Kapitel 4: Binäre Regression

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kapitel 4: Binäre Regression"

Transkript

1 Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014

2 4.1 Motivation

3 Ausgangssituation Gegeben sind Daten (y i, x i1,..., x ik ) mit einer binären Zielvariablen y i {0, 1} für i = 1,..., n und stetigen oder binär kodierten kategorialen Kovariablen x 1,..., x k. Fragestellung: Wie kann diese binäre Zielvariable in Abhängigkeit von Kovariablen modelliert werden? 2

4 Beispiel: Kreditscoring Ziel von Kreditscoring ist die Untersuchung der Bonität bzw. Kreditwürdigkeit eines Kunden in Abhängigkeit von Kovariablen. Hier liegen Daten einer süddeutschen Großbank von 1000 abgeschlossenen Kreditgeschäften vor: Variable ausfall laufzeit hoehe alter moral. Beschreibung Ausfall des Kredits / Bonität des Kreditnehmers 1 = Kredit wurde nicht zurückgezahlt d.h. der Kunde ist nicht kreditwürdig 0 = Kredit wurde zurückgezahlt d.h. der Kunde ist kreditwürdig Laufzeit des Kredits in Monaten Höhe des Kredits in Euro Alter des Kreditnehmers in Jahren Zahlungsmoral des Kunden aus vergangenen Kreditgeschäften: 1 = gute Zahlungsmoral 0 = schlechte Zahlungsmoral. 3

5 Beispiel: Kreditscoring Deskription von Ausfall in Abhängigkeit von der Laufzeit 1 ausfall laufzeit 4

6 Beispiel: Kreditscoring Deskription von Ausfall in Abhängigkeit von der Laufzeit 1.0 n=82 n=277 n=187 n=224 n=57 n=86 n=17 n=54 n=2 n=13 n=0 n=1 0.8 Anteil ausfall= (0,6] (6,12] (12,18] (18,24] (24,30] (30,36] (36,42] (42,48] (48,54] (54,60] (60,66] (66,72] laufzeit 5

7 Beispiel: Kreditscoring Deskription von Ausfall in Abhängigkeit von der Höhe des Kredits 1 ausfall hoehe 6

8 Beispiel: Kreditscoring Deskription von Ausfall in Abhängigkeit von der Höhe des Kredits 1.0 n=432 n=322 n=97 n=79 n=30 n=19 n=9 n=11 n=0 n=1 0.8 Anteil ausfall= (0,2] (2,4] (4,6] (6,8] (8,10] (10,12] (12,14] (14,16] (16,18] (18,20] hoehe [in 1000 Euro] 7

9 Beispiel: Kreditscoring Deskription von Ausfall in Abhängigkeit vom Alter des Kreditnehmers 1 ausfall alter 8

10 Beispiel: Kreditscoring Deskription von Ausfall in Abhängigkeit vom Alter des Kreditnehmers 1.0 n=16 n=174 n=219 n=178 n=141 n=88 n=71 n=42 n=26 n=27 n=12 n=6 0.8 Anteil ausfall= (18,20] (20,25] (25,30] (30,35] (35,40] (40,45] (45,50] (50,55] (55,60] (60,65] (65,70] (70,75] alter 9

11 Beispiel: Kreditscoring Deskription von Ausfall in Abhängigkeit von der Zahlungsmoral 1.0 n=89 n=911 ausfall 0 1 Σ moral Σ Anteil ausfall= moral 10

12 4.2 Binäre Regressionsmodelle

13 Modellformel Gegeben Realisationen y i einer binären Zielvariablen Y i {0, 1} Kovariablenvektor x i = (1, x i1,..., x ik ) für i = 1,..., n Verteilungsannahme Y i x i ind. B(1, π i ) mit π i = P (Y i = 1 x i ) = E(Y i x i ) Strukturannahme π i =h(η i ) = h(x i β) = h(β 0 + β 1 x i β k x ik ) mit streng monoton wachsender Responsefunktion h : (, ) [0, 1] 12

14 Bemerkungen η i = x i β wird als linearer Prädiktor bezeichnet. Die Umkehrfunktion g = h 1 mit g : [0, 1] (, ) und heißt Linkfunktion. g(π i ) = η i = β 0 + β 1 x i β k x ik Für die Responsefunktion h( ) werden streng monoton wachsende Verteilungsfunktionen verwendet. 13

15 Bekannteste Modelle Logit-Modell h : Verteilungsfunktion der logistischen Verteilung π i = h(η i ) = exp(η i) 1 + exp(η i ) Probit-Modell h : Verteilungsfunktion der Standardnormalverteilung π i = h(η i ) = Φ(η i ) Komplementäres Log-Log-Modell h : Verteilungsfunktion der Extremwertverteilung π i = h(η i ) = 1 exp( exp(η i )) 14

16 Responsefunktionen Responsefunktionen Adjustierte Responsefunktionen h(η) logit probit cloglog h(η) logit probit cloglog η η 15

17 Modellschätzung in R Logit-Modell glm(ausfall ~ laufzeit + hoehe + alter + moral, data=kredit, family=binomial(link= logit )) Probit-Modell glm(ausfall ~ laufzeit + hoehe + alter + moral, data=kredit, family=binomial(link= probit )) Log-Log-Modell glm(ausfall ~ laufzeit + hoehe + alter + moral, data=kredit, family=binomial(link= cloglog )) 16

18 4.3 Logit-Modell

19 Äquivalente Darstellungen 1. Logarithmierte Chance (Linkfunktion) log ( ) πi 1 π i = η i 2. Chance π i 1 π i = exp(η i ) 3. Wahrscheinlichkeit (Responsefunktion) π i = exp(η i) 1 + exp(η i ) 18

20 Interpretation der Parameter Gegeben sei eine bestimmte Kovariablen-Kombination x i = (1, x i1,..., x ij,..., x ik ) und der lineare Prädiktor η i = β β j x ij β k x ik. Falls sich x ij auf x ij + 1 erhöht und alle anderen Einträge von x i gleich bleiben (mit j = 1,..., k), dann 1. ändert sich die logarithmierte Chance um β j, da log ( ) πi 1 π i = β β j (x ij + 1) β k x ik = β β j x ij β k x ik + β j = η i + β j 19

21 Interpretation der Parameter 2. ändert sich die Chance um den Faktor exp(β j ), da π i 1 π i = exp(β β j (x ij + 1) β k x ik ) = exp(β β j x ij + β j β k x ik ) = exp(η i + β j ) = exp(η i ) exp(β j ) 3. ist die Änderung der Wahrscheinlichkeit nicht-linear. π i = exp(η i + β j ) 1 + exp(η i + β j ) 20

22 Interpretation der Parameter Allgemein lässt sich exp(β j ) also als das Chancenverhältnis (oder Odds Ratio) bei Erhöhung von x ij um eine Einheit interpretieren und es gilt: β j > 0 exp(β j ) > 1 β j < 0 exp(β j ) < 1 β j = 0 exp(β j ) = 1 Die Chance P (y i = 1)/P (y i = 0) wird größer. Die Chance P (y i = 1)/P (y i = 0) wird kleiner. Die Chance P (y i = 1)/P (y i = 0) bleibt gleich. 21

23 Prognose Gegeben eine Schätzung ˆβ für β und eine Kovariablenkombination x i ergibt sich eine Schätzung oder Prognose der Wahrscheinlichkeit π i durch: ˆπ i = exp(x i ˆβ) 1 + exp(x i ˆβ) Ebenso wie beim linearen Modell wird dabei der bedingte Erwartungswert E(Y i x i ) geschätzt: ˆπ i = ˆP (Y i = 1 x i ) = Ê(Y i x i ) Man erhält im Logit-Modell demnach keine Prognose ŷ i für y i, sondern nur eine Prognose ˆπ i für π i. 22

24 Beispiel: R-Output Kreditscoring Wie lassen sich folgende geschätzte Parameter ˆβ interpretieren? > modlogit <- glm(ausfall ~ laufzeit + hoehe + alter + moral, + data=kredit, family=binomial(link= logit )) > coef(modlogit) (Intercept) laufzeit hoehe alter moral e e e e e-01 > exp(coef(modlogit)) (Intercept) laufzeit hoehe alter moral

25 Beispiel: R-Output Kreditscoring Call: glm(formula = ausfall ~ laufzeit + hoehe + alter + moral, family = binomial(link = logit ), data = kredit) Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) e e laufzeit 3.232e e e-05 *** hoehe 2.661e e alter e e * moral e e e-10 *** --- Signif. codes: 0 *** ** 0.01 * (Dispersion parameter for binomial family taken to be 1) Null deviance: on 999 degrees of freedom Residual deviance: on 995 degrees of freedom AIC: Number of Fisher Scoring iterations: 4 24

26 Modellierung von Kovariablen Alle behandelten Konzepte zur Modellierung bzw. zum Design von Kovariablen in linearen Modellen mit Normalverteilungsannahme lassen sich analog bei binären Regressionsmodellen anwenden: Stetige Kovariablen: Nicht-lineare Transformation (durch bekannte Funktionen oder Polynome) Mittelwert-Zentrierung Kategoriale Kovariablen: Erzeugung von Dummy-Variablen (z.b. in Dummy- oder Effektkodierung) 25

27 4.4 Parameterschätzung

28 Ausgangspunkt Struktur von binären Regressionsmodellen: Y i x i ind. B(1, π i ) mit π i = P (Y i = 1 x i ) π i = h(η i ) = h(x i β) = h(β 0 + β 1 x i1 + + β k x ik ) Unbekannte und zu schätzende Parameter sind die Regressionskoeffizienten β 0, β 1,..., β k, die im Vektor β zusammengefasst sind. Aufgrund der Binomialverteilungsannahme bietet sich Maximum-Likelihood-Schätzung zur Bestimmung von geeigneten Schätzern an. 27

29 Likelihood Aufgrund der Binomialverteilungsannahme lässt sich die (diskrete) Dichte von y i wie folgt schreiben: f(y i π i ) = π y i i (1 π i) 1 y i Über die Beziehung π i = h(x i β) hängt die Dichte von β ab und wird als Likelihood-Beitrag L i (β) der i-ten Beobachtung aufgefasst: L i (β) = f(y i π i ) Die Likelihood ergibt sich wegen der (bedingten) Unabhängigkeit der y i zu: L(β) = n i=1 L i (β) = n i=1 π y i i (1 π i) 1 y i 28

30 Log-Likelihood Logarithmieren der Likelihood-Beiträge ergibt die Log-Likelihood- Beiträge l i (β) = log L i (β) = y i log(π i ) + (1 y i )log(1 π i ) und daraus die gesamte Log-Likelihood l(β) = n i=1 l i (β) = n i=1 [ y i log(π i ) + (1 y i )log(1 π i ) ] Zum Berechnen der Score-Funktion muss anstelle von π i das jeweilige h(x i β) in die Log-Likelihood eingesetzt und dann nach β abgeleitet werden. 29

31 Score-Funktion Zur Berechnung des ML-Schätzers als Maximierer der Log- Likelihood l(β) bildet man die 1.Ableitung nach β und die Score-Funktion ergibt sich zu s(β) = l(β) β = n i=1 l i (β) β = n i=1 s i (β) Nullsetzen der Score-Funktion liefert die ML-Gleichung: s( ˆβ) = 0. Das Gleichungssystem ist nicht-linear und das Lösen nach ˆβ ist i.a. nicht analytisch möglich. Daher werden numerische Verfahren (wie z.b. Newton-Raphson, Fisher-Scoring) zur Nullstellensuche eingesetzt. 30

32 Informationsmatrizen Zur numerischen Schätzung der Koeffizienten und der Kovarianzmatrix des ML-Schätzers ˆβ benötigt man die beobachtete Fisher-Informationsmatrix F obs (β) = 2 l(β) β β oder die erwartete Fisher-Informationsmatrix F (β) = E(F obs (β)) = E ( 2 l(β) β β ). 31

33 Asymptotische Eigenschaften ML-Schätzer Für n gilt, dass der ML-Schätzer existiert und sowohl konsistent als auch asymptotisch normalverteilt ist: ˆβ a N ( β, F 1 ( ˆβ) ) mit der geschätzten Kovarianzmatrix Ĉov( ˆβ) = F 1 (β) als inverse Fisher-Matrix an der Stelle des ML-Schätzers ˆβ (siehe Folien zur Likelihood-Inferenz). 32

34 Asymptotische Eigenschaften ML-Schätzer Das Diagonalelement a jj der inversen Fisher-Matrix A = F 1 ( ˆβ) ist somit ein Schätzer für die Varianz der j-ten Komponente ˆβ j von ˆβ, d.h. es ist Var(ˆβ j ) = ˆσ 2 j = a jj, und a jj ist ein Schätzer für die Standardabweichung ˆσ j = Var(ˆβ j ). 33

Generalisierte lineare Modelle. Statistik 3 im Nebenfach. Binäre Regressionsmodelle. 4.1 Binäre Regression

Generalisierte lineare Modelle. Statistik 3 im Nebenfach. Binäre Regressionsmodelle. 4.1 Binäre Regression Generalisierte lineare Modelle Statistik 3 im Nebenfach Friedrich Leisch Institut für Statistik Ludwig-Maximilians-Universität München WS 2010/2011 basierend auf Fahrmeir, Kneib & Lang (2007) 4 Generalisierte

Mehr

2.Tutorium Generalisierte Regression

2.Tutorium Generalisierte Regression 2.Tutorium Generalisierte Regression - Binäre Regression - Moritz Berger: 04.11.2013 und 11.11.2013 Shuai Shao: 06.11.2013 und 13.11.2013 Institut für Statistik, LMU München 1 / 16 Gliederung 1 Erweiterte

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik Ludwig Fahrmeir, Nora Fenske Institut für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik 29. März 21 Hinweise:

Mehr

Logistische Regression

Logistische Regression Logistische Regression Werner Brannath VO Biostatistik im WS 2006/2007 Inhalt Logistische Regression Beispiel 1: Herzerkrankungsdaten aus Framingham Log Odds Modell Beispiel 1: Einfluss von Blutdruck Maximum

Mehr

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 8. Februar 2007 Hinweise:

Mehr

4 Binäre Regressionsmodelle, Folien 2

4 Binäre Regressionsmodelle, Folien 2 4 Binäre Regressionsmodelle, Folien 2 Ludwig Bothmann (basierend auf Unterlagen von Nora Fenske) Statistik III für Nebenfachstudierende WS 2014/2015 4.5 Hypothesentests Lineare Hypothesen Betrachtet werden

Mehr

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 29. Mai 2006 Hinweise:

Mehr

Fallbeispiel: Kreditscoring

Fallbeispiel: Kreditscoring Fallbeispiel: Kreditscoring Stefan Lang 14. Juni 2005 SS 2005 Datensatzbeschreibung (1) Ziel Untersuchung der Bonität eines Kunden in Abhängigkeit von erklärenden Variablen Zielvariable Bonität des Kunden:

Mehr

Kap. 9: Regression mit einer binären abhängigen Variablen

Kap. 9: Regression mit einer binären abhängigen Variablen Kap. 9: Regression mit einer binären abhängigen Variablen Motivation Lineares Wahrscheinlichkeitsmodell Probit- und Logit-Regression Maximum Likelihood Empirisches Beispiel: Analyse der HMDA-Daten Ausblick:

Mehr

6.0 Logistische Regression. 6 Logistische Regression. 6.1 Das binäre Modell. 6 Logistische Regression

6.0 Logistische Regression. 6 Logistische Regression. 6.1 Das binäre Modell. 6 Logistische Regression 6.0 Logistische Regression 6.1 Das binäre Modell 6.1 Das binäre Modell Sei x der Vektor der Einflussgrößen mit einem Eins-Element, um die Regressionskonstante zu modellieren. Angenommen, es gilt das Regressionsmodell:

Mehr

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS?

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? BINARY CHOICE MODELS 1 mit Pr( Y = 1) = P Y = 0 mit Pr( Y = 0) = 1 P Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? Y i = X i β + ε i Probleme: Nonsense Predictions

Mehr

1 Binäre Regression (I)

1 Binäre Regression (I) Übung zur Vorlesung Generalisierte Regressionsmodelle Blatt 2 Gerhard Tutz, Moritz Berger, Wolfgang Pößnecker WiSe 14/15 1 Binäre Regression (I) Aufgabe 1 Der Datensatz shuttle beschreibt für die 23 Space

Mehr

Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch

Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 9.1 Allgemeine Regressionsanalyse Daten (X j, Y j ), j = 1,..., N unabhängig Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl.

Mehr

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II Kategoriale abhängige Variablen: Logit- und Probit -Modelle Statistik II Wiederholung Literatur Annahmen und Annahmeverletzungen Funktionen Exponenten, Wurzeln usw. Das Problem Das binäre Logit-Modell

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Statistik Einführung // Lineare Regression 9 p.2/72

Statistik Einführung // Lineare Regression 9 p.2/72 Statistik Einführung Lineare Regression Kapitel 9 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Ledold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Lineare Regression

Mehr

Binäre abhängige Variablen

Binäre abhängige Variablen Binäre abhängige Variablen Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Einführung Oft wollen wir qualitative Variablen

Mehr

Seminar zur Energiewirtschaft:

Seminar zur Energiewirtschaft: Seminar zur Energiewirtschaft: Ermittlung der Zahlungsbereitschaft für erneuerbare Energien bzw. bessere Umwelt Vladimir Udalov 1 Modelle mit diskreten abhängigen Variablen 2 - Ausgangssituation Eine Dummy-Variable

Mehr

Prognoseintervalle für y 0 gegeben x 0

Prognoseintervalle für y 0 gegeben x 0 10 Lineare Regression Punkt- und Intervallprognosen 10.5 Prognoseintervalle für y 0 gegeben x 0 Intervallprognosen für y 0 zur Vertrauenswahrscheinlichkeit 1 α erhält man also analog zu den Intervallprognosen

Mehr

Poisson Regression. Verallgemeinerte Lineare Modelle (GLMs)

Poisson Regression. Verallgemeinerte Lineare Modelle (GLMs) Poisson Regression Verallgemeinerte Lineare Modelle (GLMs) 28.11.2011 Poisson Regression Aus der Einführungsvorlesung Poisson-Verteilung ist in der Regel gut geeignet, um Anzahlen zu modellieren. Frage

Mehr

Multinomiale logistische Regression

Multinomiale logistische Regression Multinomiale logistische Regression Die multinomiale logistische Regression dient zur Schätzung von Gruppenzugehörigkeiten bzw. einer entsprechenden Wahrscheinlichkeit hierfür, wobei als abhänginge Variable

Mehr

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

Kategoriale abhängige Variablen:

Kategoriale abhängige Variablen: Kategoriale abhängige Variablen: Logit- und Probit -Modelle Statistik II Literatur Annahmen und Annahmeverletzungen Funktionen Exponenten, Wurzeln usw. Das Problem Das binäre Logit-Modell Statistik II

Mehr

Klassen diskreter Variablen

Klassen diskreter Variablen Modelle diskreter Variablen Klassen diskreter Variablen binär multinomial Weitere Klassifizierung multinomialer diskreter Variablen: kategorial y = 1, falls Einkommen < 3000 e. y = 2, falls Einkommen zw.

Mehr

1 Statistische Grundlagen

1 Statistische Grundlagen Konzepte in Empirische Ökonomie 1 (Winter) Hier findest Du ein paar Tipps zu den Konzepten in Empirische 1. Wenn Du aber noch etwas Unterstützung kurz vor der Klausur brauchst, schreib uns eine kurze Email.

Mehr

Auswertung und Lösung

Auswertung und Lösung Körperkraft [Nm] 0 50 100 150 200 250 0 20 40 60 80 Lean Body Mass [kg] Dieses Quiz soll Ihnen helfen, den R Output einer einfachen linearen Regression besser zu verstehen (s. Kapitel 5.4.1) Es wurden

Mehr

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table(c:\\compaufg\\kredit. Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 36 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula =

Mehr

Katharina Morik und Uwe Ligges: Wissensentdeckung in Datenbanken Sommersemester

Katharina Morik und Uwe Ligges: Wissensentdeckung in Datenbanken Sommersemester 6.0 Logistische Regression Die logistische Regression ist ein Spezialfall des Generalisierten Linearen Modells (GLM), ist ein spezielles Klassifikationsverfahren, wird in der Praxis sehr häufig verwendet,

Mehr

1 Analyse von Kontigenztafeln: Das loglineare Modell

1 Analyse von Kontigenztafeln: Das loglineare Modell Übung zur Vorlesung Kategoriale Daten Blatt 3 Gerhard Tutz, Moritz Berger WiSe 15/16 1 Analyse von Kontigenztafeln: Das loglineare Modell Aufgabe 12 Analyse des Datensatzes EyeColor (a) Visualisierung

Mehr

Ordinale abhängige Variablen. Einführung Regressionsmodelle für ordinale Variablen Empirisches Beispiel Ausblick

Ordinale abhängige Variablen. Einführung Regressionsmodelle für ordinale Variablen Empirisches Beispiel Ausblick Kap. 6: Ordinale abhängige Variablen Einführung Regressionsmodelle für ordinale Variablen Empirisches Beispiel Ausblick 6.1 Einführung Typische ökonomische Beispiele für ordinale abhängige Variablen: Bildungsniveau

Mehr

Binäre Auswahlmodelle (Logit, Probit,...)

Binäre Auswahlmodelle (Logit, Probit,...) Binäre Auswahlmodelle (Logit, Probit,...) 27. November 204 In diesem Kapitel führen wir eine Klasse von Modellen für binäre Auswahlprobleme ein, deren wichtigste Vertreter das Logit- und das Probit-Modell

Mehr

Nachholklausur zur Vorlesung Schätzen und Testen I. 04. April Bitte ausfüllen und unterschreiben!!!

Nachholklausur zur Vorlesung Schätzen und Testen I. 04. April Bitte ausfüllen und unterschreiben!!! Nachholklausur zur Vorlesung Schätzen und Testen I 04. April 2013 Volker Schmid, Ludwig Bothmann, Julia Sommer Aufgabe 1 2 3 4 5 6 Punkte Note Bitte ausfüllen und unterschreiben!!! Name, Vorname: Matrikelnummer:

Mehr

Prüfung im Fach Ökonometrie im WS 2011/12 Aufgabenteil. Name, Vorname. Matrikelnr. Studiengang. E-Mail-Adresse. Unterschrift

Prüfung im Fach Ökonometrie im WS 2011/12 Aufgabenteil. Name, Vorname. Matrikelnr. Studiengang. E-Mail-Adresse. Unterschrift Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Ökonometrie im WS 2011/12 Aufgabenteil Name, Vorname Matrikelnr. Studiengang E-Mail-Adresse Unterschrift

Mehr

Unterlagen zu Fisher s Exact Test, Vergleich von Anteilswerten und logistischer Regression. Robin Ristl. Wintersemester 2012/13

Unterlagen zu Fisher s Exact Test, Vergleich von Anteilswerten und logistischer Regression. Robin Ristl. Wintersemester 2012/13 Unterlagen zu Fisher s Exact Test, Vergleich von Anteilswerten und logistischer Regression Robin Ristl Wintersemester 2012/13 1 Exakter Test nach Fisher Alternative zum Chi-Quadrat Unabhängigkeitstest

Mehr

Kommentierter SPSS-Ausdruck zur logistischen Regression

Kommentierter SPSS-Ausdruck zur logistischen Regression Daten: POK V AG 3 (POKV_AG3_V07.SAV) Kommentierter SPSS-Ausdruck zur logistischen Regression Fragestellung: Welchen Einfluss hat die Fachnähe und das Geschlecht auf die interpersonale Attraktion einer

Mehr

Musterlösung. Modulklausur Multivariate Verfahren

Musterlösung. Modulklausur Multivariate Verfahren Musterlösung Modulklausur 31821 Multivariate Verfahren 25. September 2015 Aufgabe 1 (15 Punkte) Kennzeichnen Sie die folgenden Aussagen zur Regressionsanalyse mit R für richtig oder F für falsch. F Wenn

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Ökonometrie im WS 2011/12 Lösungsskizze

Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Ökonometrie im WS 2011/12 Lösungsskizze Lehrstuhl für Statistik und empirische irtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im ach Ökonometrie im S 20/2 Lösungsskizze Aufgabe (.5 Punkte) Sie verfügen über einen Datensatz, der Informationen

Mehr

Koeffizienten der Logitanalyse. Kurt Holm. Almo Statistik-System www.almo-statistik.de holm@almo-statistik.de kurt.holm@jku.at

Koeffizienten der Logitanalyse. Kurt Holm. Almo Statistik-System www.almo-statistik.de holm@almo-statistik.de kurt.holm@jku.at Koeffizienten der Logitanalyse Kurt Holm Almo Statistik-System www.almo-statistik.de holm@almo-statistik.de kurt.holm@jku.at 1 Kurt Holm Koeffizienten der Logitanalyse Eine häufig gestellte Frage lautet:

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

Berichte aus der Statistik. Jens Kahlenberg. Storno und Profitabilität in der Privathaftpflichtversicherung

Berichte aus der Statistik. Jens Kahlenberg. Storno und Profitabilität in der Privathaftpflichtversicherung Berichte aus der Statistik Jens Kahlenberg Storno und Profitabilität in der Privathaftpflichtversicherung Eine Analyse unter Verwendung von univariaten und bivariaten verallgemeinerten linearen Modellen

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/536

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/536 fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/536 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung

Mehr

1 Interaktion von zwei Dummyvariablen. 2 Interaktion einer Dummyvariablen mit einer kardinalskalierten Variablen

1 Interaktion von zwei Dummyvariablen. 2 Interaktion einer Dummyvariablen mit einer kardinalskalierten Variablen Modelle mit Interationsvariablen I Modelle mit Interationsvariablen II In der beim White-Test verwendeten Regressionsfuntion y = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 2 1 + β 4 x 2 2 + β 5 x 1 x 2, ist anders

Mehr

Lineare Modelle in R: Einweg-Varianzanalyse

Lineare Modelle in R: Einweg-Varianzanalyse Lineare Modelle in R: Einweg-Varianzanalyse Achim Zeileis 2009-02-20 1 Datenaufbereitung Wie schon in der Vorlesung wollen wir hier zur Illustration der Einweg-Analyse die logarithmierten Ausgaben der

Mehr

PROC LOGISTIC: Warum sind die Koeffizienten nicht mit den Odds Ratios konsistent?

PROC LOGISTIC: Warum sind die Koeffizienten nicht mit den Odds Ratios konsistent? Anwendungen PROC LOGISTIC: Warum sind die Koeffizienten nicht mit den Odds Ratios konsistent? Ulrike Braisch, Rainer Muche Institut für Epidemiologie und Medizinische Biometrie Universität Ulm Schwabstraße

Mehr

Lineare Regression Blockpraktikum zur Statistik mit R 28. März 2012 Sören Gröttrup Institut für Mathematische Statistik Universität Münster SS 2012

Lineare Regression Blockpraktikum zur Statistik mit R 28. März 2012 Sören Gröttrup Institut für Mathematische Statistik Universität Münster SS 2012 Lineare Regression Blockpraktikum zur Statistik mit R 28. März 2012 Sören Gröttrup Institut für Mathematische Statistik Universität Münster SS 2012 Beispiel: Ausgangsfrage Ziel: Wie wirkt sich die eingesetzte

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Vorlesung: Lineare Modelle

Vorlesung: Lineare Modelle Vorlesung: Lineare Modelle Prof Dr Helmut Küchenhoff Institut für Statistik, LMU München SoSe 2014 5 Metrische Einflußgrößen: Polynomiale Regression, Trigonometrische Polynome, Regressionssplines, Transformationen

Mehr

Fallstudie: Schadenshäufigkeiten bei Kfz-Versicherungen

Fallstudie: Schadenshäufigkeiten bei Kfz-Versicherungen Fallstudie: Schadenshäufigkeiten bei Kfz-Versicherungen Stefan Lang 12 Oktober 2005 WS 05/06 Datensatzbeschreibung (1) Daten Versicherungsdaten für Belgien ca 160000 Beobachtungen Ziel Analyse der Risikostruktur

Mehr

Kap. 2: Generalisierte lineare Modelle (GLMs) Lineare und generalisierte lineare Modelle Schätzung und Inferenz in GLMs Literatur

Kap. 2: Generalisierte lineare Modelle (GLMs) Lineare und generalisierte lineare Modelle Schätzung und Inferenz in GLMs Literatur Kap. 2: Generalisierte lineare Modelle (GLMs) Lineare und generalisierte lineare Modelle Schätzung und Inferenz in GLMs Literatur 2.1 Lineare und generalisierte lineare Modelle Das klassische lineare Regressionsmodell

Mehr

Statistische Inferenz bei ROC Kurven. Notation. Man unterscheidet:

Statistische Inferenz bei ROC Kurven. Notation. Man unterscheidet: Statistische Inferenz bei ROC Kurven Notation Man unterscheidet: 1. Nichtparametrische, empirische Methoden zur Berechnung der empirischen ROC Kurve 2. Parametrische Ansätze, die recht starke Annahmen

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik. 7. Februar 2008

Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik. 7. Februar 2008 L. Fahrmeir, G. Walter Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 7. Februar 8 Hinweise:. Überprüfen

Mehr

Fragen. Einführung in die induktive Statistik. Übersicht. Lineare Einfachregression

Fragen. Einführung in die induktive Statistik. Übersicht. Lineare Einfachregression Fragen Welche Unsicherheitsfaktoren beeinflussen die Schätzung einer Regressionsgeraden? Einführung in die induktive Statistik Friedrich Leisch Institut für Statistik Ludwig-Maximilians-Universität München

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Speziell im Zusammenhang mit der Ablehnung der Globalhypothese werden bei einer linearen Einfachregression weitere Fragestellungen

Mehr

Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik. Regression. Einfache lineare Regression

Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik. Regression. Einfache lineare Regression Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik Regression Dozent: Fabian Scheipl Material: H. Küchenhoff LMU München 39 Einfache lineare Regression Bestimmung der Regressionsgerade

Mehr

Lineare Regressionen mit R (Ökonometrie SS 2014 an der UdS)

Lineare Regressionen mit R (Ökonometrie SS 2014 an der UdS) Lineare Regressionen mit R (Ökonometrie SS 2014 an der UdS) Es soll untersucht werden, ob und wie sich Rauchen während der Schwangerschaft auf den Gesundheitszustand des Neugeborenen auswirkt. Hierzu werden

Mehr

ML-Schätzung. Likelihood Quotienten-Test. Zusammenhang Reparametrisierung und Modell unter linearer Restriktion. Es gilt: β = Bγ + d (3.

ML-Schätzung. Likelihood Quotienten-Test. Zusammenhang Reparametrisierung und Modell unter linearer Restriktion. Es gilt: β = Bγ + d (3. Reparametrisierung des Modells Gegeben sei das Modell (2.1) mit (2.5) unter der linearen Restriktion Aβ = c mit A R a p, rg(a) = a, c R a. Wir betrachten die lineare Restriktion als Gleichungssystem. Die

Mehr

1 Gemischte Lineare Modelle

1 Gemischte Lineare Modelle 1 Gemischte Lineare Modelle Wir betrachten zunächst einige allgemeine Aussagen für Gemischte Lineare Modelle, ohne zu tief in die mathematisch-statistische Theorie vorzustoßen. Danach betrachten wir zunächst

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Übungen zur Vorlesung. Statistik 2. a) Welche Grundannahmen der linearen Regression sind in Modell (1) verletzt?

Übungen zur Vorlesung. Statistik 2. a) Welche Grundannahmen der linearen Regression sind in Modell (1) verletzt? Institut für Stochastik WS 2007/2008 Universität Karlsruhe JProf. Dr. H. Holzmann Blatt 7 Dipl.-Math. oec. D. Engel Übungen zur Vorlesung Statistik 2 Aufgabe 25 (keine Abgabe) Angenommen die Zielvariable

Mehr

Regressionsmodelle für kategoriale Daten und Zähldaten

Regressionsmodelle für kategoriale Daten und Zähldaten Kapitel 8 Regressionsmodelle für kategoriale Daten und Zähldaten Das Modell der linearen Regression und Varianzanalyse (vgl. Abschn. 6.3, 7.3, 12.9.1) lässt sich zum verallgemeinerten linearen Modell (GLM,

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

2. Statistische Methoden in der Diagnostik. Elemente des Studiendesigns

2. Statistische Methoden in der Diagnostik. Elemente des Studiendesigns 2. Statistische Methoden in der Diagnostik Elemente des Studiendesigns Diagnosestudien in der Medizin Klassifikation in krank - nicht krank basierend auf diagnostischem Test Beispiel: Diagnose von Brustkrebs

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Logistische Regression I. Odds, Logits, Odds Ratios, Log Odds Ratios

Logistische Regression I. Odds, Logits, Odds Ratios, Log Odds Ratios Logistische Regression I. Odds, Logits, Odds Ratios, Log Odds Ratios PD Dr.Gabriele Doblhammer, Fortgescrittene Methoden, SS2004 Logistische Regression Tabelle 2 Alter und Symptome von Herz-/Kreislauferkrankung(CD)

Mehr

9. Lineare Regression

9. Lineare Regression 9. Lineare Regression y 3.0 3.5 4.0 4.5 0.0 0.2 0.4 0.6 0.8 1.0 Fabian Scheipl, Bernd Bischl Stochastik und Statistik SoSe 2016 1 / 40 x KQ-Schätzung Es ist eine Gerade y = β 1 + β 2 x gesucht, welche

Mehr

Eine Einführung in R: Das Lineare Modell

Eine Einführung in R: Das Lineare Modell Eine Einführung in R: Das Lineare Modell Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 6. Januar 2009 Bernd Klaus, Verena Zuber

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Tutorial: Homogenitätstest

Tutorial: Homogenitätstest Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 5. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Glossar Portfolio: In der Ökonomie bezeichnet der Begriff Portfolio ein Bündel von Investitionen, das

Mehr

Übung zur Vorlesung Statistik II SoSe Übungsblatt 7

Übung zur Vorlesung Statistik II SoSe Übungsblatt 7 Übung zur Vorlesung Statistik II SoSe 2014 Übungsblatt 7 2. Juni 2014 ufgabe 24 (4 Punkte): (1.5 Punkte) Berechnen Sie für die folgenden Wahrscheinlichkeiten die zugehörigen Odds: (a) 0.6 (b) 0.2 (c) 0.02

Mehr

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer

Mehr

Commercial Banking. Kreditgeschäft. Gestaltung der Vertragsbeziehung: Sicherheiten, Kündigungsrechte, Relationship Banking,...

Commercial Banking. Kreditgeschäft. Gestaltung der Vertragsbeziehung: Sicherheiten, Kündigungsrechte, Relationship Banking,... Commercial Banking Kreditgeschäft Themen Rating, Ausfallrisiko erwarteter Verlust, unerwarteter Verlust, Pricing, Risikoabgeltung versus Kreditrationierung Gestaltung der Vertragsbeziehung: Sicherheiten,

Mehr

Martingale. Kapitel 6. 6.1 Martingale in diskreter Zeit. 6.1.1 Definition und Beispiele

Martingale. Kapitel 6. 6.1 Martingale in diskreter Zeit. 6.1.1 Definition und Beispiele Kapitel 6 Martingale In der Statistik modellieren Martingale z.b. Glücksspiele oder Handelsstrategien in Finanzmärkten und sind ein grundlegendes Hilfsmittel für die statistische Inferenz stochastischer

Mehr

Die partielle Likelihood-Funktion

Die partielle Likelihood-Funktion Die partielle Likelihood-Funktion Roger Züst 12. Juni 26 1 Repetition: Maximum-Likelihood-Methode Hat man n unabhängige Beobachtungen x 1, x 2,..., x n einer Zufallsvariablen X und eine Familie von möglichen

Mehr

Deskriptive Statistik Lösungen zu Blatt 5 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 27. f X Y (a i b j ) = f i j = f ij f j

Deskriptive Statistik Lösungen zu Blatt 5 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 27. f X Y (a i b j ) = f i j = f ij f j 1 Deskriptive Statistik Lösungen zu Blatt 5 Christian Heumann, Susanne Konrath SS 2011 Lösung Aufgabe 27 (a) Notation: X: Rauchen, Y : chronische Bronchitis S X {ja, nein} {a 1, a 2 }, S Y {ja, nein} {b

Mehr

6. Statistische Schätzung von ARIMA Modellen

6. Statistische Schätzung von ARIMA Modellen 6. Statistische Schätzung von ARIMA Modellen Vorschau: ARIMA Modelle Modellidentifikation verschiedene Schätzverfahren Modelldiagnostik Fallstudien Zeitreihenanalyse 1 6.1 ARIMA Modelle Bisher: ARMA(p,q)-Modelle:

Mehr

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen Breusch-Pagan-Test I Ein weiterer Test ist der Breusch-Pagan-Test. Im Gegensatz zum Goldfeld-Quandt-Test ist es nicht erforderlich, eine (einzelne) Quelle der Heteroskedastizität anzugeben bzw. zu vermuten.

Mehr

Verteilungsmodelle. Verteilungsfunktion und Dichte von T

Verteilungsmodelle. Verteilungsfunktion und Dichte von T Verteilungsmodelle Verteilungsfunktion und Dichte von T Survivalfunktion von T Hazardrate von T Beziehungen zwischen F(t), S(t), f(t) und h(t) Vorüberlegung zu Lebensdauerverteilungen Die Exponentialverteilung

Mehr

Darstellung eines VAR(p)-Prozesses als VAR(1)-Prozess

Darstellung eines VAR(p)-Prozesses als VAR(1)-Prozess Darstellung eines VAR(p)-Prozesses als VAR(1)-Prozess Definiere x t = Y t Y t 1. Y t p+1 Sylvia Frühwirth-Schnatter Econometrics III WS 2012/13 1-84 Darstellung eines VAR(p)-Prozesses als VAR(1)-Prozess

Mehr

Logit-Analyse mit ordinalen und nominalen abhängigen Variablen

Logit-Analyse mit ordinalen und nominalen abhängigen Variablen Logit-Analyse mit ordinalen und nominalen abhängigen Variablen Regressionsmodelle für Politikwissenschaftler Übersicht Das multinomiale Logit-Modell Das konditionale Logit-Modell Regressionsmodelle für

Mehr

Lösung Übungsblatt 5

Lösung Übungsblatt 5 Lösung Übungsblatt 5 5. Januar 05 Aufgabe. Die sogenannte Halb-Normalverteilung spielt eine wichtige Rolle bei der statistischen Analyse von Ineffizienzen von Produktionseinheiten. In Abhängigkeit von

Mehr

Zeitreihenanalyse. Teil III: Nichtlineare Zeitreihenmodelle. Prof. Dr. W. Zucchini, Dr. O. Nenadić, A. Schlegel. Göttingen, Januar 2008 DAX

Zeitreihenanalyse. Teil III: Nichtlineare Zeitreihenmodelle. Prof. Dr. W. Zucchini, Dr. O. Nenadić, A. Schlegel. Göttingen, Januar 2008 DAX Zeitreihenanalyse Teil III: Nichtlineare Zeitreihenmodelle Prof. Dr. W. Zucchini, Dr. O. Nenadić, A. Schlegel DAX -10-5 0 5 10 0 200 400 600 800 1000 trading day Göttingen, Januar 2008 Inhaltsverzeichnis

Mehr

Die Tarifierung in der Autohaftpflichtversicherung mittels verallgemeinerter linearer Modelle

Die Tarifierung in der Autohaftpflichtversicherung mittels verallgemeinerter linearer Modelle Diplomarbeit Die Tarifierung in der Autohaftpflichtversicherung mittels verallgemeinerter linearer Modelle von Patricia Siedlok betreut von PD Dr. Volkert Paulsen Mathematisches Institut für Statistik

Mehr

Analyse von Querschnittsdaten. Regression mit Dummy-Variablen

Analyse von Querschnittsdaten. Regression mit Dummy-Variablen Analyse von Querschnittsdaten Regression mit Dummy-Variablen Warum geht es in den folgenden Sitzungen? Datum Vorlesung 9.0.05 Einführung 26.0.05 Beispiele 02..05 Forschungsdesigns & Datenstrukturen 09..05

Mehr

Monte Carlo Methoden in Kreditrisiko-Management

Monte Carlo Methoden in Kreditrisiko-Management Monte Carlo Methoden in Kreditrisiko-Management P Kreditportfolio bestehend aus m Krediten; Verlustfunktion L = n i=1 L i; Die Verluste L i sind unabhängig bedingt durch einen Vektor Z von ökonomischen

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

John Komlos Bernd Süssmuth. Empirische Ökonomie. Eine Einführung in Methoden und Anwendungen. 4y Springer

John Komlos Bernd Süssmuth. Empirische Ökonomie. Eine Einführung in Methoden und Anwendungen. 4y Springer John Komlos Bernd Süssmuth Empirische Ökonomie Eine Einführung in Methoden und Anwendungen 4y Springer 1 Einführung 1 1.1 Ökonometrie 1 2 Vorüberlegungen und Grundbegriffe 7 2.1 Statistik als Grundlage

Mehr

1 Einführung Ökonometrie... 1

1 Einführung Ökonometrie... 1 Inhalt 1 Einführung... 1 1.1 Ökonometrie... 1 2 Vorüberlegungen und Grundbegriffe... 7 2.1 Statistik als Grundlage der Empirischen Ökonomie... 7 2.2 Abgrenzung und Parallelen zu den Naturwissenschaften...

Mehr

Geoadditive Regression

Geoadditive Regression Seminar: Stochastische Geometrie und ihre Anwendungen - Zufallsfelder Universität Ulm 27.01.2009 Inhalt Einleitung 1 Einleitung 2 3 Penalisierung 4 Idee Variogramm und Kovarianz Gewöhnliches Ansatz für

Mehr

Kapitel 3: Interpretationen

Kapitel 3: Interpretationen Kapitel 3: 1. Interpretation von Outputs allgemein... 1 2. Interpretation von Signifikanzen... 1 2.1. Signifikanztests / Punktschätzer... 1 2.2. Konfidenzintervalle... 2 3. Interpretation von Parametern...

Mehr

Schriftliche Prüfung (90 Minuten)

Schriftliche Prüfung (90 Minuten) Dr. M. Kalisch Probeprüfung Statistik 1 Sommer 2014 Schriftliche Prüfung (90 Minuten) Bemerkungen: Alle schriftlichen Hilfsmittel und ein Taschenrechner sind erlaubt. Mobiltelefone sind auszuschalten!

Mehr

Lineare Strukturgleichungsmodelle (LISREL) Konfirmatorische Faktorenanalyse (CFA)

Lineare Strukturgleichungsmodelle (LISREL) Konfirmatorische Faktorenanalyse (CFA) Interdisziplinäres Seminar Lineare Strukturgleichungsmodelle (LISREL) Konfirmatorische Faktorenanalyse (CFA) WS 2008/09 19.11.2008 Julia Schiele und Lucie Wink Dozenten: Prof. Dr. Bühner, Prof. Dr. Küchenhoff

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2011/12. Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2011/12. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2011/12 Aufgabe 1 Übungsleiter

Mehr