. Modelle in diskreter Zeit Zuerst werden die derivativen Produkte erklärt. Ausschliesslich mit Arbitrage-Überlegungen wird dann die Put-Call-Parität hergeleitet. Danach folgt ein einfaches und eindrückliches

Mehr

Optionsbewertung. Christof Heuer und Fabian Lenz. 2. Februar 2009

Optionsbewertung. Christof Heuer und Fabian Lenz. 2. Februar 2009 nach Black-Scholes mit sprüngen 2. Februar 2009 nach Black-Scholes mit sprüngen Inhaltsverzeichnis 1 Einleitung Optionsarten Modellannahmen 2 Aktienmodell Beispiele für e ohne Sprung 3 nach Black-Scholes

Mehr

Termingeschäfte. Bedingte Termingeschäfte. Unbedingte Termingeschäfte, bedingte Ansprüche (contingent claims) unbedingte Ansprüche

Termingeschäfte. Bedingte Termingeschäfte. Unbedingte Termingeschäfte, bedingte Ansprüche (contingent claims) unbedingte Ansprüche Optionen Termingeschäfte Bedingte Termingeschäfte bedingte Ansprüche (contingent claims) Optionen Kreditderivate Unbedingte Termingeschäfte, unbedingte Ansprüche Forwards und Futures Swaps 2 Optionen Der

Mehr

Kurzzusammenfassung zu Derivate

Kurzzusammenfassung zu Derivate Kurzzusammenfassung zu Derivate In dieser Zusammenfassung wird der Einsatz und die Funktion von : - Devisentermingeschäften - Call- und Put-Optionen (american styled) erläutert. 1. Devisentermingeschäft

Mehr

Futures und Optionen. Einführung

Futures und Optionen. Einführung Futures und Optionen Einführung Plan Märkte Kassamarkt Terminmarkt Unterscheidung Funktionsweise Die statische Sichtweise Futures und Forwards Verpflichtungen Optionen Rechte und Verpflichtungen Grundpositionen

Mehr

Flonia Lengu. Termingeschäfte: Futures und Optionen/Forwards/Futures: Terminkauf und -verkauf

Flonia Lengu. Termingeschäfte: Futures und Optionen/Forwards/Futures: Terminkauf und -verkauf Flonia Lengu Termingeschäfte: Futures und Optionen/Forwards/Futures: Terminkauf und -verkauf Gliederung 1. Einführung in derivative Finanzinstrumente 2. Futures und Optionen 3. Terminkauf und verkauf von

Mehr

Bewertung von exotischen Optionen im CRR Modell

Bewertung von exotischen Optionen im CRR Modell Bewertung von exotischen Optionen im CRR Modell Bachelorarbeit von Stefanie Tiemann 11. 08. 2010 Betreuer: Privatdozent Dr. Volkert Paulsen Institut für mathematische Statistik Fachbereich Mathematik und

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Credit Metrics: Eine Einführung

Credit Metrics: Eine Einführung Credit Metrics: Eine Einführung Volkert Paulsen July 23, 2009 Abstract Credit Metrics ist ein Kredit Risko Modell, daß den Verlust quantifiziert, der durch eine Bonitätsveränderung von Schuldnern verursacht

Mehr

Vertical-Spreads Iron Condor Erfolgsaussichten

Vertical-Spreads Iron Condor Erfolgsaussichten www.mumorex.ch 08.03.2015 1 Eigenschaften Erwartung Preis Long Calls Long Puts Kombination mit Aktien Vertical-Spreads Iron Condor Erfolgsaussichten www.mumorex.ch 08.03.2015 2 www.mumorex.ch 08.03.2015

Mehr

Thema 21: Risk Management mit Optionen, Futures, Forwards und Swaps

Thema 21: Risk Management mit Optionen, Futures, Forwards und Swaps Thema 21: Risk Management mit Optionen, Futures, Forwards und Swaps Derivate Der Begriff Derivate kommt aus dem Lateinischen und heißt soviel wie abgeleitet. Derivate ist der Sammelbegriff für Optionen,

Mehr

Vorlesung. Finanzmathematik I. Steffen Dereich und Marcel Ortgiese. Westfälische Wilhelms-Universität Münster WS2013/14. Version: 31.01.

Vorlesung. Finanzmathematik I. Steffen Dereich und Marcel Ortgiese. Westfälische Wilhelms-Universität Münster WS2013/14. Version: 31.01. Vorlesung Finanzmathematik I Steffen Dereich und Marcel Ortgiese Westfälische Wilhelms-Universität Münster WS2013/14 Version: 31.01.2014 Inhaltsverzeichnis 1. Einführung 1 1.1. Das Finanzmarktmodell...........................

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik Einführung in die Finanzmathematik Skript 1 zur Vorlesung von Prof. Dr. Michael Kohler Fachbereich Mathematik Technische Universität Darmstadt Sommersemester 21 1 Dieses Skript basiert auf Skripten von

Mehr

Algorithmen und Software für moderne Finanzmathematik. Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern

Algorithmen und Software für moderne Finanzmathematik. Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern Algorithmen und Software für moderne Finanzmathematik Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern Gliederung: Was ist Finanzmathematik? Wie wird man reich? Portfolio-Optimierung

Mehr

Einführung in die Finanzmathematik: Diskrete Modelle Skriptum zur Vorlesung (Teile Kainhofer)

Einführung in die Finanzmathematik: Diskrete Modelle Skriptum zur Vorlesung (Teile Kainhofer) Einführung in die Finanzmathematik: Diskrete Modelle Skriptum zur Vorlesung (Teile Kainhofer) Reinhold Kainhofer FAM, TU Wien Mai 2007 Inhaltsverzeichnis 1 Das Ein-Perioden-Modell 1 1.1 Definitionen............................................

Mehr

Markov-Prozesse mit stetigem Zustands- und Parameterraum

Markov-Prozesse mit stetigem Zustands- und Parameterraum Kapitel 8 Markov-Prozesse mit stetigem Zustands- und Parameterraum Markov-Prozesse mit stetigem Zustandsraum S R (bzw. mehrdimensional S R p und in stetiger Zeit, insbesondere sogenannte Diffusionsprozesse

Mehr

Optionen, Futures und andere Derivate. John C. Hull. Fachliche Betreuung der deutschen Übersetzung durch Dr. Wolfgang Mader und Dr.

Optionen, Futures und andere Derivate. John C. Hull. Fachliche Betreuung der deutschen Übersetzung durch Dr. Wolfgang Mader und Dr. Optionen, Futures und andere Derivate 9., aktualisierte Aulage John C. Hull Fachliche Betreuung der deutschen Übersetzung durch Dr. Wolfgang Mader und Dr. Marc Wagner 11 Eigenschaften von Aktienoptionen

Mehr

Börsengehandelte Finanzderivate

Börsengehandelte Finanzderivate Börsengehandelte Finanzderivate Bestand und Handel*, in in absoluten Zahlen, Zahlen, 1990 weltweit bis 20081990 bis 2008 Bill. US-Dollar 2.200 2.288,0 2.212,8 Handel 2.000 1.800 1.808,1 1.600 1.400 1.408,4

Mehr

Musterlösung Übung 3

Musterlösung Übung 3 Musterlösung Übung 3 http://www.hoadley.net/options/ http://www.eeh.ee.ethz.ch/en/power/power-systems-laboratory/services 1. Optionsbewertung nach Black / Scholes a) Bewerten Sie eine Call-Option mit den

Mehr

B.A. Seminar Derivate: Märkte & Produkte

B.A. Seminar Derivate: Märkte & Produkte B.A. Seminar Derivate: Märkte & Produkte B. Nyarko S. Opitz Lehrstuhl für Derivate Sommersemester 2014 B. Nyarko S. Opitz (UHH) B.A. Seminar Derivate: Märkte & Produkte Sommersemester 2014 1 / 23 Organisatorisches

Mehr

Investition und Finanzierung

Investition und Finanzierung Tutorium Investition und Finanzierung Sommersemester 2014 Investition und Finanzierung Tutorium Folie 1 Inhaltliche Gliederung des 3. Tutorium Investition und Finanzierung Tutorium Folie 2 Aufgabe 1: Zwischenform

Mehr

Jan Kallsen. Mathematical Finance Eine Einführung in die zeitdiskrete Finanzmathematik

Jan Kallsen. Mathematical Finance Eine Einführung in die zeitdiskrete Finanzmathematik Jan Kallsen Mathematical Finance Eine Einführung in die zeitdiskrete Finanzmathematik AU zu Kiel, WS 13/14, Stand 10. Februar 2014 Inhaltsverzeichnis 1 Mathematische Hilfsmittel 4 1.1 Absolutstetigkeit

Mehr