Stirling-Maschine (STI)

Größe: px
Ab Seite anzeigen:

Download "Stirling-Maschine (STI)"

Transkript

1 TUM Anfängerpraktikum für Physiker II Wintersemester 26/27 Stirling-Maschine (STI) Inhaltsverzeichnis 5. Dezember Einleitung Thermodynamische Kreisprozesse Versuchsdurchführung Heißluftmotor Kältemaschine Wärmepumpe...1

2 Einleitung 1. Einleitung Wie FHV für die Atomphysik, ist STI einer der wichtigsten Versuche der Thermodynamik. Anhand einer Stirling-Maschine wird veranschaulicht, wie der thermodynamische Kreisprozess Wärme in mechanische Arbeit umwandelt bzw. umgekehrt. Dazu wird die Stirling- Maschine als Heißluftmotor, als Kältemaschine und als Wärmepumpe betrieben. 2. Thermodynamische Kreisprozesse Allgemein läßt sich der Zustand eines abgeschlossenen Gasvolumens über die Zustandsgrößen Druck p, Volumen V und Temperatur T beschreiben. In einen Zusammenhang gebracht erhält man die Zustandsgleichung idealer Gase: p V = n R T Hier ist n die Anzahl der Gasteilchen im betrachteten Volumen und R = 8,314 J/(mol K) die Gaskonstante. Im rechtsherum durchlaufenen Kreisprozess wird das Gasvolumen isotherm expandiert das System gibt mechanische Arbeit ab und anschließend isochor abgekühlt, wodurch der Druck abnimmt. Danach wird das Volumen wieder isotherm komprimiert und isochor erhitzt, sodaß das Gas in seinen ursprünglichen Zustand gelangt. Wird der Kreisprozess linksherum durchlaufen, passiert das Gleiche in umgekehrter Reihenfolge. So wird rechtsherum Wärme in mechanische Arbeit umgewandelt, linksherum umgekehrt. Die Stirling-Maschine durchläuft den Kreisprozess nicht ideal. Da Kolben und Verdränger ständig in Bewegung sind, gibt es keine isochoren Zustandsänderungen. Die tatsächliche Kurve im p-v-diagramm liegt innerhalb der theoretischen. Die eingeschlossene Fläche ist kleiner, das heißt, die Stirling-Maschine hat einen geringeren Wirkungsgrad als theoretisch möglich. 3. Versuchsdurchführung Um die p-v-diagramme zu kalibrieren, wurde zu Beginn der Druck am p-v-indikator manuell in,1-bar-schritten erhöht und auf der y-achse markiert. Laut Anleitung beträgt die maximale Volumenänderung (15 ±,5) cm³, auf dem Diagramm dehnt sich die Kurve in x-richtung über eine Breite von 23 cm aus, 1 mm entspricht also etwa,65 cm³. Der Fehler der Arbeit wird auf ΔW =,1 J abgeschätzt, was etwa 3 cm² auf dem Diagramm entspricht Heißluftmotor Im ersten Versuchsteil sollte die Stirling-Maschine als Heißluftmotor betrieben und bei verschiedenen Drehzahlen das Drehmoment sowie die mechanische Leistung gemessen werden. Seite 2

3 Versuchsdurchführung mit 12 Volt Heizleistung und Drehzahl Für den ersten Meßdurchgang wurde der Motor mit einer Heizspannung von U = 12 V betrieben, der Heizstrom lag bei I = 12 A, die aufgenommene Heizleistung betrug demnach L h = (144 ± 7,2)W, wenn man den Fehler der Spannung auf ΔU =,1 V und den des Stroms auf ΔI =,5 A (Schwankung des Meßgeräts) abschätzt. Da die vom Digitalzähler angezeigte Drehzahl ein sich ständig ändernder Mittelwert war, wurde er bei unbelastetem Motor zwölfmal abgelesen: 6,6 Hz, 7,3 Hz, 6,9 Hz, 6,5 Hz, 7,4 Hz, 6,8 Hz, 6,5 Hz, 6,9 Hz, 6,7 Hz, 6,9 Hz, 7, Hz und 6,8 Hz. Der Mittelwert beträgt f = (6,86 ±,9) Hz, bei einem Vertrauensniveau von 68,26 % und einer Studentfunktion von t = 1,6 (1 Messungen). Arbeit und Leistung Aus dem p-v-diagramm erhält man die beim Kreisprozess verrichtete Arbeit, indem man die p-v-kurve integriert, also die eingeschlossene Fläche berechnet. Beim unbelasteten Motor ergeben sich Arbeit und Leistung zu W = (3,79 ±,1) J und L p = (26, ± 1,3) W, für 4 Hz ist W = (3,53 ±,1) J bzw. L p = (14,12 ± 1,) W. L p = f W L = f L f W L W = f W W f Drehmoment Zur Drehmomentmessung bei verschiedenen Drehzahlen diente ein Prony scher Zaum. Legt man für die gemessene Kraft einen geschätzten Fehler von ΔF =,5 N zugrunde, erhält man mit einem Hebel von l = (23,4 ±,1) cm durchgehend einen Fehler von ΔM =,1 Nm. Seite 3

4 ,12 Drehmomente bei verschiedenen Drehzahlen Drehmoment in Nm,1,8,6,4,2 4 4,5 5 5,5 6 6,5 Drehzahl in Hz Abbildung 1: M- f- Diagramm Drehzahl (Hz) 4 4,5 5 5,5 6 Kraft (N),45,36,29,15,11 Drehmoment (Nm),11 ±,1,8 ±,1,7 ±,1,4 ±,1,3 ±,1 Tabelle 1: Drehmomente verschiedener Drehzahlen Wirkungsgrad Der thermische und der effektive Wirkungsgrad stellen das Verhältnis der Leistung aus dem p-v-diagramm bzw. der mechanischen Leistung zur zugeführten Heizleistung dar. L m = 2 f l F t = L p L h e = L m L h Seite 4

5 Der thermische Wirkungsgrad beträgt beim unbelasteten Motor η t = (18,6 ± 1,62)% und bei einer Drehzahl von 4 Hz η t = (9,81 ± 1,18)%. Der effektive Wirkungsgrad kann nur bei angelegtem Zaum gemessen werden. Der Fehler der Drehzahl wurde mit Δf =,1 Hz abgeschätzt (etwa wie oben berechnet). eff. Wirkungsgrad bei versch. Drehzahlen effektiver Wirkungsgrad,2,2,2,1,1,1,1,1 3,5 4 4,5 5 5,5 6 6,5 Drehzahl in Hz Abbildung 2: η e -f-diagramm Drehzahl 4 4,5 5 5,5 6 eff. Wirkungsgrad (1,84 ±,35)% (1,65 ±,36)% (1,48 ±,37)% (,84 ±,34)% (,67 ±,35)% Tabelle 2: η e bei angelegtem Zaum Versuchsdurchführung mit 16 Volt Im folgenden werden die gleichen Meßunsicherheiten angesetzt, wie in 3.1. wenn nichts anderes angegeben ist. Heizleistung und Drehzahl Alle Messungen wurden mit einer Heizspannung von U = 16 V wiederholt. Der Heizstrom lag bei I = 15,5 A, die Heizleistung betrug also L h = (248 ± 9,55)W. Die Drehzahl wurde sechsmal abgelesen: 7,4 Hz, 7,6 Hz, 7,6 Hz, 7,6 Hz, 7,7 Hz und 7,5 Hz. Der Mittelwert liegt bei f = (7,57 ±,3) Hz. Scheint so, als liefe der Motor bei höherer Heizleistung runder. Seite 5

6 Arbeit und Leistung Bei unbelastetem Motor erhält man für Arbeit und Leistung W = (5,57 ±,1) J und L p = (42,16 ±,92) W, bei einer Drehzahl von f = 4 Hz beträgt W = (4,94 ±,1) J und L p = (19,76 ±,55) W. Drehmoment Die gestrichelte Linie stellt einen Vergleich zur Messung mit einer Heizspannung von U = 12 V dar. Auch hier ergab sich für das Drehmoment durchgehend ein Fehler von ΔM =,1 Nm.,3 Drehmomente bei verschiedenen Drehzahlen Drehmoment in Nm,25,2,15,1,5 4 4,5 5 5,5 6 6,5 Drehzahl in Hz Abbildung 3: Drehmomente bei 12 V (gestrichelt) und 16 V im Vergleich Drehzahl (Hz) 4 4,5 5 5,5 6 Kraft (N) 1,13 1,8,93,56,53 Drehmoment (Nm),26 ±,1,25 ±,1,22 ±,1,13 ±,1,12 ±,1 Tabelle 3: Drehmomente verschiedener Drehzahlen Seite 6

7 Wirkungsgrad Bei höherer Heizleistung ist der thermische Wirkungsgrad etwas niedriger. Er beträgt beim unbelasteten Motor η t = (17, ±,11)%, bei einer Drehzahl von 4 Hz halbiert er sich fast auf η t = (7,97 ±,12)%. Der effektive Wirkungsgrad ist allerdings deutlich gestiegen, auch hier ein Vergleich mit der 12-Volt-Messung.,6 eff. Wirkungsgrad bei versch. Drehzahlen effektiver Wirkungsgrad,5,4,3,2,1 3,5 4 4,5 5 5,5 6 6,5 Drehzahl in Hz Abbildung 4: effektiver Wirkungsgrad bei 12 V (gestrichelt) und 16 V im Vergleich Drehzahl 4 4,5 5 5,5 6 eff. Wirkungsgrad (4,61 ±,3)% (4,96 ±,32)% (4,75 ±,32)% (3,14 ±,27)% (3,25 ±,29)% Tabelle 4: η e bei angelegtem Zaum Drehzahlabhängigkeit des effektiven Wirkungsgrades η e Je schneller der Motor dreht, umso weniger Zeit hat das Gas um seine Temperatur zu ändern. Die Folge ist, daß das Gas bei höherer Drehzahl geringere Temperaturunterschiede erfährt und somit weniger Wärme bzw. Energie transportieren kann. Im Alltag merkt man das auch daran, daß gerade turbogeladene Motoren im Winter bzw. bei kaltem Wetter spürbar mehr Durchzug haben als sonst. Seite 7

8 Kältemaschine 3.2. Kältemaschine Den Kreisprozess linksherum durchlaufend läßt sich durch einen Elektromotor zugeführte mechanische Arbeit in Wärme umwandeln. Einem oben anstelle der Heizwendel angebrachten wassergefüllten Reagenzglas wurde Wärme entzogen und unten an die Wasserkühlung abgegeben. So kühlte das Wasser ab und gefror fast Temperaturverlauf Kältemaschine T in C t in s Abbildung 5: Abkühlen des Wassers bis nahe an den Gefrierpunkt Nach etwa acht Minuten wurde das Thermometer bewegt, ab diesem Zeitpunkt blieb die Temperatur konstant bei T =,7 C. Wir vermuteten, daß das Thermometer aus dem Eisstück gerutscht war und nur noch die Temperatur des flüssigen Wassers erfaßte. Daß aber dieses Wasser nicht gefror und die Temperatur auch bei einem zweiten Versuch nicht unter den Gefrierpunkt sank bestärkte uns nicht in dieser Annahme. Eine Parallelgruppe konnte die Temperatur auf unter T = -3 C senken (mit deren Maschine) Wärmepumpe Im Grunde ist eine Wärmepumpe das Gleiche wie eine Kältemaschine, mit dem Unterschied, daß man sie von einem anderen Standpunkt aus betrachtet. Ob der Kreisprozess links- oder rechtsherum durchlaufen wird, hängt davon ab, ob man Wärme oder ob man mechanische Energie hineinsteckt (nicht von der Drehrichtung des Schwungrades). Seite 8

9 Wärmepumpe Beim Betrieb als Wärmepumpe soll das Wasser erhitzt statt abgekühlt werden. Da man nun nicht die Wasserkühlung unten und das Reagenzglas oben gegeneinander austauschen kann, läßt man den Elektromotor andersherum drehen. Dadurch wird der Wasserkühlung Wärme entzogen und dem Wasser im Reagenzglas zugeführt, bis es siedet (zumindest theoretisch). 12 Temperaturverlauf Wärmepumpe 1 T in C Abbildung 6: Erhitzen des Wassers bis fast zum Siedepunkt t in s Der Sprung bei niedrigen Temperaturen kam durch Umrühren zustande, die Temperaturmessung stimmt also erst ab Sekunde 3. Die Kurve steigt bis zu einer Temperatur von etwa T = 6 C linear an, darüber nimmt die Steigung zunehmend ab. Das läßt sich evtl. dadurch erklären, daß bei steigenden Temperaturen Verluste über die Isolation sowie durch Verdunstung zunehmen. Der höchste gemessene Wert beträgt T = 99,9 C und war nur durch kräftiges, andauerndes Umrühren zu erreichen. Hörte man mit dem Rühren auf, fiel die Temperatur gleich wieder. Ein paar Male zeigte das Thermometer Wert über 15 C an, allerdings nur dann, wenn man an die Steckverbindung am Gerät stieß, was wohl auf einen Wackelkontakt hindeutet. Seite 9

Physikalisches Anfaengerpraktikum. Stirling-Motor

Physikalisches Anfaengerpraktikum. Stirling-Motor Physikalisches Anfaengerpraktikum Stirling-Motor Ausarbeitung von Constantin Tomaras & David Weisgerber (Gruppe 10) Montag, 24. Oktober 2005 email: Weisgerber@mytum.de 1 (1) Einleitung Ein Stirling-Motor

Mehr

Physik-Praktikum: STI

Physik-Praktikum: STI Physik-Praktikum: STI Einleitung Thermodynamische Kreisprozesse spielen eine wichtige Rolle in verschiedenen Bereichen des täglichen Lebens: zum Beispiel beruht praktisch die gesamte Energieerzeugung aus

Mehr

Praktikum II ST: Stirling-Motor

Praktikum II ST: Stirling-Motor Praktikum II ST: Stirling-Motor Betreuer: Norbert Lages Hanno Rein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 14. April 2004 Made with L A TEX and Gnuplot Praktikum

Mehr

ST Der Stirling-Motor als Wärmekraftmaschine

ST Der Stirling-Motor als Wärmekraftmaschine ST Der Stirling-Motor als Wärmekraftmaschine Blockpraktikum Herbst 2007 Gruppe 2b 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Stirling-Kreisprozess............................. 2 1.2 Technische

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Versuch 26: Stirling-Motor UNIVERSITÄT DER BUNDESWEHR MÜNCHEN Fakultät für Elektrotechnik und Informationstechnik Institut für Physik Oktober 2015 2 Versuch 26 Stirling-Motor Der

Mehr

1. EIN MOTOR LÄUFT MIT HEIßER LUFT

1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stirling-Motor 1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stellt man den Kolben in Abb. 1 von dem kalten in das heiße Wasserbad, so dehnt sich die Luft im Kolben aus. Der Stempel kann eine Last hochheben Physiker

Mehr

II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1

II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1 II. Wärmelehre II.2. Die auptsätze der Wärmelehre Physik für Mediziner 1 1. auptsatz der Wärmelehre Formulierung des Energieerhaltungssatzes unter Einschluss der Wärmenergie: die Zunahme der Inneren Energie

Mehr

1. EIN MOTOR LÄUFT MIT HEIßER LUFT

1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stirling-Motor 1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stellt man den Kolben in Abb. 1 von dem kalten in das heiße Wasserbad, so dehnt sich die Luft im Kolben aus. Der Stempel kann eine Last hochheben, das

Mehr

T 300K,p 1,00 10 Pa, V 0, m,t 1200K, Kontrolle Physik Leistungskurs Klasse Hauptsatz, Kreisprozesse

T 300K,p 1,00 10 Pa, V 0, m,t 1200K, Kontrolle Physik Leistungskurs Klasse Hauptsatz, Kreisprozesse Kontrolle Physik Leistungskurs Klasse 2 7.3.207. Hauptsatz, Kreisprozesse. Als man früh aus dem Haus gegangen ist, hat man doch versehentlich die Kühlschranktür offen gelassen. Man merkt es erst, als man

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Heißluftmotor Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer

Mehr

Isotherme 3. 4 Adiabate 2 T 1. Adiabate Isotherme T 2. Arbeit nach außen = eingeschlossene Kurve

Isotherme 3. 4 Adiabate 2 T 1. Adiabate Isotherme T 2. Arbeit nach außen = eingeschlossene Kurve Carnotscher Kreisprozess Carnot Maschine = idealisierte Maschine, experimentell nicht gut zu realisieren. Einfacher Kreisprozess aus zwei isothermen und zwei adiabatischen Zustandsänderungen. Arbeit nach

Mehr

Physikalisches Grundpraktikum W5- Heißluftmotor. W5 - Heißluftmotor

Physikalisches Grundpraktikum W5- Heißluftmotor. W5 - Heißluftmotor W5 - Heißluftmotor Aufgabenstellung: Zeichnen Sie ein p-v-diagramm eines Heißluftmotors bei verschieden Heizspannungen auf und schätzen Sie daraus die Reibungsarbeit ab. Bestimmen Sie den Wirkungsgrad

Mehr

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess Inhalt 10.10 Der zweite Hauptsatz 10.10.1 Thermodynamischer Wirkungsgrad 10.10.2 Der Carnotsche Kreisprozess Für kinetische Energie der ungeordneten Bewegung gilt: Frage: Frage: Wie kann man mit U Arbeit

Mehr

Heissluftmotor ******

Heissluftmotor ****** luftmotor 8.3.302 luftmotor ****** 1 Motivation Ein luft- bzw. Stirlingmotor erzeugt mechanische Arbeit. Dies funktioniert sowohl mit einer Beheizung als auch mit einem Kältebad. Durch Umkehrung der Laufrichtung

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

Übungsblatt 2 ( )

Übungsblatt 2 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung

Mehr

Zur Erinnerung. Wärmetransport durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung. Planck sches Strahlungsgesetz. Stefan-Boltzman-Gesetz

Zur Erinnerung. Wärmetransport durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung. Planck sches Strahlungsgesetz. Stefan-Boltzman-Gesetz Zur Erinnerung Stichworte aus der 9. orlesung: Wärmetransort durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung Planck sches Strahlungsgesetz Stefan-Boltzman-Gesetz Wiensches erschiebungsgesetz Hautsätze

Mehr

Brückenschaltung (BRÜ)

Brückenschaltung (BRÜ) TUM Anfängerpraktikum für Physiker II Wintersemester 2006/2007 Brückenschaltung (BRÜ) Inhaltsverzeichnis 9. Januar 2007 1. Einleitung... 2 2. Messung ohmscher und komplexer Widerstände... 2 3. Versuchsauswertung...

Mehr

Physik 2 (B.Sc. EIT) 2. Übungsblatt

Physik 2 (B.Sc. EIT) 2. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,

Mehr

4 Hauptsätze der Thermodynamik

4 Hauptsätze der Thermodynamik I Wärmelehre -21-4 Hauptsätze der hermodynamik 4.1 Energieformen und Energieumwandlung Innere Energie U Die innere Energie U eines Körpers oder eines Systems ist die gesamte Energie die darin steckt. Es

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

STIRLING -Prozess W 24

STIRLING -Prozess W 24 STIRLING -Prozess W 24 Aufgabenstellung. Der STIRLINGmotor ist als Kältemaschine zu betreiben; die umgesetzten Energien und die Leistungszahl sind zu ermitteln..2 Der STIRLINGmotor ist als Heißluftmotor

Mehr

4.6 Hauptsätze der Thermodynamik

4.6 Hauptsätze der Thermodynamik Thermodynamik.6 Hautsätze der Thermodynamik.6. Erster Hautsatz: Energieerhaltungssatz In einem abgeschlossenen System bleibt der gesamte Energievorrat, also die Summe aus Wärmeenergie, mechanischer Energie

Mehr

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Nullter und Erster Hauptsatz der Thermodynamik. Thermodynamische

Mehr

W12. Stirling-Prozess

W12. Stirling-Prozess W12 Stirling-Prozess Thermodynamische Kreisprozesse sind die physikalische Grundlage der Erzeugung mechanischer Arbeit durch Wärmeenergiemaschinen. In diesem Versuch soll ein Einblick in technische Anwendung

Mehr

Physikalisches Anfaengerpraktikum. Zustandsgleichung idealer Gase und kritischer Punkt

Physikalisches Anfaengerpraktikum. Zustandsgleichung idealer Gase und kritischer Punkt Physikalisches Anfaengerpraktikum Zustandsgleichung idealer Gase und kritischer Punkt Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe 37) Freitag, 18. März 005 email: Marcel.Engelhardt@mytum.de

Mehr

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3 Aufgaben zum Stirlingschen Kreisrozess. Ein Stirling-Motor arbeite mit 50 g Luft ( M 0g mol )zwischen den emeraturen 50 C und 50 C sowie den olumina 000cm und 5000 cm. a) Skizzieren Sie das --Diagramm

Mehr

Thermodynamik Thermodynamische Systeme

Thermodynamik Thermodynamische Systeme Thermodynamik Thermodynamische Systeme p... Druck V... Volumen T... Temperatur (in Kelvin) U... innere Energie Q... Wärme W... Arbeit Idealisierung; für die Betrachtung spielt die Temperatur eine entscheidende

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 ladimir Dyakonov #0 am 4.0.007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E43, Tel. 888-5875,

Mehr

Vakuum (VAK)

Vakuum (VAK) Inhaltsverzeichnis TUM Anfängerpraktikum für Physiker Vakuum (VAK) 25.2.26. Einleitung...2 2. Ideale Gase...2 3. Verwendetes Material...2 4. Versuchsdurchführung...2 4.. Eichung der Pirani-Manometer...2

Mehr

Thermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden.

Thermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden. Wärmemenge: hermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden. Sie kann aber unter gewissen oraussetzungen von einem Körer auf einen nderen übertragen werden. Dabei

Mehr

Wärmelehre Zustandsänderungen ideales Gases

Wärmelehre Zustandsänderungen ideales Gases Wärmelehre Zustandsänderungen ideales Gases p Gas-Gleichung 1.Hauptsatz p V = N k B T U Q W p 1 400 1 isobar 300 200 isochor isotherm 100 p 2 0 2 adiabatisch 0 1 2 3 4 5 V V 2 1 V Bemerkung: Mischung verschiedener

Mehr

Versuch Nr. 9. Thermodynamische Kreisprozesse: Der Stirling-Motor

Versuch Nr. 9. Thermodynamische Kreisprozesse: Der Stirling-Motor Versuch Nr. 9 Thermodynamische Kreisprozesse: Der Stirling-Motor Kreisprozesse Als Kreisprozesse bezeichnet man in der Thermodynamik eine Abfolge von Zustandsänderungen, die periodisch ablaufen und immer

Mehr

Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008

Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Thermodynamik Thermodynamics Markus Arndt Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Die Hauptsätze der Thermodynamik & Anwendungen in Wärmekraft und Kältemaschinen

Mehr

Allgemeine Gasgleichung und technische Anwendungen

Allgemeine Gasgleichung und technische Anwendungen Allgemeine Gasgleichung und technische Anwendungen Ziele i.allgemeine Gasgleichung: Darstellung in Diagrammen: Begriffsdefinitionen : Iso bar chor them Adiabatische Zustandsänderung Kreisprozess prinzipiell:

Mehr

Perpetuum Mobile I. Ein Perpetuum mobile erster Art wird durch den ersten Hauptsatz der Thermodynamik ausgeschlossen.

Perpetuum Mobile I. Ein Perpetuum mobile erster Art wird durch den ersten Hauptsatz der Thermodynamik ausgeschlossen. Perpetuum Mobile I Perpetuum mobile erster Art: Unter einem perpetuum mobile erster Art versteht man eine Vorrichtung, deren Teile, einmal angeregt, nicht nur dauernd in Bewegung bleiben, sondern dabei

Mehr

Aufgaben Kreisprozesse. 1. Ein ideales Gas durchläuft den im V(T)- Diagramm dargestellten Kreisprozess. Es ist bekannt:

Aufgaben Kreisprozesse. 1. Ein ideales Gas durchläuft den im V(T)- Diagramm dargestellten Kreisprozess. Es ist bekannt: Aufgaben Kreisrozesse. Ein ideales Gas durchläuft den im ()- Diagramm dargestellten Kreisrozess. Es ist bekannt: 8 cm 6 cm 00 K 8MPa MPa a) Geben Sie die fehlenden Zustandsgrößen, und für die Zustände

Mehr

Physik 2 Hydrologen et al., SoSe 2013 Lösungen 3. Übung (KW 19/20) Carnot-Wärmekraftmaschine )

Physik 2 Hydrologen et al., SoSe 2013 Lösungen 3. Übung (KW 19/20) Carnot-Wärmekraftmaschine ) 3. Übung KW 19/20) Aufgabe 1 T 4.5 Carnot-Wärmekraftmaschine ) Eine Carnot-Wärmekraftmaschine arbeitet zwischen den Temperaturen und. Während der isothermen Expansion vergrößert sich das Volumen von auf

Mehr

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung a) Ein Kilogramm Wasser bei = C wird in thermischen Kontakt mit einem Wärmereservoir bei

Mehr

Energie. Stirlingmotor. Führen Sie den Versuch durch. Beantworten Sie die Fragen auf dem Arbeitsblatt.

Energie. Stirlingmotor. Führen Sie den Versuch durch. Beantworten Sie die Fragen auf dem Arbeitsblatt. Energie Stirlingmotor Material: Die Arbeitsblätter Das Informationsblatt Ihr Physikbuch Der Stirlingmotor mit Parabolspiegel Arbeitsaufträge: Führen Sie den Versuch durch. Beantworten Sie die Fragen auf

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 200 Abbildungen und 7 Tabellen Springer Inhaltsverzeichnis Liste der Formelzeichen XV 1 Grundlagen der Technischen Thermodynamik 1 1.1 Gegenstand und Untersuchungsmethodik

Mehr

(1) du = dq + dw. ln( Ω)

(1) du = dq + dw. ln( Ω) Theorie Wärmehauptsätze Erster Hauptsatz der Thermodynamik Dieser Satz sagt aus, dass sich die innere Energie eines thermodynamischen Systems sich durch Zufuhr bzw. Entnahme von Wärme und Arbeit ändern

Mehr

W2 Gasthermometer. 1. Grundlagen: 1.1 Gasthermometer und Temperaturmessung

W2 Gasthermometer. 1. Grundlagen: 1.1 Gasthermometer und Temperaturmessung W2 Gasthermometer Stoffgebiet: Versuchsziel: Literatur: Temperaturmessung, Gasthermometer, Gasgesetze Mit Hilfe eines Gasthermometers sind der Ausdehnungs- und Druckkoeffizient von Luft zu bestimmen. Beschäftigung

Mehr

3.2 Gasthermometer 203

3.2 Gasthermometer 203 3.2 Gasthermometer 203 3.2. Gasthermometer Ziel Verifizierung von Zusammenhängen, die durch die ideale Gasgleichung beschrieben werden (isotherme und isochore Zustandsänderung), Bestimmung des absoluten

Mehr

Dampftafel Für den Homogenen Zustand. HEAT Haus-, Energie- und Anlagentechnik. Vorlesung Thermodynamik

Dampftafel Für den Homogenen Zustand. HEAT Haus-, Energie- und Anlagentechnik. Vorlesung Thermodynamik Dampftafel 1 Zur Berechnung thermodynamischer Prozesse (Kraftwerk, Wärmepumpe, etc.) reicht das ideale Gasgesetz nicht mehr aus Stoffdaten der realen Fluide werden benötigt Für die Bestimmung der Stoffdaten

Mehr

Thermodynamik 1 Klausur 08. September 2016

Thermodynamik 1 Klausur 08. September 2016 Thermodynamik 1 Klausur 08. September 2016 Bearbeitungszeit: 150 Minuten Umfang der Aufgabenstellung: 7 nummerierte Seiten Alle Unterlagen zur Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind

Mehr

Thermodynamische Hauptsätze, Kreisprozesse Übung

Thermodynamische Hauptsätze, Kreisprozesse Übung Thermodynamische Hauptsätze, Kreisprozesse Übung Marcus Jung 4.09.00 Inhaltsverzeichnis Inhaltsverzeichnis Thermodynamische Hauptsätze. Aufgabe :..................................... Aufgabe :.....................................

Mehr

(b) Schritt I: freie adiabatische Expansion, also ist δw = 0, δq = 0 und damit T 2 = T 1. Folglich ist nach 1. Hauptsatz auch U = 0.

(b) Schritt I: freie adiabatische Expansion, also ist δw = 0, δq = 0 und damit T 2 = T 1. Folglich ist nach 1. Hauptsatz auch U = 0. 3 Lösungen Lösung zu 65. (a) Siehe Abbildung 1. (b) Schritt I: freie adiabatische Expansion, also ist δw 0, δq 0 und damit. Folglich ist nach 1. Hauptsatz auch U 0. Schritt II: isobare Kompression, also

Mehr

Praktikum - Wärmepumpe

Praktikum - Wärmepumpe Praktikum - Wärmepumpe chris@university-material.de, Arthur Halama Inhaltsverzeichnis 1 Theorie 2 2 Durchführung 2 2.1 Prinzip............................................ 2 2.2 Messung...........................................

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Thermodynamik des Kraftfahrzeugs Bearbeitet von Cornel Stan 1. Auflage 2012. Buch. xxiv, 598 S. Hardcover ISBN 978 3 642 27629 3 Format (B x L): 15,5 x 23,5 cm Gewicht: 1087 g Weitere Fachgebiete > Technik

Mehr

Hauptsatz der Thermodynamik

Hauptsatz der Thermodynamik 0.7. Hauptsatz der Thermodynamik Die einem System von außen zugeführte Wärmemenge Q führt zu Erhöhung U der inneren Energie U und damit Erhöhung T der Temperatur T Expansion des olumens gegen den äußeren

Mehr

Perpetuum mobile. Perpetuum mobile erster Art:

Perpetuum mobile. Perpetuum mobile erster Art: Perpetuum mobile Perpetuum mobile erster Art: Maschine, die ständig Arbeit leistet, ohne ihre Umgebung energetisch zu verändern (die also Arbeit leistet, ohne ein Energiereservoir zu benutzen). Verletzt

Mehr

Kapitel 8: Thermodynamik

Kapitel 8: Thermodynamik Kapitel 8: Thermodynamik 8.1 Der erste Hauptsatz der Thermodynamik 8.2 Mechanische Arbeit eines expandierenden Gases 8.3 Thermische Prozesse des idealen Gases 8.4 Wärmemaschine 8.5 Der zweite Hauptsatz

Mehr

Die Stirling-Maschine, Thermodynamische Kreisprozesse (STI)

Die Stirling-Maschine, Thermodynamische Kreisprozesse (STI) Seite 1 Die, Thermodynamische Kreisprozesse Themengebiet: Thermodynamik 1 Stichworte Thermodynamischer Zustand, Zustandsgröße, thermodynamischer Kreisprozess, Wirkungsgrad 2 Literatur 1. W. Demtröder,

Mehr

Laborversuche zur Physik 1 I - 6. Stirling- oder Heißluftmotor

Laborversuche zur Physik 1 I - 6. Stirling- oder Heißluftmotor FB Physik Laborversuche zur Physik 1 I - 6 Stirlingmaschine Reyher Stirling- oder Heißluftmotor Ziele Kennenlernen der Arbeitsweise der Stirlingmaschine beim Betrieb als Wärmekraftmaschine, Wärmepumpe

Mehr

Thermodynamik I Formeln

Thermodynamik I Formeln Thermodynamik I Formeln Tobi 4. September 2006 Inhaltsverzeichnis Thermodynamische Systeme 3. Auftriebskraft........................................ 3 2 Erster Hauptsatz der Thermodynamik 3 2. Systemenergie........................................

Mehr

Kapitel IV Wärmelehre und Thermodynamik

Kapitel IV Wärmelehre und Thermodynamik Kapitel IV Wärmelehre und Thermodynamik a) Definitionen b) Temperatur c) Wärme und Wärmekapazität d) Das ideale Gas - makroskopisch e) Das reale Gas / Phasenübergänge f) Das ideale Gas mikroskopisch g)

Mehr

(VIII) Wärmlehre. Wärmelehre Karim Kouz WS 2014/ Semester Biophysik

(VIII) Wärmlehre. Wärmelehre Karim Kouz WS 2014/ Semester Biophysik Quelle: http://www.pro-physik.de/details/news/1666619/neues_bauprinzip_fuer_ultrapraezise_nuklearuhr.html (VIII) Wärmlehre Karim Kouz WS 2014/2015 1. Semester Biophysik Wärmelehre Ein zentraler Begriff

Mehr

Gasthermometer. durchgeführt am von Matthias Dräger, Alexander Narweleit und Fabian Pirzer

Gasthermometer. durchgeführt am von Matthias Dräger, Alexander Narweleit und Fabian Pirzer Gasthermometer 1 PHYSIKALISCHE GRUNDLAGEN durchgeführt am 21.06.2010 von Matthias Dräger, Alexander Narweleit und Fabian Pirzer 1 Physikalische Grundlagen 1.1 Zustandgleichung des idealen Gases Ein ideales

Mehr

Ideale Gase. Abb.1: Versuchsanordnung von Torricelli

Ideale Gase. Abb.1: Versuchsanordnung von Torricelli Ideale Gase 1 Empirische Gasgesetze, Einblick in die Geschichte der Naturwissenschaften. Wie hängt das Volumen eines Gases von Druck, Temperatur und Stoffmenge ab? Definition Volumen V: Das Volumen V ist

Mehr

E-Lehre I Elektrostatik und Stromkreise

E-Lehre I Elektrostatik und Stromkreise E-Lehre I Elektrostatik und Stromkreise Mittwoch 12.04.17 und 19.04.17 Raum 108 Gruppe C (Demo) Eigenschaften elektrischer Ladung; elektrostatisches Feld; Feldstärke; Kondensator; elektrischer Strom; Stromstärke;

Mehr

Ferienkurs Experimentalphysik II Elektro- und Thermodynamik. Thermodynamik Teil II. 12. September 2011 Michael Mittermair

Ferienkurs Experimentalphysik II Elektro- und Thermodynamik. Thermodynamik Teil II. 12. September 2011 Michael Mittermair Ferienkurs Experimentalphysik II Elektro- und Thermodynamik Thermodynamik Teil II 12. September 2011 Michael Mittermair Inhaltsverzeichnis 1 Allgemeines 3 1.1 Kategorisierung von Systemen..................

Mehr

1.) Wie lautet der 1. Hauptsatz der Thermodynamik und was bedeutet er?

1.) Wie lautet der 1. Hauptsatz der Thermodynamik und was bedeutet er? W40 Name: Heißluftmotor Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine Gruppenlösung!)

Mehr

Mathematisch-Naturwissenschaftliche Fakultät I der Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum.

Mathematisch-Naturwissenschaftliche Fakultät I der Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum. Mathematisch-Naturwissenschaftliche Fakultät I der Humboldt-Universitäu Berlin Institut für Physik Physikalisches Grundpraktikum Versuchsprotokoll Zustandsgleichung idealer Gase (T4) Arbeitsplatz durchgeführt

Mehr

Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Prof. Dr. U. Schollwöck Sommersemester 2013

Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Prof. Dr. U. Schollwöck Sommersemester 2013 Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Klausur Prof. Dr. U. Schollwöck Sommersemester 2013 Matrikelnummer: Aufgabe 1 2 3 4 5 6 Summe Punkte Note: WICHTIG! Schreiben

Mehr

Die hier im pdf-format dargestellten Musterblätter sind geschützt und können weder bearbeitet noch kopiert werden.

Die hier im pdf-format dargestellten Musterblätter sind geschützt und können weder bearbeitet noch kopiert werden. Die hier im pdf-format dargestellten Musterblätter sind geschützt und können weder bearbeitet noch kopiert werden. Inhalt Themengebiet Beschreibung Millimeterpapier-Vorlage Versuch zum Temperaturverlauf

Mehr

Formel X Leistungskurs Physik 2001/2002

Formel X Leistungskurs Physik 2001/2002 Versuchsaufbau: Messkolben Schlauch PI Barometer TI 1 U-Rohr-Manometer Wasser 500 ml Luft Pyknometer 2 Bild 1: Versuchsaufbau Wasserbad mit Thermostat Gegeben: - Länge der Schläuche insgesamt: 61,5 cm

Mehr

8.4.5 Wasser sieden bei Zimmertemperatur ******

8.4.5 Wasser sieden bei Zimmertemperatur ****** 8.4.5 ****** 1 Motivation Durch Verminderung des Luftdrucks siedet Wasser bei Zimmertemperatur. 2 Experiment Abbildung 1: Ein druckfester Glaskolben ist zur Hälfte mit Wasser gefüllt, so dass die Flüsigkeit

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Einführung in die Wärmelehre - Prof. Dr. Ulrich Hahn WS 2008/09 Entwicklung der Wärmelehre Sinnesempfindung: Objekte warm kalt Beschreibung der thermische Eigenschaften

Mehr

Institut für Fachdidaktik der Naturwissenschaften Abteilung Physik und Physikdidaktik

Institut für Fachdidaktik der Naturwissenschaften Abteilung Physik und Physikdidaktik WÄRME-LEHRE I ZUSTANDSGRÖßEN BEI GASEN MITTWOCH 13.04.16 UND 20.04.16 GRUPPE H (DEMO) Zustandsgrößen bei Gasen: Temperatur und Thermometer (Gasthermometer), Volumen, Druck; Gasgesetze: Boyle-Mariotte,

Mehr

Thermodynamische Hauptsätze, Kreisprozesse Übung

Thermodynamische Hauptsätze, Kreisprozesse Übung Thermodynamische Hauptsätze, Kreisprozesse Übung Marcus Jung 14.09.2010 Inhaltsverzeichnis Inhaltsverzeichnis 1 Thermodynamische Hauptsätze 3 1.1 Aufgabe 1:.................................... 3 1.2 Aufgabe

Mehr

ReduSoft Ltd. Kurzbeschreibungen zu einigen Modulen, die im Programm

ReduSoft Ltd.   Kurzbeschreibungen zu einigen Modulen, die im Programm ReduSoft Ltd. www.redusoft.de Kurzbeschreibungen zu einigen Modulen, die im Programm PhysProf 1.1 unter dem Themenbereich Thermodynamik implementiert sind. Isochore Zustandsänderung: Das Modul Isochore

Mehr

Inhaltsverzeichnis VII

Inhaltsverzeichnis VII Inhaltsverzeichnis 1 Grundlagen 1 1.1 Mathe für Thermodynamiker und -innen 1 1.2 Deutsch für Thermodynamiker (m/w) 2 1.2.1 Hier geht nix verloren - die Sache mit der Energie 4 1.2.2 Erst mal Bilanz ziehen

Mehr

Grundlagen der Wärmelehre

Grundlagen der Wärmelehre Ausgabe 2007-09 Grundlagen der Wärmelehre (Erläuterungen) Die Wärmelehre ist das Teilgebiet der Physik, in dem Zustandsänderungen von Körpern infolge Zufuhr oder Abgabe von Wärmeenergie und in dem Energieumwandlungen,

Mehr

Ermittlung der Kennlinien einer Verbrennungskraftmaschine

Ermittlung der Kennlinien einer Verbrennungskraftmaschine Ermittlung der Kennlinien einer Verbrennungskraftmaschine 1.Messreihe: n= 30000 /min = const. Motor: 4-Takt-Diesel 1,5l VW 4 Zylinder-Reihen Bremse: Zöllner Wirbelstrombremse Typ 2-220 b 1016 mbar V H

Mehr

Thermodynamik 1 Klausur 02. August 2010

Thermodynamik 1 Klausur 02. August 2010 Thermodynamik 1 Klausur 02. August 2010 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 6 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als

Mehr

Thermodynamik. Kapitel 4. Nicolas Thomas

Thermodynamik. Kapitel 4. Nicolas Thomas Thermodynamik Kapitel 4 Arbeit und Wärme Länge, x F Kolben Länge, x F Der Kolben wird sehr langsam um die Distanz -dx verschoben. dx Kolben Wieviel Arbeit mussten wir leisten, um den Kolben zu bewegen?

Mehr

T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 8 Lösungsvorschlag

T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 8 Lösungsvorschlag T4p: Thermodynamik und Statistische Physik Pro Dr H Ruhl Übungsblatt 8 Lösungsvorschlag 1 Adiabatengleichung Als adiabatische Zustandssänderung bezeichnet man einen thermodynamischen organg, bei dem ein

Mehr

Versuch: Sieden durch Abkühlen

Versuch: Sieden durch Abkühlen ersuch: Sieden durch Abkühlen Ein Rundkolben wird zur Hälfte mit Wasser gefüllt und auf ein Dreibein mit Netz gestellt. Mit dem Bunsenbrenner bringt man das Wasser zum Sieden, nimmt dann die Flamme weg

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Moderne heoretische Physik III (heorie F Statistische Mechanik) SS 17 Prof. Dr. Alexander Mirlin Blatt 2 PD Dr. Igor Gornyi,

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 18. März 2011 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

(der sogenannte nullte Hauptsatz der Thermodynamik). Während des Vorganges kann sich die innere Energie U des Körpers

(der sogenannte nullte Hauptsatz der Thermodynamik). Während des Vorganges kann sich die innere Energie U des Körpers Kapitel 13 13.1 Der erste Hauptsatz der Das zentrale Konzept der ist die Existenz der Temperatur (der sogenannte nullte Hauptsatz der ). Wir betrachten z.b. zwei Körper A und B. Der Körper A erscheint

Mehr

Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung

Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung Thermo Dynamik Wärme (aus Reaktion) Mechanische Bewegung (= Arbeit) maximale Umsetzung Aussagen der Thermodynamik: Quantifizieren von: Enthalpie-Änderungen Entropie-Änderungen Arbeit, maximale (Gibbs Energie)

Mehr

Aufgaben zur Wärmelehre

Aufgaben zur Wärmelehre Aufgaben zur Wärmelehre 1. Ein falsch kalibriertes Quecksilberthermometer zeigt -5 C eingetaucht im schmelzenden Eis und 103 C im kochenden Wasser. Welche ist die richtige Temperatur, wenn das Thermometer

Mehr

Klasse : Name : Datum :

Klasse : Name : Datum : Gasgesetze (Boyle-Mariotte, Gay-Lussac, Amontons) Klasse : Name : Datum : Hinweis: Sämtliche Versuche werden vom Lehrer durchgeführt (Lehrerversuche). Die Protokollierung und Auswertung erfolgt durch den

Mehr

Moderne Theoretische Physik IIIa WS 18/19

Moderne Theoretische Physik IIIa WS 18/19 Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Moderne heoretische Physik IIIa WS 18/19 Prof. Dr. Alexander Mirlin Lösungen zu Blatt 2 Dr. Stefan Rex Besprechung: 06.11.2018

Mehr

2.6 Zweiter Hauptsatz der Thermodynamik

2.6 Zweiter Hauptsatz der Thermodynamik 2.6 Zweiter Hauptsatz der Thermodynamik Der zweite Hauptsatz der Thermodynamik ist ein Satz über die Eigenschaften von Maschinen die Wärmeenergie Q in mechanische Energie E verwandeln. Diese Maschinen

Mehr

Adiabatische Expansion. p. 30

Adiabatische Expansion. p. 30 Adiabatische Expansion p. 30 Isotherme Kompression p. 31 Adiabatische Kompression p. 32 PV Diagramm und Arbeit im Carnotzyklus 1. Isotherme Expansion 2. Adiabatisch Expansion 3. Isotherme Kompression 4.

Mehr

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 6

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 6 Physik I U Dortmund WS07/8 Gudrun Hiller Shaukat Khan Kaitel 6 Seziische Wärme von Gasen Bei einatomigen Gasen (z.b. He): Bei zweiatomigen Gasen (z.b. N, O ): N k A Freiheitsgrade ür die kinetische Energie

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Physiklabor 2 Michel Kaltenrieder 9. Februar

Mehr

Keine Panik vor Thermodynamik!

Keine Panik vor Thermodynamik! Keine Panik vor Thermodynamik! Erfolg und Spaß im klassischen "Dickbrettbohrerfach" des Ingenieurstudiums Bearbeitet von Dirk Labuhn, Oliver Romberg 1. Auflage 2013. Taschenbuch. xii, 351 S. Paperback

Mehr

FAQ Entropie. S = k B ln W. 1.) Ist die Entropie für einen Zustand eindeutig definiert?

FAQ Entropie. S = k B ln W. 1.) Ist die Entropie für einen Zustand eindeutig definiert? FAQ Entroie S = k B ln W 1.) Ist die Entroie für einen Zustand eindeutig definiert? Antwort: Nein, zumindest nicht in der klassischen Physik. Es sei an die Betrachtung der Ortsraum-Entroie des idealen

Mehr

Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan

Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan Von J.W., I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Zustandsgleichung....... 2 2.2. Koexistenzgebiet........ 3 2.3. Kritischer

Mehr

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme 6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher mit der

Mehr

U. Nickel Irreversible Volumenarbeit 91

U. Nickel Irreversible Volumenarbeit 91 U. Nickel Irreversible Volumenarbeit 91 geben, wird die bei unterschiedlichem Innen- und Außendruck auftretende Arbeit als irreversible Volumenarbeit irr bezeichnet. Die nachfolgend angegebene Festlegung

Mehr

Thermodynamik. Springer. Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger. Grundlagen und technische Anwendungen Band 1: Einstoffsysteme

Thermodynamik. Springer. Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger. Grundlagen und technische Anwendungen Band 1: Einstoffsysteme Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger Thermodynamik Grundlagen und technische Anwendungen Band 1: Einstoffsysteme 16., vollständig neu bearbeitete Auflage Mit 195 Abbildungen und

Mehr

4 Entropie. 4.1 Der Zweite Hauptsatz

4 Entropie. 4.1 Der Zweite Hauptsatz 4 Entropie 4.1 Der Zweite Hauptsatz In vereinfachter Form besagt der Zweite Hauptsatz(II. HS), daß Wärme nie von selbst von niedriger zu höherer Temperatur fließen kann. Aus dieser schlichten Feststellung

Mehr

ELEMENTE DER WÄRMELEHRE

ELEMENTE DER WÄRMELEHRE ELEMENTE DER WÄRMELEHRE 3. Elemente der Wärmelehre 3.1 Grundlagen 3.2 Die kinetische Gastheorie 3.3 Energieumwandlungen 3.4 Hauptsätze der Thermodynamik 2 t =? 85 ºC t =? 61.7 ºC Warum wird der Kaffe eigentlich

Mehr

E2: Wärmelehre und Elektromagnetismus 8. Vorlesung

E2: Wärmelehre und Elektromagnetismus 8. Vorlesung E2: Wärmelehre und Elektromagnetismus 8. Vorlesung 3.5.2018 Heute: - Boltzmann-Verteilung - Wärmekraftmaschinen - Carnot-Prozess und Wirkungsgrad - Kraftwärmemaschinen Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de

Mehr