3. Bestimmen Sie die Gitterkonstante eines Transmissionsgitters durch Ausmessung der Lage der Maxima.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "3. Bestimmen Sie die Gitterkonstante eines Transmissionsgitters durch Ausmessung der Lage der Maxima."

Transkript

1 Fakultät für Physik ud Geowisseschafte Physikalisches Grudpraktikum O 17a Beuu (Laserlicht) Aufabe 1. Bestimme Sie durch Beuu (Frauhofer, Fresel) vo Laserlicht am Eifachspalt desse Breite. Messe Sie hierzu die Itesität des ebeute Lichts mit eier CCD-Zeilekamera; bestimme Sie die Spaltbreite aus der Lae der Miima verschiedeer Ordue.. Nehme Sie die Itesitätsverteilu des a eiem Doppelspalt ebeute Laserlichts mit eier CCD-Zeilekamera auf. Bestimme Sie de Mitteabstad der Spalte ud die Spaltbreite aus (a) der Lae der Miima verschiedeer Ordue sowie durch (b) de Fit des bekate Frauhofer- Beuusbilds a die Date. 3. Bestimme Sie die Gitterkostate eies Trasmissiositters durch Ausmessu der Lae der Maxima. Literatur Physikalisches Praktikum, 13. Auflae, Hrs. W. Schek, F. Kremer, Optik,.0,.,.3 Gerthse Physik, D. Meschede,. Auflae, Zubehör Diodelaser mit Strahlaufweitu (λ = 636 m), CCD-Zeilekamera (Thorlabs mit Software), PC, Drucker, Messschraubeokular, Polarisatiosfilter, Eizel- ud Doppelspalt, Trasmissiositter, Reflexiositter, Millimeterskale mit Lochblede Schwerpukte zur Vorbereitu - Iterferez, Kohärez, Kohärezbediu - Beuu am Spalt, Doppelspalt, Reflexios- ud Trasmissiositter - Beuu ach Frauhofer ud Fresel - Aufbau ud Fuktiosweise eies Lasers, He-Ne-Laser - Eieschafte vo Laserlicht, Gesetz vo Malus - Prizipieller Aufbau eies CCD-Sesors 1

2 Sicherheitshiweis Der Laser-Primärstrahl (Laserklasse ) hat eie Leistu vo ca. 1 mw. Direktes Hieisehe i de Laser-Primärstrahl ka zu Aueverletzue führe. Bei der Beobachtu der Iterferez mit eiem Okularmikrometer Ist ei Polarisatiosfilter zur Abschwächu der Itesität zwische Laser ud Spalt eizubrie (Gesetz vo Malus). Frauhofersche- ud Freselsche Beuu Es wird bei Beuuserscheiue zwische der Beuu (Beobachtusart) ach Frauhofer ud ach Fresel uterschiede. Bei der Frauhofersche Beuu oder Beuu paralleler Strahle betrachtet ma die Beuu ebeer Welle. Im letzteate Fall ist der Abstad zwische Lichtquelle ud dem Hideris (z.b. Spalt), a dem die Beuu erfolt, ud der Abstad zwische Beobachtuspukt ud Hideris stets uedlich. Im Experimet erreicht ma diese Art vo Beuu, idem ma die Lichtquelle i de Brepukt eier Sammellise stellt oder eie Lichtquelle (Laser) verwedet, die selbst ebee Welle aussedet. Das Beuusbild betrachtet ma i der Brepuktsebee eier Sammellise auf eiem Schirm oder wie i userem Fall mit eier CCD-Zeilekamera. Als Freselsche Beuu wird jee Art vo Lichtbeuu bezeichet, bei dere Berechu die Krümmu der Wellefrot der eifallede sowie der ebeute Welle icht verachlässit werde ka, die Strahle also icht parallel verlaufe. Freselsche Beuu tritt da auf, we sich sowohl die Lichtquelle als auch die Beobachtusebee des Beuusbildes oder auch ur letztere sich i eiem edliche Abstad zu dem beuede Hideris befidet. Die Berechu dieser Probleme ist zumeist sehr kompliziert. Für Freselsche Beuu am erade Spalt etscheidet u. a. die Größe des Welleparameters w über die Itesitätsverteilu i der Beobachtusebee w = λ a. b Dabei sid a der Abstad zwische Spaltebee ud der zu ihr parallele Beobachtusebee, b die Spaltbreite ud λ die Welleläe des verwedete moochromatische Lichts. I aaloer Weise bestimmt bei der Beuu am Doppelspalt (Spaltabstad ) die Fresel-Zahl N F mit N Übera der Beobachtu der Fresel-Beuu zur Frauhofer-Beuu für N F < 1. F = de 4a λ Abb. 1.1 Schematische Darstellu der Itesitätsverteilu bei Beuu a eiem breite Spalt (w <<1)

3 Für w 1 umfasse die Itesitätsschwakue de esamte Bereich zwische x 1 ud x. Je ach dem Wert vo w ka i der Mitte des Beuusbilds ei Maximum oder ei Miimum der Itesität auftrete. Bei w>>1 (b>λ) aber etspricht das Beuusbild dem der Frauhofersche Beuu. Das Hauptmaximum der Itesität befidet sich hiter der Spaltmitte ud ist umso mehr "verschwomme", je eer der Spalt ist. Hiweise zu Aufabe 1 Die Auswahl des Eifachspaltes (A, B oder C) wird vom Betreuer voreomme. Es ist die Beobachtusart ach Frauhofer zu realisiere. Dazu stellt ma de Spalt (Abb. 1.) so auf, dass seie Ebee sekrecht zur Achse der optische Bak steht. Das auftreffede Licht passiert die rechteckie Öffu des Spaltes zum Teil uestört i seier ursprüliche Richtu ud wird zum adere Teil ebeut. Abb. 1. Zur Beuu ach Frauhofer Alle die durch de Spalt der Breite b uestört hidurchtretede achseparallele (icht ebeute) Strahle werde i der Breebee F der Sammellise L bei x = 0 esammelt. Ihr Gauterschied ist ull, so dass sie sich verstärke. Der Gauterschied Δ ist defiiert als die Differez der optische Weläe s (Δ = s 1 -s für Luft mit der Brechzahl = 1) der miteiader iterferierede Strahle. Parallelstrahle, die vo eizele Pukte des Spaltes uter dem leiche Wikel α ausehe (homoloe Pukte), werde bei x = f taα vereiit, wobei f die Breweite der Sammellise ist. Zwische diese Strahle trete jedoch Gauterschiede Δ auf. Ist z.b. Δ= λ zwische de beide Radstrahle, so lösche sich jeweils ei Strahl der obere ud der 3

4 utere Spalthälfte, die vo zwei Spaltpukte mit dem Abstad b/ ausehe, bei Vereiiu durch L eeseiti aus. Für das Miimum beliebier Ordue 1 ( = ±1, ±,...) ilt da bsiα = λ. (1) Miimale Beleuchtusstärke (Dukelheit) tritt i der Breebee F a de Stelle λ x = f taα = f ta arcsi b () auf. Für kleie Beuuswikel α erhält ma λ x f. b Zur Ausmessu des Beuusbildes wird die CCD-Kamera so auf der optische Bak positioiert, dass sich ihre Breebee F CCD eau im Abstad der eebee Breweite f vo L befidet. Da erscheit ei besoders scharfes Bild der Miima ud Maxima. Aschließed wird mit der CCD- Kamera die Itesitätsverteilu ausemesse; die Date werde abespeichert ud i ORIGIN importiert. Die Abstäde x zwische de ±-te Miima werde i ORIGIN bestimmt. Die Auswertu erfolt mittels liearer Reressio (x vs. ). I Eräzu zur Frauhofersche Beuu ist das Beuusbild durch Freselsche Beuu auszumesse ud die Spaltbreite b zu bestimme. Dazu ist der Abstad a zwische Spaltebee ud CCD-Sesor zu messe. Uter Verwedu der Beziehue x λ taα = ud siα = (3a,b) a b ka durch Ausmesse der Lae der Miima wie bereits obe auseführt der Wert für b bestimmt a werde. Für kleie Wikel ilt wieder die Näheru x λ. b Es sid beide Erebisse uter Berücksichtiu der uterschiedliche Beobachtusverfahre zu diskutiere. Hiweise zu Aufabe Ei Doppelspalt besteht aus zwei parallele Spalte leicher Spaltbreite b mit dem Mitteabstad zwische de Spalte. Bei der Berechu der Beuu ach Fresel muss wie bereits obe beschriebe die Krümmu der Wellefrot (I) der eifallede sowie der ebeute Welle oder (II) ur der ebeute Welle berücksichtit werde. Bei userer Versuchsaordu liet Fall (II) vor. Die vo zwei Pukte F 1 ud F der Eizelspalte des Doppelspaltes ausehede Wellezüe besitze i eiem Pukt P des (ebeute) Wellefeldes de Gauterschied Δ= r 1 - r mit r 1 = F 1 P 1 Für die Betrachtu Miima höherer Ordue muss ma die Spaltbreite i Viertel ( = ±), Sechstel ( = ±3) usw. eiteile. 4

5 ud r = F P (Abb..1). Alle Pukte mit leichem Gauterschied Δ (bzw. Phasedifferez δ = Δ π/λ) liee somit defiitiosemäß auf eiem zweischalie Rotatioshyperboloid mit F 1 ud F als Brepukte ud der Verbidusliie F 1 F als Hauptachse (Rotatiosachse). Abb..1 Kofokale Hyperbel, Brepukte im Abstad e vo der Hauptachse, jede Hyperbel ibt Orte leiche Gauterschiedes Δ a. Die vo F 1 ud F ausehede Welle verstärke sich z.b. bei eier Phasedifferez δ = π ( = ±1, ±,...). Im Versuch werde die Rotatioshyperboloide vo eiem ebee Schirm (CCD-Zeile) im Abstad d vo der Rotatiosachse eschitte, der sekrecht zur optische Achse (Hauptachse der Hyperbel) steht. I eiem eüed kleie Gebiet um die optische Achse köe Maxima ud Miima i leichroße Abstäde zueiader beobachtet werde. I Abb.. ist die Überlaeru vo zwei durch de Doppelspalt ebeute Teilbüdel darestellt. Abb.. Zur Beuu am Doppelspalt Im Abstad x 1 iterferiere diese Teilbüdel. Der Gauterschied Δ zwische ihe eribt sich über 1 = ud = 1 + r x d r x d mit d >>, d >> x 1 ud r 1 r d zu r r Δ= r r = x r1+ r d. (4) 5

6 Ist der Gauterschied Δ = λ ( = ±1, ±,...), so beobachtet ma im Abstad max d x = λ (5) Maxima bzw. für Δ = ( - 1) λ/ ( = ±1, ±,...) im Abstad x mi λ d = ( 1) (6) Miima. Aus λ= x / d= taα siα erket ma, dass bei roße Abstäde d (taα siα ) im Falle der Fresel-Beuu die Formel der Frauhofer-Beuu verwedet werde köe. Dem Beuusbild des Doppelspaltes ist das Beuusbild seier Eizelspalte überlaert (Abb..3). Für die zuehörie Miima (blaue Kurve i Abb..3) ilt die leiche Beziehu wie für de Eizelspalt: bsi α = λ ; = ± 1, ±,... I I 0 Abb..3 Zur Itesitätsverteilu ach Beuu am Doppelspalt (schwarz: Doppelspaltfuktio, blau: Eizelspaltfuktio mit der leicher Spaltbreite) α Die Itesitätsverteilu des am Doppelspalt ebeute Lichtes ist eebe durch sip π π 4 max cos mit siα ud si I= I q p= b q= p λ λ α. Währed der Faktor (si p/p) die Beuu am Eizelspalt der Breite b beschreibt, charakterisiert der Faktor cos q de Itesitätsverlauf bei Iterferez zweier puktförmier kohäreter Lichtquelle im Abstad zueiader. Die Spaltbreite b ud das Verhältis (/b) bestimme maßeblich die Itesitätsverhältisse im Beuusbild. Bei azzahliem Verhältis m = /b ka ma im zetrale Maximum m Miima beobachte. Bereche Sie währed der Vorbereitu die theoretische Itesitätsverteilu eies Doppelspaltes i Abhäikeit azzahlier Verhältisse b/ =, 3 ud 5 ud bestimme Sie damit die Azahl der Maxima ud der Miima ierhalb der 'Eihüllede'. Bestimmu des Spaltabstades (7) 6

7 Bei kleie Beuuswikel α erhält ma für die Lae x der Extrema der Itesitäte des Doppelspaltes (Maxima ud Miima der Fuktio cos q): d λ x = d taα dsiα =. (8) Maxima: = 0, ±1, ±,... Miima: = ±1/, ±3/,... Misst ma die Lae der Maxima ud Miima im Bereich des zetrale Maximums ud trät die etsprechede Werte über auf, so ka ma aus dem Astie der Ausleichserade de Spaltabstad bestimme. Abschätzu der Spaltbreite b Die Spaltbreite b ist aus der Lae der Miima 1. Ordu der Eihüllede der Itesitätsverteilu (blaue Kurve i Abb..3) zu ermittel. Bestimmu vo ud b mittels Fit der Itesitätsverteilu Passe Sie die das Beuusbild, Gl. (7), a die Date a ud bestimme Sie daraus ud b. Hiweise zu Aufabe 3 Das Trasmissiositter ist zwische Spalt ud Skale zu brie (Abb.3.1) ud zu justiere (optische Achse sekrecht zur Gitterebee). Um die Messeauikeit des Abstades l zwische Gitterebee ud eier lieare Messskala (Lieal, Mattlasskala) zu erhöhe, verrößert ma de Abstad zwische diese, bis ei k-tes Maximum (k = ±1, ± oder ±3) a de Ede der Skale beobachtet wird. Für die Auswertu werde Gleichue verwedet, die i Aaloie zum Doppelspalt hereleitet werde köe. Abb. 3.1 Zur Messu mit dem Trasmissiositter λ xk Es ilt: si αk = k, taαk =, α k Beuuswikel für das k-te Maximum. l Für die Gitterkostate eribt sich l = kλ 1 + xk 7.

8 Eräzede Literatur Berma-Schaefer; Bd. III, 8. Aufl. a) Kap. III, 1. S ; b) Kap. III, 8. S ; c) Kap. III, 10. S H. Häsel, W. Neuma: Physik, Spektrum, 1993, Bd., Kap. 10.1, 10. Lipso, Lipso, Tahäuser, Optik, Sprier, 1997 Applet for two-slit diffractio: Abb. 5 Spektrale Empfidlichkeit optischer Sesore (a. Fotodiode, b. CCD-Sesor) Die Bedieusaleitu der Thorlabs CCD-Lie-Camera ka aus dem Dowloadbereich der Praktikumsseite heruterelade werde. 8

3. Bestimmen Sie die Gitterkonstante eines Transmissionsgitters durch Ausmessung der Lage der Maxima.

3. Bestimmen Sie die Gitterkonstante eines Transmissionsgitters durch Ausmessung der Lage der Maxima. Fakultät für Physik ud Geowisseschafte Physikalisches Grudpraktikum O 7 Beuu Aufabe 0. Bereche Sie i der Vorbereitu auf de Versuch aalytisch die Fouriertrasformierte eier Eizelspalt- ud eier Doppelspaltfuktio

Mehr

b) Der eintretende und der austretende Lichtstrahl sind parallel. Es tritt keine Verzerrung auf.

b) Der eintretende und der austretende Lichtstrahl sind parallel. Es tritt keine Verzerrung auf. Physik awede ud verstehe: Lösuge 5. Brechug ud Totalreflexio 004 Orell Füssli Verlag AG 5. Brechug ud Totalreflexio Beim Übergag i ei Medium gilt obige Aussage icht mehr. Würde das Licht die kürzeste Strecke

Mehr

2. Einführung in die Geometrische Optik

2. Einführung in die Geometrische Optik 2. Eiührug i die Geometrische Optik 2. Allgemeie Prizipie 2.. Licht ud Materie Optische Ssteme werde ür de Spektralbereich zwische dem extreme Ultraviolette ( m) ud dem thermische Irarote (Q-Bad bei 2

Mehr

Physikalische Grundlagen: Strahlengang durch optische Systeme

Physikalische Grundlagen: Strahlengang durch optische Systeme ieser Text ist ür iteressierte Leser gedacht, die sich über die klausur-relevate, physiologische Grudlage hiaus mit der Optik des Auges beschätige wolle! Physikalische Grudlage: Strahlegag durch optische

Mehr

Lichtquellen Körper die selbst Licht erzeugen, nennt man Lichtquellen. Die meisten Lichtquellen sind glühende Körper mit hoher Temperatur.

Lichtquellen Körper die selbst Licht erzeugen, nennt man Lichtquellen. Die meisten Lichtquellen sind glühende Körper mit hoher Temperatur. PS - OPTIK P. Redulić 2007 LICHT STRAHLENOPTIK LICHT. Lichtquelle ud beleuchtete Körper Sichtbare Körper sede teilweise Licht aus, teilweise reflektiere sie aber auch das auf sie fallede Licht. Lichtquelle

Mehr

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE Versuch 3/ NEWTONSCHE INTERFERENZRINGE Blatt NEWTONSCHE INTERFERENZRINGE Die Oberfläche vo Lise hat im allgemeie Kugelgestalt. Zur Messug des Krümmugsradius diet das Sphärometer. Bei sehr flacher Krümmug

Mehr

GIBS. Übungsaufgaben zur Vertiefung. V1. Beschriften Sie die Konstruktionen! n n n n ' ' ' ' Modul 1.5. Geometrische Optik 1 58.

GIBS. Übungsaufgaben zur Vertiefung. V1. Beschriften Sie die Konstruktionen! n n n n ' ' ' ' Modul 1.5. Geometrische Optik 1 58. eometrische Optik 1 58 Übugsaufgabe zur Vertiefug V1. Beschrifte Sie die Kostruktioe! ' ' ' ' ' ' ' ' Lehrerversio eometrische Optik 1 59 V2. Bei eiem Brillekroglas tritt Licht a der Rückfläche des lases

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

425 Polarisationszustand des Lichtes

425 Polarisationszustand des Lichtes 45 Polarisatioszustad des Lichtes. Aufgabe. Bestimme Sie de Polarisatiosgrad vo Licht ach Durchgag durch eie Glasplattesatz, ud stelle Sie de Zusammehag zwische Polarisatiosgrad ud Azahl der Glasplatte

Mehr

Versuch : Interferenz und Beugung am Gitter

Versuch : Interferenz und Beugung am Gitter Versuch : Iterferez ud Beugug am Gitter Uiversität Duisburg-Esse Campus Duisburg Fachbereich Physik; AOR Dr. J. Käster 1. Literatur: Bergma-Schaefer, Lehrbuch der Experimetalphysik, Bd. 3: Optik W. Walcher,

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Protokoll zum Afägerpraktikum Polarisatio vo Licht Gruppe, Team 5 Sebastia Korff Frerich Max 0.07.06 Ihaltsverzeichis. Eileitug -3-. Polarisatio -3-. Dichroismus -4-.3 BREWSTER Wikel -5-.4 Der FARADAY

Mehr

Physikalisches Anfaengerpraktikum. Beugung und Brechung

Physikalisches Anfaengerpraktikum. Beugung und Brechung Physikalisches Afaegerpraktikum Beugug ud Brechug Ausarbeitug vo Marcel Egelhardt & David Weisgerber (Gruppe 37) Mittwoch, 3. Februar 005 I Utersuchuge am Prismespektroskop 1. Versuch zur Bestimmug des

Mehr

Linsengesetze und optische Instrumente

Linsengesetze und optische Instrumente Lisegesetze ud optische Istrumete Gruppe X Xxxx Xxxxxxxxx Xxxxxxx Xxxxxx Mat.-Nr.: XXXXX Mat.-Nr.: XXXXX XX.XX.XX Theorie Im olgede werde wir eie kurze Überblick über die Fuktio, de Aubau ud die Arte vo

Mehr

Klasse: Platzziffer: Punkte: / Graph zu f

Klasse: Platzziffer: Punkte: / Graph zu f Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25

Mehr

Übungen mit dem Applet Taylor-Entwickung von Funktionen

Übungen mit dem Applet Taylor-Entwickung von Funktionen Taylor-Etwickug vo Fuktioe Übuge mit dem Applet Taylor-Etwickug vo Fuktioe Ziele des Applets... Mathematischer Hitergrud... 3 Vorschläge für Übuge... 3 3. Siusfuktio si(...3 3. Cosiusfuktio cos(...4 3.3

Mehr

Löslichkeitsdiagramm. Grundlagen

Löslichkeitsdiagramm. Grundlagen Grudlage Löslichkeitsdiagramm Grudlage Zur etrachtug des Mischugsverhaltes icht vollstädig mischbarer Flüssigkeite, das heißt Flüssigkeite, die sich icht bei jeder Temperatur i alle Megeverhältisse miteiader

Mehr

13. Landeswettbewerb Mathematik Bayern

13. Landeswettbewerb Mathematik Bayern 3. Ladeswettbewerb Mathematik Bayer Lössbeispiele für die Afabe der. Rde 00/0 Afabe I eiem 0x0-Gitter mit qadratische Felder werde 0 Spielsteie so esetzt, dass i jeder Spalte d jeder Zeile ea ei Feld belet

Mehr

Naturwissenschaften II (B. Sc. Maschinenbau)

Naturwissenschaften II (B. Sc. Maschinenbau) Übuge zur Vorlesug Naturwisseschafte II (B. Sc. Maschiebau) Sommersemester 2008 Musterlösug 9 Besprechug i der Woche vom 16.6-23.6.08 Professor Dr. G. Birkl, Dr. N. Herschbach www.physik.tu-darmstadt/apq/aturwisseschafte

Mehr

1. Musterversuch: Bestimmung der Erdbeschleunigung g Freier Fall einer Kugel

1. Musterversuch: Bestimmung der Erdbeschleunigung g Freier Fall einer Kugel . Musterversuch: Bestimmu der Erdbeschleuiu Freier Fall eier Kuel Versuchsaufbau: Die Kuel wird obe i de Halter eiespat ud schließt dabei eie elektrische Kotakt. Beim Auslöse der Kuel wird der elektrische

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit

Mehr

Abb. 1: Eine Stahlkugel fällt auf eine Stahlplatte oder ein Aluminium-Blech (Zeichnung: Skript Ihringer)

Abb. 1: Eine Stahlkugel fällt auf eine Stahlplatte oder ein Aluminium-Blech (Zeichnung: Skript Ihringer) Fall, Wurf ud Federkräfte I der Zwischeeit habe Sie die Beriffe Arbeit, potetielle ud kietische Eerie, sowie die Eerieerhaltu keeelert. Wir wolle u eiie Versuche um Thema Fall ud Wurf betrachte, mit dee

Mehr

Potentielle Energie und Spannenergie (Artikelnr.: P )

Potentielle Energie und Spannenergie (Artikelnr.: P ) Lehrer-/Dozentenblatt Potentielle Energie und Spannenergie (Artikelnr.: P1001500) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Mecha7ik Unterthema: Arbeit u7d

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Istitut für Techologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 3/4 Prof. Dr. J. Schmalia Blatt 7 Dr. P. P. Orth Abgabe ud Besprechug 3..3. Tayloretwicklug I 5 + 5 + 5 + 5

Mehr

Übungsblatt 02 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt

Übungsblatt 02 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt Übugsblatt 0 Grudkurs IIIa für Physiker, Wirtschaftsphysiker ud Physik Lehramt Othmar Marti, othmar.marti@physik.ui-ulm.de 0., 6. ud 7. 5. 003 Aufgabe Licht i der geometrische Optik, Bilderzeugug durch

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion KAPITEL 3 Empirische Verteilugsfuktio 3.1. Empirische Verteilugsfuktio Seie X 1,..., X uabhägige ud idetisch verteilte Zufallsvariable mit theoretischer Verteilugsfuktio F (t) = P[X i t]. Es sei (x 1,...,

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und Bevor wir zum ächste Kapitel übergehe, werde wir de Begri eier Fuktio i mehrere Variable eiführe. Eie Fuktio vo Variable ist eie Vorschrift, die jedem Pukt (x 1,x,...,x ) eier Teilmege D des IR eie bestimmte

Mehr

Aufgaben Brechung am Prisma

Aufgaben Brechung am Prisma Aufgabe Brechug am Prisma 67. Zwei Lichtstrahle gleicher Farbe treffe parallel zur rudfläche auf ei Prisma aus leichtem Kroglas. Sie werde beim Übergag Luft - las so gebroche, dass sie beide die rudfläche

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

Transformator. n Windungen

Transformator. n Windungen echische iversität Dresde stitut für Ker- ud eilchephysik R. Schwierz V/5/29 Grudpraktikum Physik Versuch R rasformator rasformatore werde i viele ereiche der Elektrotechik ud Elektroik eigesetzt. Für

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? A welche Stichwörter vo der letzte Vorlesug köe Sie sich och erier? Strahleoptik (geometrische Optik) Brechugsidex c v Eifallswikel ist gleich Reflexioswikel Sellius sche Brechugsgesetz si si 1 1 2 2 Dispersio

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

Teil II Zählstatistik

Teil II Zählstatistik Teil II Zählstatistik. Aufgabestellug. Vergleiche Sie experimetelle Zählverteiluge mit statistische Modelle (POISSON-Verteilug ud Normalverteilug) 2. Theoretische Grudlage Stichworte zur Vorbereitug: Impulszahl,

Mehr

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie Streuugsmaße Istitut für Geographie Streuugswerte (Streuugsmaße) Die Diskussio um die Mittelwerte hat die Vorteile dieser statistische Kewerte gezeigt, aber bereits, isbesodere beim arithmetische Mittel,

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Aufgaben zur Übung und Vertiefung

Aufgaben zur Übung und Vertiefung Aufgabe zur Übug ud Vertiefug ARITHMETISCHE ZAHLENFOLGEN Berufliches Gymasium / Uterstufe () Stelle Sie fest, welche der gegebee Folge arithmetisch sid: Bestimme Sie zuächst die erste füf Folgeglieder,

Mehr

AT AB., so bezeichnet man dies als innere Teilung von

AT AB., so bezeichnet man dies als innere Teilung von Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM

Mehr

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares 4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus

Mehr

Elektronikpraktikum: Digitaltechnik 2

Elektronikpraktikum: Digitaltechnik 2 Elektroikpraktikum: Digitaltechik 2 Datum, Ort: 16.05.2003, PHY/D-213 Betreuer: Schwierz Praktikate: Teshi C. Hara, Joas Posselt (beide 02/2/PHY/02) Gruppe: 8 Ziele Aufbau eier 3-Bit-Dekodierschaltug;

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

Aufgaben Reflexionsgesetz und Brechungsgesetz

Aufgaben Reflexionsgesetz und Brechungsgesetz Aufgabe Reflexiosgesetz ud Brechugsgesetz 24. Zeiche zwei Spiegel, die sekrecht zueiader stehe. Utersuche mit zwei verschiede eifallede Strahle, welche Eigeschafte die reflektierte Strahle habe, die acheiader

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3 INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE

Mehr

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte. Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste

Mehr

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik Prosemiar: Mathematisches Problemlöse Ugleichuge Pierre Schmidt Vortragstermi: 19. Jui 015 Übugsleiteri: Dr. Natalia Griberg Fakultät für Mathematik Karlsruher Istitut für Techologie Ihaltsverzeichis 1

Mehr

c B Analytische Geometrie

c B Analytische Geometrie KITL 9 alytische Geometrie Gerade arameterdarstellug eier Gerade ie Gerade g ist bestimmt durch eie Richtug, gegebe durch eie Vektor c, c 0, ud eie ukt, der auf der Gerade liegt Ma et de ufpukt i ukt X

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: convex.tex,v /05/21 18:28:20 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: convex.tex,v /05/21 18:28:20 hk Exp $ $Id: covex.tex,v 1.18 2015/05/21 18:28:20 hk Exp $ 3 Kovexgeometrie 3.2 Die platoische Körper Ei platoischer Körper vo Typ (, m) ist ei kovexer Polyeder desse Seitefläche alle gleichseitige -Ecke ud i

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Michael Buhlmann Mathematik > Analysis > Newtonverfahren

Michael Buhlmann Mathematik > Analysis > Newtonverfahren Michael Buhlma Mathematik > Aalysis > Newtoverfahre Eie Abbildug {a }: N -> R, die jeder atürliche Zahl eie reelle Zahl a zuordet, heißt (uedliche (Zahle- Folge: -> a oder {a } εn, a das -te Folgeglied.

Mehr

HS D. Hochschule Düsseldorf Fachbereich EI. Physikalisches Praktikum. V 503 : Spektrometer

HS D. Hochschule Düsseldorf Fachbereich EI. Physikalisches Praktikum. V 503 : Spektrometer Gruppe : Name, Matrikel Nr.: HS D Hochschule Düsseldorf Versuchstag: Vorgelegt: Testat : V 503 : Spektrometer Zusammefassug: 01.04.016 Versuch: Spektrometer Seite 1 vo 10 Gruppe : HS D Korrigiert am: Hochschule

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Betrachtung von wahrscheinlichen und unwahrscheinlichen Zuständen eines Systems. Beide Zustände haben die gleiche Innere Energie (ideales Gas).

Betrachtung von wahrscheinlichen und unwahrscheinlichen Zuständen eines Systems. Beide Zustände haben die gleiche Innere Energie (ideales Gas). Etropie etrachtug vo wahrscheiliche ud uwahrscheiliche Zustäde eies Systems. A eispiel: Gas Vakuum Gas eide Zustäde habe die gleiche Iere Eergie (ideales Gas). Übergag vo ach A ist keie Verletzug des Eergiesatzes.

Mehr

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß Ivesiiosud Fiazierugsplaug miels Kapialwermehode, Ierer Zisfuß Bearbeie vo Fraka Frid, Chrisi Klegel WI. Aufgabe: Eie geplae Ivesiio mi Aschaffugsausgabe vo.,- läss jeweils zum Jahresede die folgede Eiahme

Mehr

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK Physikalische Prozesse, die eier statistische Gesetzmäßigkeit uterworfe sid, lasse sich mit eier Verteilugsfuktio beschreibe. Die Gauß-Verteilug

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

2 Amplitudenmodulation

2 Amplitudenmodulation R - ING Übertraggstechik MOD - 16 Aplitdeodlatio Der isträger bietet drei igalparaeter, die wir beeiflsse köe. Etspreched terscheide wir Aplitdeodlatio für die beeiflsste Aplitde, Freqezodlatio d Phaseodlatio

Mehr

Übungen mit dem Applet erwartungstreu

Übungen mit dem Applet erwartungstreu Übuge mit dem Applet erwartugstreu Visualisierug vo erwartugstreu Begriffe ud statischer Hitergrud. Visualisieruge mit dem Applet..3. Zufallsstreuug der Eizelwerte...3. Mittelwerte 3.3 Variaz. 4.4 Variaz

Mehr

Gruppe 108: Janina Bär Christian Hörr Robert Rex

Gruppe 108: Janina Bär Christian Hörr Robert Rex TEHNIHE UNIVEITÄT HEMNITZ FAULTÄT FÜ INFOMATI Hardwarepraktikum im W /3 Versuch 3 equetielle ysteme I Gruppe 8: aia Bär hristia Hörr obert ex hemitz, 7. November Hardwarepraktikum equetielle ysteme I Aufgabe

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 01 a de Realschule i Bayer Mathematik II Aufgabe B 1 Haupttermi B 1.0 Die Parabel p verläuft durch die Pukte P( 5 19) ud Q(7 5). Sie hat eie Gleichug der Form y

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Uiversität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übuge Aufgabe zu Kapitel 1 (aus: K. Hefft Mathematischer Vorkurs zum Studium der Physik, sowie Ergäzuge) Aufgabe 1.1: SI-Eiheite: a)

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Lösugsmuster ud Bewertug Abschlussprüfug 0 a de Realschule i Bayer Mathematik I Aufgabe A - Nachtermi FUNKTIONEN A. x + + y=,05 GI = 0 0 K A. 6 y=,05 y=,0 Am Ede des sechste Tages ware vo Bakterie bedeckt.

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Beschreibende Statistik Kenngrößen in der Übersicht (Ac)

Beschreibende Statistik Kenngrößen in der Übersicht (Ac) Beschreibede Statistik Kegröße i der Übersicht (Ac) Im folgede wird die Berechugsweise des TI 83 (sowie vo SPSS, s. ute) verwedet. Diese geht auf eie Festlegug vo Moore ud McCabe (00) zurück. I der Literatur

Mehr

10 Aussagen mit Quantoren und

10 Aussagen mit Quantoren und 0 Aussage mit Quatore ud 0.6. Eisatz vo (bereits bekater) Eistezaussage Bisher hatte wir Eistezbeweise geführt, idem wir ei passedes Objekt agegebe habe ( Setze... ). Stattdesse ka ma auch auf bereits

Mehr

1 Funktionen und Flächen

1 Funktionen und Flächen Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Formelsammlung für Elektrische Messtechnik

Formelsammlung für Elektrische Messtechnik Formelsammlg ür lektrische Messtechik Ihaltsverzeichis: Thema Bereiche Seite SI-iheitesystem - Fehler Absolter Fehler -3 elativer Fehler -3 Geaigkeitsklasse Uterteilg Fei- d Betriebsmessger. -3 mpidlichkeit

Mehr

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand:

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand: M 9.1 Quadratwurzel a ist diejeige ichtegative Zahl (a 0), die quadriert a ergibt: a 2 = a Die Zahl a uter der Wurzel heißt Radikad: a Quadratwurzel sid ur für ichtegative Zahle defiiert: a 0 25 = 5; 81

Mehr

Zur Definition. der wirksamen. Wärmespeicherkapazität

Zur Definition. der wirksamen. Wärmespeicherkapazität Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč, Büro für Bauphysik, Schöberg a Kap, Österreich Zur Defiitio der wirksae Wärespeicherkapazität vo Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč Büro für Bauphysik

Mehr

LV "Grundlagen der Informatik" Programmierung in C (Teil 2)

LV Grundlagen der Informatik Programmierung in C (Teil 2) Aufgabekomplex: Programmiere i C (Teil vo ) (Strukturierte Datetype: Felder, Strukture, Zeiger; Fuktioe mit Parameterübergabe; Dateiarbeit) Hiweis: Alle mit * gekezeichete Aufgabe sid zum zusätzliche Übe

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

4. Vektorräume mit Skalarprodukt

4. Vektorräume mit Skalarprodukt 4. Vektorräume mit Skalarprodukt Wiederholug: V=R x, y R: x= x x i x, y= y y, :R R R Skalarprodukt Stadardskalarprodukt lieare Abbildug mit 2 Argumete 4. Eigeschafte vo Skalarprodukte Def.: Es sei V ei

Mehr

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n)

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n) Übugsaufgabe Aalysis I Aufgabe. Beweise oder widerlege Sie: a Jede i R kovergete Folge ist beschräkt. b Es gibt Cauchy-Folge im R, die icht kovergiere. c Beschräkte Folge sid koverget. d Folge mit eiem

Mehr

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

Kapitel XI - Korrelationsrechnung

Kapitel XI - Korrelationsrechnung Istitut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökoometrie ud Statistik Kapitel XI - Korrelatiosrechug Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Seska Carlo Siebeschuh Aufgabe der Korrelatiosrechug

Mehr

Abbildung 1.1 Spektrum elektromagnetischer Wellen

Abbildung 1.1 Spektrum elektromagnetischer Wellen Name:. Datum:. O: Optik Theoretische Grudlage I diesem Versuch soll die Brechug vo Licht a gerade ud gekrümmte Fläche phäomeologisch beobachtet, aalysiert ud potezielle Aweduge diskutiert werde. Der optische

Mehr

1 Das Skalarprodukt und das Kreuzprodukt

1 Das Skalarprodukt und das Kreuzprodukt Das Skalarprodukt ud das Kreuzprodukt Wir betrachte zu x = de Ausdruck y t x : = x Grud: Die rechte Seite der Gleichug ist: y t x = (y tx +... + (y ty { t x } y +... + x y x + x y (x y +... + x y x x t

Mehr

ABITURPRÜFUNG 2007 GRUNDFACH MATHEMATIK

ABITURPRÜFUNG 2007 GRUNDFACH MATHEMATIK ABITURPRÜFUNG 007 GRUNDFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 0 Miute Wörterbuch zur deutsche Rechtschreibug Tascherecher (icht programmierbar, icht grafikfähig) Tafelwerk Wähle Sie vo

Mehr

Rotationsvolumina Auf den Spuren von Pappus und Guldin

Rotationsvolumina Auf den Spuren von Pappus und Guldin Rotatiosvolumia Auf de Spure vo Pappus ud Guldi Gegebe sei ei Kreis mit Radius r, desse Mittelpukt um a aus dem Ursprug eies kartesische Koordiatesystems i Richtug der Ordiate verschobe sei. Die Kreisfläche

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt Gebiet G2 Analytische Geometrie

Abitur - Grundkurs Mathematik. Sachsen-Anhalt Gebiet G2 Analytische Geometrie Abitur - Grudkurs Mathematik Sachse-Ahalt 00 Gebiet G Aalytische Geometrie Aufgabe.. 4 0 I eiem kartesische Koordiatesystem sid die Vektore a, b 8 sowie der Pukt 4 4 A 3 gegebe. a) Weise Sie ach, dass

Mehr

Quantenmechanik I. Musterlösung 12.

Quantenmechanik I. Musterlösung 12. Quatemechaik I. Musterlösug 1. Herbst 011 Prof. Reato Reer Übug 1. Ster-Gerlach (19). Ei Strahl aus ugeladee Teilche mit Spi s = 1 läuft etlag der x-achse ud durchquert ei i z-richtug stark ihomogees Magetfeld.

Mehr

Einführung in die Stochastik 10. Übungsblatt

Einführung in die Stochastik 10. Übungsblatt Eiführug i die Stochastik. Übugsblatt Fachbereich Mathematik SS M. Kohler.7. A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 37 (4 Pukte) Ei Eremit am Südpol hat sich für die eibrechede polare Nacht mit

Mehr

Fortgesetztes Verdünnen

Fortgesetztes Verdünnen ortesetztes Verdüe CB V vor Verdüe V V ach Verdüe V m vor Verdüe m für Masseateil : m ach Verdüe m c( X ) c ( X ) Am.: Die Gleichu ilt siemäß auch für adere koz ach Gehaltsaabe: β(x), σ(x), w(x) etc. koz

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

Kapitel 6: Quadratisches Wachstum

Kapitel 6: Quadratisches Wachstum Kapitel 6: Quadratisches Wachstum Dr. Dakwart Vogel Ui Esse WS 009/10 1 Drei Beispiele Beispiel 1 Bremsweg eies PKW Bremsweg Auto.xls Ui Esse WS 009/10 Für user Modell des Bremsweges gilt a = a + d a =

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik ür Iormatiker -- 8 Folge -- 11.10.2015 1 Folge: Deiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reiheolge wichtig,

Mehr